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Introduction: Most patients suffering from neurological disorders endure varying 
degrees of upper limb dysfunction, limiting their everyday activities, with only a 
limited number regaining full arm use. Robotic and technological rehabilitation 
has been demonstrated to be a feasible solution to guarantee an effective 
rehabilitation to recover upper limb performance or to prevent complications of 
upper limb immobility. However, there is currently a lack of studies which analyze 
the sustainability of robotic and technological rehabilitation by comparing its 
costs to conventional rehabilitation pathways.

Methods: Since technology-based and conventional rehabilitation of the 
upper limb have been demonstrated to have comparable efficacy when the 
rehabilitation dose is matched, our study concentrates on a cost minimization 
analysis. The aim of the study is to compare the costs of a “mixed” rehabilitation 
cycle, which combines conventional and technology-based treatments (the 
latter delivered with a single therapist supervising several patients), with a cycle 
of purely conventional treatments. This has been done by developing a cost 
model and retrospectively analyzing the costs sustained by an Italian hospital 
which has adopted such a mixed model. A sensitivity analysis has been done to 
identify the parameters of the model that have the greatest influence on cost 
difference and to evaluate their optimal values in terms of efficiency of mixed 
rehabilitation. Finally, probabilistic simulations have been applied to consider 
the variability of model parameters around such optimized values and evaluate 
the probability of achieving a given level of savings.

Results: We found a cost difference of 49.60 € per cycle in favor of mixed 
rehabilitation. The sensitivity analysis demonstrated that, in the situation of the 
hospital under investigation, the parameter having the largest influence on the 
cost difference is the number of robotic treatments in a mixed rehab cycle. 
Probabilistic simulations indicate a probability higher than 98% of an optimized 
mixed rehabilitation cycle being less expensive than a pure conventional one.

Conclusion: Through a retrospective cost analysis, we found that the technology-
based mixed rehabilitation approach, within a specific organizational model 
allowing a single physiotherapist to supervise up to four patients concurrently, 
allowed cost savings compared to the conventional rehabilitation model.
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1 Introduction

According to the 2019 Global Burden of Disease study (1), it is 
estimated that more than 255  million people suffering from 
neurological diseases require suitable rehabilitation therapy. Most 
patients suffering from neurological disorders (such as Stroke, 
Multiple Sclerosis, and Parkinson) experience varying degrees of 
upper limb disability, and only a limited number of those patients 
recover complete arm functions (2–5). As a result, most patients 
experience impairment and limitation in their ADL (Activities of 
Daily Living) due to upper limb dysfunction. Upper limb rehabilitation 
is very difficult both for the complexity of its function in the proximal 
segment (considering the numerous degrees of freedom of the 
shoulder joint) and for the precision of the hand movements. 
Therefore, the rehabilitation of the upper limb is an important 
challenge that often requires long-term treatment.

The International Classification of Functioning, Disability and Health 
model (6) defines upper limb disability as (i) impairments of body 
function, such as a significant deviation or loss in neuromusculoskeletal 
and movement-related function related to joint mobility, muscle power, 
muscle tone, and/or involuntary movements, or (ii) impairments of body 
structures, such as a significant deviation in the structure of the nervous 
system or structures related to movement.

In recent years, robotic and technological rehabilitation has 
emerged as one of the most promising approaches for restoring upper 
limb motor function after brain damage (7–10). Indeed, compared to 
conventional treatment approaches, it allows highly intensive training 
in specifically designed tasks over extended periods (11–13). Robotic 
therapy has been presented as a potential technique for upper limb 
rehabilitation, as a way to standardize treatment (14) and improve the 
volume and intensity of therapy, by offering complicated but regulated 
multimodal stimulation (15). After a stroke, for example, upper limb 
robotic therapy has been proven to enhance activities of daily living, 
arm function, and paretic arm muscular strength (16). In the context 
of large randomized controlled multicenter studies, robotics has been 
demonstrated to have at least a similar efficacy on upper limb recovery 
as conventional therapy administered in the same amount of time and 
number of sessions (17). This clinical effectiveness is linked to the 
mentioned possibility of intensive and highly controlled training, and 
to the ability to provide a motivating context through exergames (18).

