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Abstract
The idiosyncratic and systemic components of market structure have been shown 
to be responsible for the departure of the optimal mean-variance allocation from 
the heuristic ‘equally weighted’ portfolio. In this paper, we exploit clustering 
techniques derived from Random Matrix Theory to study a third, intermediate 
(mesoscopic) market structure that turns out to be the most stable over time and 
provides important practical insights from a portfolio management perspective. 
First, we illustrate the benefits, in terms of predicted and realized risk profiles, of 
constructing portfolios by filtering out both random and systemic co-movements 
from the correlation matrix. Second, we redefine the portfolio optimization problem 
in terms of stock clusters that emerge after filtering. Finally, we propose a new 
wealth allocation scheme that attaches equal importance to stocks belonging to the 
same community and show that it further increases the reliability of the constructed 
portfolios. Results are robust across different time spans, cross sectional dimensions 
and set of constraints defining the optimization problem.
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1  Introduction

The pioneering work of Markowitz (1952) laid the foundations of modern portfolio 
theory through the mean-variance (MV) optimization procedure. According to 
that model, the portfolio optimizer deals with uncertainty either by minimizing the 
variance of the investment, given the expected return, or by maximizing the expected 
return, given a certain level of risk. Despite its simplicity, it is widely recognized 
that the mean-variance framework delivers poor out-of-sample performances 
when the historical sample covariance matrix is used in the optimization process 
(Michaud 1989; Bai et  al. 2009). As also shown by Laloux et  al. (1999), the 
smallest eigenvalues of the spectra of the sample covariance matrix, which plays a 
fundamental role in the estimation of the global minimum variance (GMV) portfolio, 
are largely affected by noise. As a consequence, a MV optimization procedure which 
plug-in those estimates could be highly inaccurate, yielding in-sample predictions 
which seriously depart, in terms of portfolio returns and variances, from the realized 
ones.

The above mentioned limitations questioned the need for sophisticated 
optimization procedures for portfolio management purposes, especially considering 
that the simpler 1/N heuristic rule, being less affected by covariance estimation 
errors, achieves better out-of-sample performances (Duchin and Levy 2009; 
DeMiguel et  al. 2009). To overcome the problems related to the adoption of the 
MV framework, techniques have been proposed either to ameliorate its theoretical 
predictions (see Brodie et al. 2009; DeMiguel et al. 2009; Tu and Zhou 2011, among 
others) or to capture the ‘real’ essence of the correlation matrix by means of which 
optimal portfolios are constructed through filtering procedures.1 Overall, each 
different estimator and filtering procedure improves upon different portfolio aspects 
related to the performance, realized risk, reliability and diversification. These 
improvements also depend on other circumstances as the dimension-to-sample size 
ratio or the possibility of exploiting short-selling strategies.

In this work we show that once both noise and aggregate systemic fluctuations 
are considered in the portfolio optimization process (i.e., they are filtered-out from 
the covariance matrix), the resulting optimal asset allocation closely tracks the 1/N 
heuristic. As documented by Forbes and Rigobon (2002), the correlation coefficient 
is indeed conditional on market volatility2, a direct consequence of which being that 
variables might appear as strongly correlated only because of temporary turmoil 
periods. For this reason, focusing on stable interconnections between stocks is 
fundamental to improve the reliability, in terms of predicted and realized risks, of 
the portfolio resulting from the optimization process: such a goal can be achieved 
by identifying which correlations are stable over time, i.e., not resulting from either 
random co-movements or temporary market effects. Moving from there, we further 

1  A comprehensive empirical study, regarding the possible improvements in the optimal asset allocation 
through the replacement of the sample correlations estimator with other estimation and filtering tech-
niques, can be found in Pantaleo et al. (2011).
2  In the rest of the article we will refer to the terms systemic effects and market effects as synonyms.
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show that by redefining the asset allocation problem by giving equal importance to 
assets belonging to the same communities, i.e., groups of strongly interconnected 
stocks identified after filtering out noise and common aggregate effects (MacMahon 
and Garlaschelli 2015; Anagnostou et  al. 2021), it is possible to further improve 
portfolio reliability.

Our contribution directly refers to two different but linked streams of literature. 
One is focused on network-based approaches that exploit the interconnected and 
evolving nature of markets. For example, Onnela et  al. (2003) and Peralta and 
Zareei (2016) point out the existence of a relationship between the centrality of each 
stock in the network of log-return correlations and the weight induced by the MV 
optimization procedure, suggesting that optimal portfolios should include peripheral 
stocks to reduce the influence of central assets characterized by higher variance. 
Other studies heavily rely on hierarchical clustering techniques (Mantegna 1999; 
Bonanno et al. 2003, 2004; Di Matteo et al. 2004; Onnela et al. 2004; Tumminello 
et  al. 2005): For instance, in Tola et  al. (2008) optimal portfolios are constructed 
by replacing the empirical correlations with ultrametric distances induced by the 
corresponding hierarchical clustering scheme.

A different stream of literature focuses instead on filtering procedures that rely 
upon Random Matrix Theory (RMT) (Biely and Thurner 2008; Dimov et al. 2012; 
Singh and Xu 2016; Zitelli 2020). As shown in MacMahon and Garlaschelli (2015), 
different components of market structure can be identified by employing RMT-based 
clustering techniques that returns cohesive groups of stocks on the basis of which 
the portfolio optimization problem can be reformulated. Such an approach has been 
recently adopted by Anagnostou et al. (2021), who have focused on Credit Default 
Swap (CDS) markets, showing that such structures are indeed useful for credit risk 
modeling, especially because they may encode factors not necessarily related with 
standard industry/region taxonomies. Taken together, these results point out that 
filtered correlation matrices are typically more reliable—in terms of predicted and 
realized risk profiles—than those obtained using the empirical correlations as input.3

We organize the paper as follows. In sect. 2 we introduce our filtering procedure 
and explain how filtered correlations can be exploited to recover the mesoscopic 
structure of the stock market. We thus apply the proposed methodology on SP500 
data showing the results in sect.  3. In sect.  4, we show how that information can 
be exploited in a portfolio optimization setting. Sect.  5 illustrates the advantages, 
in terms of predicted and realized risk reliability, of constructing portfolios as 
above. We thus illustrate the realized risk profiles and Sharpe ratios of the obtained 
portfolios against the baseline. Sect. 6 finally concludes and discusses possible paths 
for future research.

3  This is true especially when the requirement T ≫ N cannot be satisfied (Laloux et  al. 2000; Plerou 
et al. 2002).
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2 � The mesoscopic structure of the stock market

RMT can be employed to filter out the random noise from the correlation matrices of 
financial returns, by exploiting the Marčenko–Pastur Law (Marčenko and Pastur 1967). 
More formally, let { xit }, with i = 1…N and t = 1…T , be a sample of i.i.d. random 
variables with zero mean and variance �2 . Let � be the ratio T/N, assuming � ∈ (1,∞) 
in the limit T ,N → ∞ . Then, with probability one, the spectral density function of the 
sample covariance matrix tends to the Marčenko-Pastur distribution, i.e.,

for �min ≤ � ≤ �max , where �max = �
2(1 +

√
N∕T)2 and 𝜆min = 𝜎

2(1 −
√
N∕T)2 > 0.

The reader interested in the proof is redirected to Bai (1999). The result above 
implies that the empirical correlation matrix C can in principle be decomposed as

where �vi⟩ and ⟨vi� denote the column and row eigenvectors associated with the 
eigenvalue �i , respectively. The above decomposition thus represents the empirical 
correlation matrix as a sum of matrices, respectively, induced by the random 
component C(r) , whose eigenvalues lie in the Marčenko-Pastur range [�min, �max] , 
and the structural (non-random) component C(s).

When dealing with the correlation matrix of financial returns, the largest empirical 
eigenvalue �1 is much larger then the �max predicted by the MP law, which in turn shifts 
the lower eigenvalues leftwards below �min as well. As originally stressed by Laloux 
et al. (1999), this empirical evidence requires to subtract the contribution of �1 from 
the nominal value �2 = 1 when determining the threshold �max used to filter out the 
noise. Following then the prescription of Laloux et al. (1999), we determine �max in 
the MP-range by replacing �2 = 1 with �2 = 1 − �1∕N . What remains after removing 
C

(r) is, then, recognized as signal rather than noise, hence supposed to possess useful 
economic information.

Interestingly, the (column) eigenvector �v1⟩ associated to �1 possesses elements 
having the same sign, thus identifying a matrix component �1�v1⟩⟨v1� systematically 
affecting all the stocks in the same direction and with strong intensity. This clearly 
reflects the presence of the well-known ’market factor’, which further induces the 
decomposition of C(s) as follows:

(1)f
�
(�) =

�

2���2

√
(�max − �)(� − �min)

(2)
C =

N�

i=1

�i�vi⟩⟨vi

=
�

i∶�i∈(0,�max]

�i�vi⟩⟨vi� +
�

i∶�i∈(�max,�1]

�i�vi⟩⟨vi�

(3)=C(r) + C
(s),

(4)C
(s) =

�

i∶�i∈(�max,�m)

�i�vi⟩⟨vi� + �m�vm⟩⟨vm� = C
(g) + C

(m)
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i.e., as a sum of a mesoscopic spectral component C(g) and a systemic component (or 
market mode) C(m) , where we renamed �1 and v1 as �m and vm , respectively, to stress 
they refer to the ’market’ trend.

A graphical illustration of this empirical feature is provided in Fig. 1 for a sam-
ple of stocks constituting the S &P500 index and stably traded over the period 
2000–2015. The sample constitutes the dataset used in the remainder of the work as 
well. Being the systemic component pervasive and time-varying, some stocks might 
appear interconnected only as a consequence of their common dependence on global 
market events (see Forbes and Rigobon 2002; Billio et  al. 2012, among others). 
When performing asset allocation strategies based on historical data, it is fundamen-
tal to minimize covariance estimation errors induced by any possible time-varying 
component—which makes historical data not reliable for the future.

To provide an example, let us define the total risk of a system as Λ ∶=
∑N

k=1
�k 

and investigate the temporal evolution of the cumulative risk fraction of the different 
components of the covariance matrix of stock returns by adopting non-overlapping, 
rolling windows of two years. To this aim, can draw 100 randomized samples of size 
for each temporal window: The resulting averaged shares of total risk accounted by 
the random, systemic and mesoscopic component of the spectrum of the covariance 
matrix are shown in Fig. 2. While the random and systemic cumulative risk fractions 
vary quite a lot across the considered period, the mesoscopic one is the most stable, 
a result letting us to conclude that the construction of more reliable portfolios may 
indeed be based on the stable part of the spectrum.

Let us now use C to partition the stock market into non-overlapping communities 
of stocks that are more correlated internally than expected under a suitable null 
model. Detecting communities in financial markets is not new in the literature: for 
instance, Fenn et al. (2012) compared different procedures to unfold the community 
structure of the foreign exchange market and Verma et  al. (2019) used clusters to 
extract relevant factors for volatility modeling. However, the procedure we are now 
going to illustrate is based on a combination of modularity maximization (Clauset 

Fig. 1   Eigenvalue density for the 2000–2015 covariance matrix of the S &P500 components (left) and 
heatmap of the associated eigenvectors (right). The first column of the heatmap represents the eigenvec-
tor associated to the systemic component, whose elements all have the same sign
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et  al. 2004; Newman 2006) and RMT (MacMahon and Garlaschelli 2015), which 
was shown to be theoretically superior in the case of correlation matrices.