Nonetheless, there are several factors that limit the widespread use 
of robotic systems in rehabilitation settings (19). Among these, the 
deployment of robots in healthcare settings is a challenging issue in 
terms of ensuring a sustainable environment. Robotic devices lie, in 
fact, in the highest range of costs among healthcare technologies. 
These costs are not limited to initial purchase costs, due to advanced 
hardware components and sensors and to sophisticated software, but 
involve also operating costs, including maintenance and energy 
consumption, and training costs for guaranteeing their adequate 
utilization by the clinical personnel. In an era of strong emphasis on 
healthcare resource allocation, there is a growing interest in reducing 
costs while maintaining a high-level quality of care. According to this 

perspective, economic assessments of innovative rehabilitation 
therapies are required (17, 20). These assessments have the potential 
to be a valuable tool for deciding on ways to translate research results 
into clinical practice, management, or health policy (21). Rigorous 
economic analyses may indeed support the advancement of cost-
effective and sustainable rehabilitation strategies, ultimately enhancing 
patient outcomes and resource utilization in clinical settings.

There are, however, few studies in the rehabilitation field that look at 
the long-term viability of technological rehabilitation by analyzing its 
costs compared with conventional therapy. Wagner et al. (22) tracked 
stroke patients during the 36-week rehabilitation pathway and 
highlighted that the expenses of extra upper limb therapy due to robotic 
or intensive comparison therapy can be compensated by lower overall 
healthcare use costs with respect to usual care. More recently, Fernandez-
Garcia and colleagues (23) performed a within-trial analysis of the cost-
effectiveness of the RATULS trial (24), and revealed that neither robot-
assisted training nor enhanced upper limb therapy (conventional 
rehabilitation focused on the upper limb rehabilitation), with a therapist-
to-patient ratio of one to one, were likely to be cost-effective at any cost 
per Quality Adjusted Life Year levels considered. In this case, however, 
the economic evaluation was performed on a single patient’s population 
and based on a single rehabilitation cycle, in the trial scope. Thus, there 
is currently a substantial controversy and consequent skepticism around 
the potential benefit in terms of cost utility or cost-effectiveness in the 
large-scale deployment of advanced technology for the rehabilitation of 
people with neurological disorders (25).

On the other hand, it is crucial to point out that the organizational 
model adopted for the rehabilitation service is a determinant factor. A 
well-defined organizational model dictates how rehabilitation services 
are structured and delivered, thus playing a critical role not only in 
maximizing treatment efficacy but also in optimizing resource 
allocation and consequently ensuring accessibility for a wider patient 
population. In this sense, robotics and technological devices provide 
not just for increased treatment intensity but also for the treatment of 
more patients under the supervision of a single experienced therapist, 
hence boosting therapeutic efficiency and accessibility (26).

Indeed, according to Masiero et al. (27), the availability of a room 
equipped with more than one device might enhance the sustainability of 
the therapy, addressing an important requirement of under-resourced 
healthcare systems (28). In our previous feasibility study (29), we created 
and outfitted a robotic rehabilitation area with a set of four robotic and 
technological devices, capable of enabling a complete and tailored 
rehabilitation of the upper limb (30). In that study, we  assessed the 
viability, in terms of rehabilitation dose and patient’s satisfaction, of a 
novel organizational model of robotic rehabilitation in which a group of 
up to four patients is monitored by a single physiotherapist, based on the 
severity of the impairment and the presence of comorbidities in each stage 
of upper limb robotic rehabilitation. Notably, even when supervising up 
to four patients concurrently, there was no reduction in the quality or 
intensity of therapy provided to individual patients. This underscores the 
potential of optimizing human resources while ensuring the delivery of 
effective rehabilitation interventions. In light of its positive clinical results 
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demonstrated in a multicenter study (31), the organizational model of one 
therapist supervising three patients has been adopted as the standard 
clinical practice of the hospital Santa Maria della Provvidenza (SMP) of 
Fondazione don Carlo Gnocchi in Rome.