In the network science literature, the so-called modularity Q(�) of a partition � of 
the N nodes of a network is defined as

where wij the entry of the adjacency matrix of the (possibly weighted) network 
(i.e., wij is the weight of the link from node i to node j), ⟨wij⟩ is its expected value 
under a suitably chosen null model, and the Kronecker delta �(�i, �j) guarantees that 
only the nodes belonging to the same community contribute to the modularity. The 
goal of modularity maximization is to find the partition that maximizes Q(�) , thus 
emphasizing the community of nodes whose internal interactions are stronger and 
maximally unexplained by the (community-free) null model.

For networks, the null model chosen is generally the so-called Weighted 
Configuration Model (WCM) that randomizes the network topology while 
preserving the empirical strength si =

∑N

j=1
wij of each node i. A popular, although 

generally incorrect (Garlaschelli and Loffredo 2009), expression used to represent 
this null model is

where 2W =
∑N

i=1
si =

∑N

i=1

∑N

j=1
wij is the total edge weight of the network. 

When considering correlation matrices, the null model above has been shown 
to be inconsistent (MacMahon and Garlaschelli 2015) as a result of the fact that, 
unlike (weighted) networks, correlation matrices cannot be directly randomized by 
considering their entries as independent. Rather, the randomization should occur at 

(5)Q(�) =
1

∑N

i=1

∑N

j=1
wij

N�

i=1

N�

j=1

�
wij − ⟨wij⟩

�
�(�i, �j)

(6)⟨wij⟩ =
sisj

2W
∀ i, j

Fig. 2   Cumulative risk fractions associated to the different components of the correlation matrix over 
different time spans. The random and systemic components vary the most (14% standard deviation for 
both) while the intermediate, mesoscopic range of the spectrum is more stable (5% standard deviation 
only)
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the level of the underlying time series, and the correlation matrix should then be 
recalculated from the randomized time series. In particular, by reformulating the 
modularity for correlation matrices as

a consistent community-free null model representing random empirical correlations 
resulting only from noise and possibly global trends comes precisely from RMT and 
can be expressed as

(MacMahon and Garlaschelli 2015). The above null model discounts both the 
random and the systemic components of correlations. As a consequence,

i.e., the modularity matrix coincides with the mesoscopic component of the original 
correlation matrix. Therefore, maximizing Q(�) guarantees that the identified 
communities are necessarily formed by internally positively (after discounting 
the null model) and mutually negatively (again, after discounting the null model) 
correlated stocks. In other words, communities are ideally noise-free and mutually 
anti-correlated with respect to the market.

3 � Stock market communities

The dataset used for the present analysis has been downloaded from Yahoo Finance 
and consists of daily equity data for current S &P500 constituents over the period 
2000–2015. The period has been chosen to get a sample that is as homogeneous as 
possible in terms of index constituents, so to apply the methodology on a sufficiently 
large sample of stocks that were stably traded on the market over a relatively long 
period of time. This resulted in a final sample of 450 stocks. After applying RMT 
to isolate the mesoscopic component of the matrix, we performed modularity 
maximization by implementing a modified version of the Louvain algorithm 
(Blondel et  al. 2008), taking as input the matrix C(g) . Consistency and stability 
of this approach have been discussed in MacMahon and Garlaschelli (2015) and 
Anagnostou et  al. (2021) to which the interested reader is referred for additional 
technical clarifications.

We performed community detection on the entire time span 2000–2015 and iden-
tified an optimal partition of the 450 stocks into 4 communities. Figure 3 shows the 
heatmaps depicting the sequence of transformations leading from the original stocks 
to such a set of mutually, negatively correlated communities. Figure  4 shows the 
detected communities, together their relative compositions, according to the indus-
trial classification. The number of detected communities is lower than the number 

(7)Q(�) =
1

∑N

i=1

∑N

j=1
Cij

N�

i=1

N�

j=1

�
Cij − ⟨Cij⟩

�
�(�i, �j),

(8)⟨Cij⟩ = C
(r)

ij
+ C

(m)

ij

(9)Cij − ⟨Cij⟩ = C
(g)

ij
,
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of considered sectors, showing the tendency of stocks to be strongly interconnected 
across different sectors as well. Still, it can be noticed how stocks belonging to spe-
cific sectors tend to cluster more than others—a behavior detected also in Borghesi 
et al. (2007) by employing hierarchical clustering techniques. In particular, almost 

Fig. 3   Sequence of transformations applied to the empirical correlation matrix (left), leading first to the 
‘noise and systemic free’ correlation matrix (middle) and then to the internally positively and mutually 
negatively correlated clusters

Fig. 4   Community structure of the selected 450 stocks during the period January 2000-December 
2015:  Finance,  Energy,  Healthcare,  Industrials,  Materials,  Discretionary,  Staples,  Technol-
ogy,  Utilities following the GICS classification
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all stocks in the financial sector are clustered together in C3 while stocks in the ener-
getic and technological sectors are, respectively, placed in C4 and C1; utilities are 
quite clustered in C2. The remaining sectors (namely industrials, materials, con-
sumer discretionary, consumer staples and healthcare), instead, are more dispersed 
across different communities. This result confirms that the data-driven cluster iden-
tification leads to communities that are unpredictable from the nominal sectoral 
classification of stocks, as also observed in MacMahon and Garlaschelli (2015) and 
Anagnostou et al. (2021).