Given the current lack of studies investigating the long-term economic 
impact for healthcare providers of structured robotic rehabilitation in the 
clinical practice, the aim of this work was to assess the economic feasibility 
of our organizational model based on the robotic area within the clinical 
setting and the routine care of SMP hospital. Some studies and systematic 
reviews have shown that upper limb robotic training is just as effective as 
conventional training for patients with neurological disorders, when the 
rehabilitation dose is matched (17, 32). This equivalence is further 
confirmed by the results of a multicenter randomized clinical trial on 
upper limb robotic rehabilitation in stroke patients, conducted with the 
same set of devices under investigation in the current study; such trial 
found no significant differences in the improvement of Fugl-Meyer 
Assessment scores between robotic and conventional treatments (31). In 
light of the equivalent effectiveness between robotic and conventional 
rehabilitation, our study concentrates on a cost minimization analysis. In 
particular, a retrospective analysis was conducted with two main 
objectives: (i) to compare the costs incurred by this center in a specific 
timeframe for delivering upper limb treatments through mixed (i.e., 
integrated robotic and conventional) therapies with those hypothetically 
incurred if all treatments were conventional; (ii) to identify key parameters 
influencing the cost differentials, informing strategies to optimize the 
economic efficiency of robotic rehabilitation within the hospital 
framework. By elucidating the economic feasibility of the implemented 
rehabilitation approach, our study contributes valuable insights to 
healthcare decision-makers, enabling informed choices regarding the 
integration of robotic technologies into rehabilitation practices.

2 Materials and methods

2.1 Target population

In this study, we retrospectively analyzed the costs of neuromotor 
rehabilitation cycles, delivered with the support of four different 
technological devices that allow the rehabilitation of the entire upper limb 
for patients with neurological disorders. The target population includes 
primarily post-stroke, multiple sclerosis and Parkinson patients, 
accounting for 71, 10 and 5%, respectively. The remaining 14% is 
represented by patient with other neurological disorders including spinal 
cord injuries (whether traumatic, infection-related, or due to 
inflammation), different forms of polyneuropathy, amyotrophic lateral 
sclerosis, or other brain conditions such as hydrocephalus, Wilson’s 
disease, or brain tumors. The age ranges from a minimum of 18 years to 
a maximum of 93 years (median value 69 years, IQR 20.5 years). The 
percentage of female is around 45%.

2.2 Data collection process

At the SMP hospital of Fondazione Don Carlo Gnocchi in Rome, 
most of the neuromotor rehabilitation cycles of treatments are 
delivered following a mixed approach which combines conventional 
rehab sessions with technology-based ones. We considered for the 
analysis the costs of all the mixed neuromotor rehabilitation cycles 
(i.e., the ones that included at least one treatment delivered with 

robotic devices) delivered to patients belonging to three different 
settings: outpatients, inpatients and day cases.

We collected the data of all the mixed neuromotor rehabilitation 
cycles delivered at the SMP hospital during a three-year period 
ranging from January 2017 to December 2019. At the date of the data 
retrieval process, this was the longest period of available data which 
excludes the initial “transient” of technology adoption (robotic devices 
were acquired at the end of 2015) and the dramatic drop of treatments 
that occurred during the COVID pandemic situation from February 
2020. The exclusion of those periods, where the number of treatments 
were significantly lower, allows us to evaluate the costs of rehabilitation 
cycles delivered by a “fully operational” hospital.

Direct costs of rehab treatments have been estimated based upon real 
data acquired by researchers from different sources. From the hospital 
economic department we retrieved the cost of devices and the annual cost 
of their maintenance, the average hourly costs of physiotherapists and 
assistants, the robot expected lifetime and the average cost of energy (€/
kWh). The hospital economic department also provided the information 
to estimate the indirect costs (overheads) as a percentage of direct costs, 
as described into more details below. From the databases of the hospital 
information system we retrieved the list of rehab cycles delivered in the 
period under investigation including some information on the patient 
(sex, age, disease condition), the number of conventional and robotic 
treatment delivered, and the information on the setting in which 
treatments were delivered (inpatient, outpatient or day cases).

2.3 Hospital organizational models for 
technology-based and conventional 
rehabilitation

The organizational model of robotic rehabilitation treatments adopted 
by the hospital foresees a therapist that supervises a group of patients 
each interacting individually with a single device, as described into more 
details in (33). The number of patients supervised by a single therapist 
varies based on the severity of their clinical conditions. In particular, for 
outpatients, who are on average less severe, a single therapist supervises 
four patients at the same time, while for inpatients and day cases, who 
are more severe, three patients are supervised by a therapist. On the other 
hand, conventional rehab treatments are delivered with a 1 to 1 therapist-
patient ratio and do not use any technological device.