Performing community detection over the whole available time span, i.e., from 2000 
to 2015, might seem unreasonable since structural changes have arguably occurred in 
occasion of the 2008 financial crisis and possibly other events. This is only partially 
true: It turns out that while the original, unfiltered empirical correlations do change 
a lot over time (especially during market turmoils), mesoscopic correlations remain 
remarkably stable, thus stabilizing the optimal partition. This can be easily seen by 
comparing the evolution of the density of unfiltered, empirical correlations of our 
sample of stocks with that of filtered, mesoscopic correlations employed to perform 
the clustering procedure. As Fig. 5 shows, the distribution of the empirical correlation 
coefficients clearly shifts toward higher values in the second half of the considered time 
span (which contains a period of higher turmoil), so that coefficients calculated over 
the entire time span are not representative of the underlying sub-periods; by contrast, 

Fig. 5   Densities of the unfiltered empirical (top) and filtered mesoscopic (bottom) correlation coeffi-
cients over different periods. Notice that, while a clear shift occurs between the first and the second half 
of the overall 2000–2015 period for the unfiltered coefficients, no shift occurs for the filtered mesoscopic 
ones. As a consequence, the distribution of the unfiltered matrix entries calculated over the entire period 
is not representative of the distributions for the individual sub-periods, while that of the filtered matrix 
entries is
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when considering only the mesoscopic component of the correlation matrix over dif-
ferent periods, we find that the distribution of the entries of such component almost 
perfectly overlap with each other over time. Thus, in this case, the overall distribution is 
representative of the distributions for the sub-periods.

Estimates of the optimal weights for asset allocation strategies typically take 
historical data as input. Including historical information, however, does not necessarily 
bring advantages, as what happened in the past does not necessarily repeat itself with 
the same regularity—especially during periods of high market volatility and structural 
breaks. This consideration will shape our optimal asset allocation strategies, which will 
be performed by taking into account only the stable part of the covariance matrices of 
the assets, namely the mesoscopic (‘intermediate’) one. Noticeably, optimal portfolios 
built by considering only ‘stable’ information will be shown to closely track the equal 
weight strategy.

It is worth stressing that our objective is not that of suggesting that the market 
component should be eliminated from the definition of a realistic data generating 
process for stock returns; rather, here we aim at showing how heavily its structural 
and pervasive nature affects portfolios as well as investigating its impact, in terms of 
reliability, on the construction of the optimal ones.

4 � Back to basic portfolio optimization

Let us now address the implications of the market mesoscopic structure from a portfolio 
management perspective.

In order to do so, let us briefly review the classical Markowitz portfolio optimization 
scheme. Consider N risky assets with covariance matrix � and vector of expected 
returns � . Given the wealth allocation vector � = [�1 …�N] , such that 

∑
i �i = 1 , the 

portfolio expected return reads

with associated variance reading

The well-known MV approach consists in finding the allocation vector � which 
minimizes �2

p
 subject to a given value of �p or, equivalently, the one that maximize 

the return subject to a given level of variance. The optimization problem to be 
solved, expressed in matrix form, reads

(10)�p =

N∑

i=1

�i�i

(11)𝜎
2
p
=

N∑

i=1

𝜔
2
i
𝜎
2
i
+
∑

i>j

2𝜔i𝜔jCij𝜎i𝜎j.



Mesoscopic structure of the stock market and portfolio…

and has solution

with

In the case of a completely risk-adverse investor that is only interested in minimizing 
the risk with no constraint on the expected returns, the solution simply becomes

where �gmv denotes the investment plan associated with the global minimum 
variance (GMV) portfolio. We, then, focus on reliability of optimal portfolios by 
comparing their predicted risk, �p , obtained via the correlation matrices estimated 
using historical data, with (ex-post) realized risk, �r

p
 . As in Tola et al. (2008), we 

deem a portfolio as reliable if

is ‘small’ - the main difference of our approach being that we never assume perfect 
knowledge of future volatilities for the investor, letting uncertainty affect the 
whole covariance matrix. Being interested in understanding whether the adoption 
of the stable (i.e., mesoscopic) part of the correlation matrix over time reduces the 
discrepancies between predicted and realized variances, the reliability index is our 
main object of interest. However, for the sake of completeness, the main analysis 
will be complemented by checking other standard and important metrics as the 
Sharpe Ratios and the realized risk for the GMV portfolio.

4.1 � Noise‑free and systemic free optimization

As shown before, the systemic component affects all stocks in the same direction, 
inducing a positive amount of covariance between the variables, i.e., 𝜎(m)

ij
> 0 ; it is, 

then, straightforward to show that, for a risk minimizer investor, the adoption of the 

(12)

min
�

�
′��

s.t.�p = �
′
�

N∑

i

�i = 1

(13)�
∗ = b𝚺−1

1 + c𝚺−1
�

b =
A − �pB

Δ
c =

�pC − B

Δ

A = �
�𝚺−1

� B = 1
�𝚺−1

�

C = 1
�𝚺−1

1 Δ = CA − B2.

(14)wgmv =
�−1

1

1
t�−1

1

(15)R =
|�r

p
− �p|
�p
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mesoscopic variance �(g)

ij
= C

(g)

ij
�i�j , in place of C(m)

ij
 , rebalances the portfolio: 

Hence, total wealth will be no longer concentrated over few assets characterized by 
the lowest past variances. In other words, while in presence of co-movements (e.g., 
because of market turmoil), a risk minimizer investor would lower the portfolio risk 
by concentrating the wealth over the less risky assets, an investor who is aware of 
the temporarily nature of aggregate shocks causing crashes in the market, would 
filter out the systemic effects from past data and trust only the stable part of the 
correlation matrix.

To provide empirical evidence for such a statement, we performed MV 
optimization on the S &P500 constituents over multiple periods, comparing 
the wealth allocation vectors obtained using the empirical and the mesoscopic 
correlation matrices and keeping the equally weighted portfolio as a benchmark4: 
Fig.  6 shows the results, considering both cases in which short selling is either 
possible or not. Noticeably, the MV optimization procedure implemented by 
removing both noise and systemic effects from the correlation matrix closely follow 
the 1/N rule, yielding as an optimal solution a portfolio which closely tracks the 
equally weighted one. That is, when we implement portfolio optimization focusing 
on the intermediate and most stable part of the correlation matrix only, the heuristic 
1/N strategy turns out to be optimal. In what follows, we will refer to such an 
approach as the ’mesoscopic-based’ optimization procedure.