2.4 Technological devices setup

The devices used in the technology based organizational model 
focus on specific upper limb districts: (1) MOTORE is a planar robot 
that enables shoulder and elbow movements in active, passive, and 
active-assisted modes. (2) Amadeo is a robotic device designed for 
hand rehabilitation that allows independent flexion-extension of 
individual fingers. (3) Pablo is a sensor-based device that enables 
unilateral and bilateral rehabilitation of the upper limb. (4) Diego is 
an electromechanical device designed for upper limb rehabilitation 
through a weight-relieving system. This set of devices, capable of 
providing a comprehensive rehabilitation of the upper limb, has been 
selected using a structured Health Technology Assessment procedure 
(29). Moreover, depending on their walking ability, some patients 
need the assistance of an operator (assistant in the following) to 
be transported to the gym. In the SMP hospital, outpatients are able 
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to reach the robotic gym autonomously, while half of the day cases 
patients and all of the inpatients need the assistant.

2.5 Comparators

In our study we compared the costs of two alternatives: (i) the 
average cost sustained by the hospital for delivering a mixed cycle of 
rehabilitation treatments (i.e., the average cost of cycles that include at 
least one technology-based treatment) and (ii) the cost of a 
conventional rehabilitation cycle, including an equivalent average 
number of treatments, delivered without any support of technological 
devices. In the following the cost of a mixed rehabilitation cycle will 
be indicated with mixC  while the cost of a conventional rehabilitation 
cycle will be indicated with convC .

Both for mixed and conventional rehabilitation cycles, the 
duration of treatments is 45 min, the average number of treatments in 
a cycle is around 68, the average duration of a cycles is around 
8.6 weeks.

As described above, in the technology-based treatments a single 
therapist supervises a group of patients composed of 4 (in the outpatient 
setting) or 3 (in the inpatient and day cases settings) subjects each 
interacting individually with a device. In the conventional therapy a single 
physiotherapist provides the treatment to a single patient.

2.6 Cost models and assumptions

In our study, we took the perspective of the healthcare provider, 
and therefore we evaluated the costs sustained by the hospital for 
delivering rehabilitation treatments. Direct costs of rehab treatments 
have been estimated based upon real data acquired from the hospital 
economic department and retrieved from the hospital information 
system. Based on data from the hospital’s economic department, the 
annual indirect costs (Cind) have been calculated by subtracting from 
the overall annual costs sustained by the hospital for rehabilitation 
(Ctot) those budgetary items that were already considered as direct 
costs (e.g., costs of physiotherapists). This allowed us to estimate the 
indirect cost of rehabilitation cycles as the 25% of direct costs as 
follows: ( )% / .ind tot indind C C C= −

Based on the organizational models described above, a cost model 
has been defined to evaluate the cost difference between a mixed and 
a conventional rehabilitation cycle:

 mix convDCost C C= −  (1)

from Equation 1, it is trivial that the mixed rehab cycle costs 
less if 0DCost < .

The cost of a conventional rehabilitation cycle ( convC ) can be easily 
computed as shown in Equation 2:

 · · ·conv T ph phC S C S C T= =  (2)

where TC  is the cost of a single conventional therapy treatment (in €) 
and S is the number of treatments in a rehabilitation cycle. TC  is in 
turn calculated as the product of the hourly cost of the physiotherapist 

phC  for the duration of the treatment phT .
Differently, mixC  is given by Equation 3:

 · ·mix T rC T C R C= +  (3)

where T  and R are, respectively, the number of conventional and robotic 
treatments in a cycle (thus, S T R= + ) and rC  is the cost of a single 
robotic treatment. rC  is calculated as the sum of the costs related to 
personnel (physiotherapist and assistant), robotic device depreciation, 
energy consumption and consumables (see Equations 4–11). To reflect 
the organizational model, the cost related to the assistant is considered as 
a weighted average of the costs in the three different settings (outpatients, 
day cases and inpatients). Similarly, the number of patients supervised by 
a single physiotherapist hnP  is considered as a weighted average of the two 
different conditions (outpatients on the one side, and day cases + 
inpatients on the other), where the weight is the percentage of outpatients 
or day cases and inpatients cycles. A linear depreciation model has been 
used to evaluate the cost related to the equipment per single treatment 
(see Equation 6). We chose this linear model because, in the time-period 
analyzed, the number of annual treatments remains almost constant over 
the years. Moreover, the linear depreciation model is the one usually 
adopted by the economic department of the hospital to value its assets.
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 ( )% %· · 1hn hnp treat hnh d treatP P P P P−= + −  (11)

The meaning of all the terms of the cost model are reported in 
Table 1.

In our model, we considered the set of 4 devices as a single robotic 
solution since all of them are needed to target all upper limb 
functionalities during a rehabilitation cycle.

2.7 Sensitivity analysis

To evaluate the sensitivity of the model to its parameters, we used the 
method of partial derivatives (34): we computed the analytical formulas 
of partial derivatives and then evaluated their numeric values in a given 
point of the n-dimensional space of parameters. In particular, 
we evaluated the partial derivatives in the “situation” of the SMP hospital 
by entering in the formulas the average values of parameters over the 
considered 3 years period. The final aim of this analysis is to identify the 
set of parameters on which the healthcare provider should act to reduce 
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the costs of robotic rehabilitation in the most effective way. Therefore, in 
this sensitivity analysis, we considered fixed those parameters that are not 
under the control of the healthcare provider, in particular: the cost of 
robotic solutions, maintenance and training, cost of energy consumption 
and consumables, cost of personnel, duration of treatments, and expected 
lifetime of robots. We also considered fixed the parameters related to the 
organizational model and in particular the number of patients supervised 
by a single physiotherapist. The parameters left to vary were therefore R
(number of robotic treatments in a rehab cycle), P (number of outpatients’ 
rehab cycles per year), D (number of inpatients’ rehab cycles per year) and 
H (number of day cases’ rehab cycles per year).

In consideration of the fact that the values of the four parameters 
(R, P, H and D) recorded in the SMP hospital have different 
magnitudes, we also computed the Differential Importance Measure 
(DIM) of such parameters. Following the method of Borgonovo et al. 
(35) DIM is computed starting from Elasticity (E) as shown in 
Equations 12 and 13.

 1
/

n
i i j

j
DIM E E

=
= ∑

 
(12)

 

( )
( )

0 0

0
·

∂
=

∂
i

i
i

g x xE
x g x

 

(13)

Where ( )g x  is the function of the model under study (in our case 
DCost as a function of R, P, H and D), xi are the parameters of the model 
(in our case R, P, H and D) and 0

ix  is reference value of the ith parameter 
(in our case the values of parameters in the situation of SMP hospital).

Differently from the partial derivatives method, which allows to 
evaluate the impact of parameters’ change under the assumption of 
uniform perturbations (i.e., unitary increment of parameters), DIM 
allows to evaluate the same impact under the assumption of proportional 
perturbations (i.e., variations of parameters in percentage of their values).

We then took the parameter with highest influence (i.e., the one 
with the highest absolute value of partial derivatives in the considered 
point of the n-dimensional parameter space) and identified value such 
parameter should assume to maximize the cost difference (DCost), 
given the following two constraints:

 • Organizational constraint: maximum number of robotic 
treatments per year that can be delivered in the robotic gym ( ·R n)

 • Clinical constraint: maximum average percentage of robotic 
treatments in a cycle ( /R S ).

The latter is a constraint that derives from the fact that not all 
rehabilitation treatments can be delivered with the identified set of 
robots. In particular, most of the patients that undergo upper limb 
rehabilitation, also require lower limb treatments, which cannot 
be delivered with the set of robotic devices described in this paper.

2.8 Probabilistic simulation and statistical 
analysis

A probabilistic simulation approach has been used to take into 
account the intrinsic stochastic variability of some of the model 
parameters (36). In particular, in our model, we applied the stochastic 
variability to the parameters related to the number of rehab cycles 
delivered by the hospital in the different settings (P, H and D) and to the 
number of robotic (R) treatments in each cycle. For each of the four 
parameters (P, H, D and R) we  estimated the Probabilistic Density 
Function (PDF) fitting the most common distributions to histograms of 
historical data recorded in the SMP hospital over the analyzed period. The 
estimation of the PDFs has been done with the fitdist (fitdistrplus library) 
method of the R software (37). In particular, for each one of the five 
parameters we  fitted the following distributions: truncated normal, 
exponential, weibull and gamma. For the parameters P, D and H, to 

TABLE 1 List of all the terms and parameters in the cost model with their 
explanation.