We are not the firsts to show that the heuristic 1/N strategy can be seen as the 
optimal solution of a portfolio optimization problem. For instance, Pflug et al. (2012) 
have shown the 1/N to be optimal when there is a ’very-high’ level of uncertainty 
about future asset returns, which is, however, an argument similar to that invoked by 
DeMiguel et al. (2009) as well. Thus, in this work we make a further step by linking 
the ’uncertainty’ to which these authors refer to the different spectral component 
of the empirical correlation matrix of financial returns. That is, we show how the 
systematic and randomic components of the correlation matrix are those responsible 
for the departure of the GMV portfolio from the 1/N strategy.

On the contrary, the MV framework which plugs-in the sample covariance 
matrix, returns a much more heterogeneous composition being more sensitive 
to estimation errors. This confirms that the optimization procedure based on 
the mesoscopic structure of the correlation matrix is less sensitive to both noisy 
and aggregated fluctuations, thus yielding more balanced portfolios. As an addi-
tional test, in Fig. 7 we compare the mesoscopic and 1/N weights with the ones 
we would obtain by cleaning the correlation matrix only from noise through the 

Fig. 6   Asset composition comparison for the periods 2000–2003 (top), 2004–2007 (middle) and 2008–
2011 (bottom) between the 1/N rule (horizontal black line), sample covariance GMV (red) and the port-
folio optimization based on mesoscopic correlations (blue). For each stock on the x-axis, the relative 
weight on the y-axis is shown, the mesoscopic-based optimization closely follow the heuristic 1/N rule. 
When short-selling is not allowed we have �i ≥ 0 , ∀ i

▸

4  A short analytical description of the rebalancing effect for the N = 2 assets case is provided in the 
appendix.
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standard RMT-based approach: in order to closely track the balanced 1/N alloca-
tion it is necessary to filter out both the noisy and the systemic components.

A measure of similarity to the equally weighted portfolio is provided by the 
number of stocks with a ‘significant’ amount of money invested into. Following 
Bouchaud and Potters (2003), this quantity can be defined as

Indeed, when the wealth is equally divided among the N assets, N  is equal to N; 
on the other hand, it is equal to 1 when the wealth is invested only in one asset. 
As stressed in Tola et al. (2008), the quantity N  simply provides a rough estimate 
of the number of stocks which could be effectively used to build a portfolio that is 
smaller than the original one, while preserving most of the risk-return properties of 
the latter.

In Fig. 8, the effective size of portfolios obtained with different allocation rules 
are displayed and compared: The compared allocation strategies are, again, the 
sample covariance GMV, the 1/N rule, the mesoscopic-based GMV portfolios 
and, finally, the noise-free GMV portfolios. It can be noticed that, independently 
from factors such as the time span, the subsample and the subsample size consid-
ered, the mesoscopic-based GMV portfolios are always much closer to the 1/N 
rule compared to the sample covariance GMV and to the RMT portfolios where 
only the random component is filtered-out. As it will be shown afterward, this 
result brings non-trivial practical implications in terms of reliability.

4.2 � Mesoscopic community‑based optimization scheme

The adoption of mesoscopic correlations leads to balanced portfolios closely 
tracking the equally weighted investment plan. Let us now show how the portfolio 
optimization problem can be simply reformulated by considering the detected 
clusters of stocks, instead of the single ones, to further reduce the uncertainty 
characterizing each specific asset.

Let N = N1 + N2 +⋯ + Nn be the total number of asset, n the number of 
detected communities, Nc being the number of assets in a given community 
(denoted by the subscript c ∈ {1, 2… n} ). The problem, now, is that of finding 
the share of wealth Wc which has to be invested into a given community, with 
�c = Wc∕Nc being the share of wealth invested into the generic asset i belonging 
to that community. The problem can be, thus, reformulated as follows

(16)N =
1

∑N

i=1
�
2
i

.

Fig. 7   Asset composition comparison for the periods 2000–2003 (top), 2004–2007 (middle) and 2008–
2011 (bottom) between the 1/N rule (horizontal black line), RMT approach (green) and the portfolio 
optimization based on mesoscopic correlations (blue). For each stock on the x-axis, the relative weight 
on the y-axis is shown. Cleaning from the noise is not sufficient to closely track the heuristic rule as it is 
when adjusting from the market component as well

▸
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and is the same as the problem in Eq.  3 with the difference that weights are 
constrained to be equal for all the stocks belonging to the same community c; 
naturally, the total wealth share, being the sum of the wealth shares invested into 
each community, must still sum up to one. Reformulating the problem as in Eq. 17 
leads to the minimization of the following objective function, where no constraint 
on the expected return is imposed:

notice that �2

c
 and �ck , respectively, denote the average of the variances inside a given 

community and the average of the mesoscopic covariances between assets belonging 
to different communities. The reliability analysis of the proposed approach will be 
assessed in the next section.

5 � Reliability and performance analysis

Let us now compare the reliability R of the portfolios obtained by implementing 
the sample covariance GMV portfolios, the mesoscopic-based portfolios (i.e., both 
noise and systemic free), the mesoscopic community-based portfolios and, finally, 
the heuristic equally weighted strategy.

Both cases with and without short-selling will be analyzed, focusing on the 
GMV portfolios computed over different periods and for different sample sizes. 
For the sake of completeness, we repeat the comparison also imposing constraints 
on the expected portfolio return �p . The different portfolios constituting the effi-
cient frontier are constructed, obtaining for each of them the index R given the 
out-of-sample realized portfolios variances. The analyses are carried out over 
different time spans and considering different sample sizes: The time spans ana-
lyzed, i.e., T1 = 2000 − 2007 , T2 = 2004 − 2011 and T3 = 2008 − 2015 are divided 
in two additional sub-periods of equal length by fixing t0 . Upon doing so, we 
create portfolios given the data collected over the period t0 − Δt and quantify 
their out-of-sample performance over the period t0 + Δt . For what concerns the 

(17)

min
�

�
�𝚺(g)

�

s.t.�p = �
�
�

n∑

c

Wc = 1

�i = �j ∀ i, j ∈ c.

(18)�
2
p
=

n∑

c=1

�
2
c

[
Nc�

2

c
+ Nc(Nc − 1)�

(g)

ijc

]
+

n−1∑

c=1

n∑

k=c+1

2�c�k

[
NcNk�

(g)

ck

]
;

Fig. 8   Effective sizes N  for each of the 100 random subsamples. In panel a, the size of the subsamples 
is 100, while in panel b is 50. The subsamples are of length T = 3 years with the plots covering together, 
inside each panel, the 2000–2012. Mesoscopic GMV portfolios in blue, RMT filtered in green, sample 
covariance GMV in red
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samples size, we randomly extract 100 subsamples out of the S &P500 compo-
nents, for each considered size. Average values computed for the R indices are 
reported in Tables 1, 2. 

We can summarize the results as follows. When short-selling is allowed and no 
constraint on the expected portfolio return is present, the sample covariance GMV 
is always underperforming—the only exception being represented by the lowest-
dimensionality case ( N = 50)—when compared with the 1/N and the mesoscopic-
based optimization rule, irrespectively from the sample size and the time span 
considered. In addition, our methodology performs slightly better than the equally 
weighted portfolio, thus revealing itself to be the most reliable investment plan 
considered: The difference, however, is almost negligible, confirming how close 
the mesoscopic-based optimization procedure is to the equally weighted strategy.

The poor performance of the sample covariance GMV portfolios is not a 
novel result, especially when no constraint about the possibility of exploiting 
short-selling strategies is imposed (see Frost and Savarino 1988; Eichhorn 
et  al. 1998; Britten-Jones 1999; Jagannathan and Ma 2003)—Note that, from a 
purely mathematical perspective, imposing constraints is equivalent to letting 

Table 1   Reliability R for each strategy adopted and for each sample size, under different time spans, 
ranging from the N = 50 case to the whole sample case ( N = 450 ).  The mesoscopic approach closely 
tracks the reliability of the 1/N heuristics, which is in turn higher than the classical GMV portfolio based 
on the sample covariance matrix plugged-in as input

Time span Requally Short-selling No short-selling

Rmesoscopic RGMV Rmesoscopic RGMV

N = 50 T1 0.53 0.47 0.79 0.48 0.68
T2 4.06 4.05 5.67 4.05 4.78
T3 0.8 0.79 0.3 0.8 0.58

N = 100 T1 0.17 0.15 1.12 0.23 0.53
T2 1.38 2.07 3.74 1.3 2.72
T3 0.27 0.27 0.31 0.4 0.3

N = 200 T1 0.13 .11 1.26 0.16 0.46
T2 1.03 1.05 3.72 1.38 2
T3 0.2 0.2 0.43 0.26 0.2

Whole sample T1 0.47 0.45 6.25 0.45 0.61
T2 4.75 4.18 17.11 4.88 6.65
T3 0.8 0.78 2.32 0.79 0.54

Table 2   Comparison of the 
community-based portfolios 
with the mesoscopic (i.e., noise 
and systemic free but without 
community constraints) and the 
classical GMV one

Time span Requally Rmesoscopic Rcommunity RGMV

R T1 0.47 0.45 0.41 0.61
T2 4.75 4.88 3.45 6.65
T3 0.8 0.78 0.74 0.54
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a shrinkage operator to act on the covariance matrix of the assets, which helps 
when the number of parameters to estimate is too large and, as a consequence, 
estimation errors are large as well. Our empirical analysis confirms these 
results: Notice the huge improvement of the MV optimization based on sample 
covariances compared to the situation in which short-selling was not allowed, 
although the mesoscopic-based optimization provides better reliability indices in 
all cases except in period T3.

Let us now check whether the clusters detected on C(g) can be used as a further 
source of information. In particular, let us attach homogeneous optimal weights to 
stocks belonging to the same clusters, denoting with Rcommunity the corresponding 
reliability index. To make the comparison as clear as possible, we compare the reli-
ability of the community-based portfolios only to the best performing competing 
approaches, in each time span. Results in Table 3 noticeably confirm the informa-
tiveness of the detected communities. Portfolios in which optimal weights are recov-
ered by constraining stocks in the same community to have the same weight fur-
ther improve their reliability indices, outperforming both the equally weighted and 
the mesoscopic-based strategies for all considered time spans. Still, the simple MV 
based on sample covariances with the no short-selling constraint is the more reliable 
one in T3.

Let us now consider all approaches, i.e., the sample covariance one, the meso-
scopic-based and the mesoscopic community-based ones and compute the reliability 

Table 3   Summary statistics 
of the reliability R indices 
for the noise plus systemic 
free, standard mean-variance 
approach with the sample 
covariance matrix plugged-in, 
and community-based efficient 
frontiers over different periods, 
with and without short-selling 
strategies.  For each efficient 
frontier, specific quantiles are 
taken and the R index of the 
portfolio located on that point of 
the frontier is computed

Min. 1st quartile Median Mean 3rd quartile

Short-selling
T1 Rcommunity 0.34 0.39 0.43 0.5 0.52

Rmesoscopic 0.63 1.05 1.81 2.4 3.15
Rstandard MV 1.13 1.46 2.1 2.5 3.31

T2 Rcommunity 3.56 3.96 4.09 4.02 4.19
Rmesoscopic 7.4 8.13 9.1 9.4 10.4
Rstandard MV 4.05 7.07 7.67 7.85 8.5

T3 Rcommunity 0.79 0.81 0.81 0.81 0.83
Rmesoscopic 0.49 0.84 1.36 1.7 2.33
Rstandard MV 0.88 1.07 1.4 1.51 1.85

No short-selling
T1 Rcommunity 0.006 0.14 0.20 0.26 0.46

Rmesoscopic 0.03 0.28 0.64 0.72 0.94
Rstandard MV 0.02 0.22 0.48 0.48 0.75

T2 Rcommunity 3.23 3.33 3.39 3.45 3.74
Rmesoscopic 0.043 0.46 2.70 3.71 4.75
Rstandard MV 0.02 0.42 2.19 1.52 2.37

T3 Rcommunity 0.74 0.76 0.77 0.76 0.78
Rmesoscopic 0.03 0.31 0.56 1.34 2.64
Rstandard MV 0.52 0.53 0.54 0.56 0.59
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index for each portfolio of each efficient frontier. Results are summarized in Table 4. 
For each portfolio on the predicted frontier we track its out-of-sample dynamics and 
compute the R index for each of such portfolios. We thus provide the summary sta-
tistics of the reliability indices in each time span, for each strategy, and for each type 
of constraint imposed5: when adding constraints on expected returns, sample covari-
ances outperform our methodology, both in time span T2 (when also the constraint 
on short-selling is imposed) and in time span T3 , after the first quartile. In time span 
T1 , instead, the community-based approach outperforms the others. Overall, our 
approach is confirmed to perform better in all periods when we impose constraints 
only on expected returns but not on the weights. In particular, optimizing by tak-
ing into account the detected clusters stabilize the results, hence providing the best 
reliability.

Providing a deep explanation for such a result is hard given the higher degree 
of uncertainty introduced by the constraints on the expected returns. What is clear, 
however, is that cleaning the correlation matrices from both noise and systemic 
effects helps to ameliorate the reliability of the portfolios and exploiting stocks 
communities identified through the mesoscopic correlation further improves the 
results. The same holds true when constraints on expected returns are imposed but 
allowing for short-selling strategies. When both constraints on returns and weights 
are in place; however, the MV approach based on sample covariances is found to be 
hardly beatable.

Despite having a ’reliable’ portfolio is important for an investor in terms of 
discrepancies between realized and predicted risk, it has to be mentioned that 
reliability is not the reference metric in portfolio management. For this reason, 
we complement the analysis by providing the risk-adjusted performances in terms 
of Sharpe ratios as well. Moreover we also show the ex-post realized risk �r

p
 with 

respect to the GMV portfolios. As a matter of fact, even if an investor would be 
happy to invest in a more reliable portfolio, she could reconsider her asset allocation 
if the price to pay for that reliability is a much higher level of risk in absolute 

Table 4   Out of sample 
annualized Sharpe ratios S for 
each strategy adopted under 
different time spans. Annualized 
portfolios’ return and risk 
provided as well

Time span Mesoscopic Community GMV

S T1 1.103 1.201 1.745
T2 0.076 0.124 0.132
T3 1.116 1.129 1.076

Rp T1 0.149 0.181 0.325
T2 0.022 0.036 0.025
T3 0.144 0.148 0.113

�
r
p

T1 0.135 0.151 0.186
T2 0.289 0.290 0.188
T3 0.129 0.131 0.105

5  That is, the table is a summary of the ’realized frontiers’ out of sample in terms of R indices.
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terms. In the following we show that this is not the case, with the mesoscopic and 
community-based optimization schemes yielding absolute volatility levels quite in 
line with GMV portfolio.

The results are shown in Table 4. The mesoscopic optimization has been shown 
to track the 1/N strategy; while, the community-based optimization is an ’intra-
community 1/N’ one. It is well-known in the literature that the ’Talmudic allocation’ 
can be considered as a way to achieve maximum portfolio’s diversification. As a 
consequence, being the portfolio highly diversified, it brings to the investor the 
benefits also in terms of realized out-sample volatility, with the advantage of being 
also more reliable.

We then provide a comprehensive analysis in terms of Sharpe ratios, in the same 
spirit of the analysis done in terms of reliability. In the same spirit of table  3, in 
table 5 it is possible to appreciate the Sharpe ratios of the compared strategies, again 
over three different time horizons and considering the possibility to do short-selling 
or not. As we can see, there is no clear evidence in favor of any given strategy, 
with results in terms of risk-adjusted performances which depend both on the time 
horizon and constraint put in the optimization process. Interestingly, we can notice 
that the community-based asset allocation is particularly stable, in terms of Sharpe 
ratios, over different constraints (both in terms of returns and short-selling), never 
yielding a negative return in all the time horizons considered. On the other hand, a 
simple plug-in approach in a classical MV optimization framework can yield Sharpe 
ratios which are sensibly higher than the proposed approaches.

Table 5   Summary statistics 
of the Sharpe ratios S for the 
noise plus systemic free, sample 
covariance MV approach (i.e., 
standard MV), and community-
based efficient frontiers over 
different periods, with and 
without short-selling strategies. 
For each efficient frontier, 
specific quantiles are taken and 
the Sharpe ratios of the portfolio 
located on that point of the 
frontier are computed

Min 1st quartile Median Mean 3rd quartile

Short-selling
T1 Scommunity 0.98 1.03 1.08 1.08 1.13

Smesoscopic 0.7 1.11 1.31 1.23 1.39
Sstandard MV 1.04 1.35 1.57 1.51 1.69

T2 Scommunity 0.17 0.22 0.26 0.25 0.29
Smesoscopic

−0.07 −0.03 0.02 0.02 0.08
Sstandard MV

−0.23 −0.11 0.12 0.15 0.41
T3 Scommunity 0.73 0.84 0.96 0.97 1.1

Smesoscopic
−0.01 0.43 0.83 0.76 1.11

Sstandard MV
−0.79 −0.55 −0.20 −0.16 0.21

No short-selling
T1 Scommunity 0.94 1.06 1.08 1.08 1.11

Smesoscopic 0.13 0.81 1.13 0.99 1.34
Sstandard MV 0.12 0.83 1.50 1.23 1.76

T2 Scommunity 0.22 0.24 0.26 0.26 0.28
Smesoscopic 0.07 0.08 0.17 0.24 0.4
Sstandard MV 0.08 0.13 0.19 0.26 0.4

T3 Scommunity 0.93 0.94 0.99 1.02 1.06
Smesoscopic 0.81 1.11 1.13 1.11 1.16
Sstandard MV 0.63 0.93 1.06 0.99 1.09
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This leads us to the final discussions and conclusions.

6 � Discussion and conclusions

In this work we investigated the mesoscopic structure of the stock market 
correlations that emerge after filtering out both microscopic (stock-specific 
noise) and macroscopic (market-wide trends) components. We showed that such 
mesoscopic correlations are the most stable over time, thereby encoding important 
information in the context of portfolio optimization. Indeed, we found that the noisy 
and the systemic components of the stock market are unstable, leading to biased 
and poor out-of-sample performances and being surprisingly responsible for the 
departure of the sample covariance GMV investment prescription from the heuristic, 
equally weighted strategy. Upon filtering out these unstable components, the market 
can be partitioned into internally positively and mutually negatively correlated 
communities of stocks. We proposed to use these stable mesoscopic communities to 
construct portfolios characterized by higher levels of reliability in terms of predicted 
and realized risk.

Results can be summarized as follows. The adoption of ‘noise- and systemic free’ 
correlations leads to an asset allocation which closely tracks the reliability of the 
heuristic equally weighted portfolio. That is, once the investor takes into account 
random co-movement as well as that induced by the presence of common aggregate 
fluctuations, the heuristic strategy turns out to be empirically optimal at the end. In 
addition, both the equally weighted portfolios and the ones induced by the proposed 
optimization scheme have been found to be more reliable than the sample covariance 
plug-in portfolios. Importantly, portfolio reliability can be further improved by 
performing a mesoscopic optimization while simultaneously accounting for the 
community to which a given stock belongs: This is especially true when short 
selling is allowed, that is, we can go long on some communities while going short 
on others. Only when constraints on both weights and expected returns are imposed, 
the homogeneous community-based portfolios do not bring improvements compared 
to classical approach—with the exception of the period T1 = 2000 − 2007 and for 
few specific levels of targeted expected returns. Most important, we have shown that 
the portfolios created following our methodology do not systematically reduce the 
performances in terms of realized risk out-of-sample or Sharpe ratios. This aspect 
could foster new research on clustering based trading strategies characterized by 
higher levels of reliability, since higher reliability does not necessarily imply higher 
levels of risk.

To conclude, the proposed methodology works well when focusing on the 
minimum variance portfolio or when short-selling can be performed, suggesting 
the adoption of network clustering techniques for risk management applications. 
The uncovered mesoscale structure might bring insights about additional, and 
complementary, ways of creating stock market indices to monitor market trends 
- something which might be the object of further studies aimed at understanding 
co-movements between industries and sectors in the stock market.
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Appendix A The 2‑asset case

Consider an investor who splits her wealth between N = 2 assets and want to 
minimize the variance of her investment. The problem to solve simply is

whose first order condition is

implying the following optimal wealth allocation with respect to asset 1

Given the decomposition in (8), we know that the noise-free correlation coefficients 
and covariances are Cij = C

(g)

ij
+ C

(m)

ij
 and �ij = �

(g)

ij
+ �

(m)

ij
 , we thus write

For a risk minimizer investor who filters out the systemic induced covariances 
being aware of its temporarily nature, or equivalently in absence of significant 
systemic co-movements, the optimal adjusted weight is the one obtained using the 
mesoscopic covariances

This difference can be easily quantified taking Δ�∗
1
= �

∗
1
− �

adj

1
 , which after some 

manipulation and terms rearranging yields

If �(m)

12
= 0 → Δ�∗

1
= 0 and no difference in the wealth allocation occurs.

Otherwise, 𝜎(m)

12
> 0 → Δ𝜔∗

1
> 0 if 𝜎2

2
> 𝜎

2
1
 , which clarify the rebalancing of the 

portfolio stated in the paper and empirically displayed.

Appendix B GMV decomposition

Consider the solution of the GMV portfolio
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and the spectral decomposition of the covariance matrix

where D is the diagonal matrix from which we are able to identify the eigenvalues 
associated to random covariances exploiting the MP-Law, and the biggest one 
associated to the systemic component. Thus, D can be splitted as

and its inverse can be obtained by simply replacing each non zero element in the 
main diagonal (i.e., eigenvalues) with its reciprocal, having

Combining the above equations we get

which allows to split the GMV solution as

Appendix C Community‑based optimization procedure

Consider the variance of the portfolio

Remember that N = N1 + N2 +⋯ + Nn is the total number of asset, n the number of 
detected communities, and Nc the number of assets in a given community denoted by 
the subscript c ∈ {1, 2… n} . We also drop the superscript (g) taking for granted that 
we always refer to the covariance between assets already filtered from both noise 
and systemic effects. Maximizing with respect to the n detected communities, so to 
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have homogeneous weights inside a given community, can be achieved by splitting 
the variance of the portfolio as follows

which is equivalent to

Thus the objective function to minimize with respect to the community weights 
become

with Wc = �cNc being the total share of wealth invested in community c.
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