Term Explanation

DCost Average cost difference between a mixed and a conventional rehab 

cycle (€/cycle)

Cconv Cost of a conventional rehab cycle (€/cycle)

Cmix Cost of a mixed (conventional+robotic) rehab cycle (€/cycle)

S Average number of rehab treatments per cycle

T Average number of conventional treatments in a rehab cycle

R Average number of robotic treatments in a rehab cycle

CT Cost of a single conventional therapy treatment (€/treatment)

Cr Cost of a single robotic therapy treatment (€/treatment)

Cphs Cost of physiotherapist per robotic treatment (€/treatment)

Cpns Cost of assistant per robotic treatment (€/treatment)

Ptreat% Percentage of P (outpatients) rehab cycles over the total number 

of rehab cycles

Htreat% Percentage of H (day cases) rehab cycles over the total number of 

rehab cycles

P Average number of outpatients’ rehab cycles per year

D Average number of inpatients’ rehab cycles per year

H Average number of day cases’ rehab cycles per year

Cdepr Cost of robot depreciation per treatment (€/treatment)

Ce Cost of energy per treatment (€/treatment)

Ccons Cost of consumables per treatment (€/treatment)

Tph Duration of a treatment (h)

Cph Hourly cost of physiotherapist (€/h)

Phn Number of patients supervised by a physiotherapist (weighted 

average)

Phnp Number of patients supervised by a physiotherapist in outpatients 

setting

Phnh-d Number of patients supervised by a physiotherapist in inpatients 

and day cases settings

pr Price of robotic solution (including all 4 robots) (€)

mr Cost of robot maintenance for the entire lifetime (€)

Ctraining Cost of personnel training (€)

lfr Expected lifetime of robotic solution (years)

n Average number of rehab cycles per year

pe Price of a kWh (€)

e Average power absorption of the robotic solution (kW)
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FIGURE 1

Box plot of Barthel index values at admission for the three different 
groups of patients D (inpatients), H (day cases) and P (outpatients). The 
lower and upper side of each box represent the first and third quartile, 
respectively. The horizontal bold line shows the median value. Whiskers 
extend to the most extreme data point which is no more (or less) than 
1.5 times the interquartile range from the box, while circles represent 
outliers. Double asterisks indicate p-values <0.001.

increase the number of available samples, the distributions have been 
fitted on the number of cycles per months (Pmonth, Dmonth and Hmonth) 
instead of number of cycles per year. In the simulations, the values 
sampled on Pmonth, Dmonth and Hmonth distributions have then been 
multiplied by 12 to obtain the number of cycles per year. We selected the 
different PDFs, one per parameter, that minimize the Akaike Information 
Criterion (AIC) figure of merit (38).

The selected PDFs were then used to run simulations aimed at 
evaluating the average cost difference between a mixed and a conventional 
rehabilitation cycle in a year (DCost). As a first step we generated 3 arrays 
of 130 values of the parameters P, H and D, by sampling on the respective 
PDFs, and calculated the corresponding 130 values of n:

 1, ,130i i i in P H D with i= + + = …  (14)

The optimal number of samples (130) has been determined 
following the method proposed by Liu (39) by setting the confidence 
interval to 95% and the precision to 6 €.

For each of the 130 values of n (which represent 130 simulated 
years) we extracted ni values of R from its PDF, and calculated the 
number of robotic treatments in the simulated year (RY, Equation 15) 
as the sum of all the extracted R:

 1

in
j

j
RY R

=
= ∑

 
(15)

Finally, we calculated 130 average cost differences with Equation 16.
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In order to take into account the organizational constraint, a 
check was added to verify, at each iteration of j, if the partial sum of Rj 
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 =
∑ R
k

j
j

exceeded the threshold of the maximum number of robotic 
treatments that can be delivered in 1 year. When this happens, RY is 
set to the value of the threshold and ni is set to the number of iterations 
reached before exceeding the threshold (ni = k–1).

Finally, we calculated the probability p of saving at least a given 
value x ( ( )p DCost x< ). To better estimate the value of p, we repeated 
the simulation until the difference between the mean of probabilities 
at iteration h and the mean of probabilities at iteration h-1 was less 
than 10−3.

The hypothesis that patients included in the 3 different settings (P, 
H, and D) have significantly different severity level (based on the 
Barthel Index score at admission) was validated through a Kruskal-
Wallis test between all groups and then a Wilcoxon post-hoc test with 
the Bonferroni correction.

All the statistical analysis and probabilistic simulation have been 
performed with the software R (version 4.3.2).

3 Results

Differences in clinical conditions of outpatients’, day cases’ and 
inpatients’ Barthel Index scores at admission are shown in Table 2. The 
post-hoc analysis has identified significant differences among the three 
groups (p-values <0,001 for all possible group pairs) in terms of 
impairment level (Figure 1).

3.1 Data used for calculation

In the time period considered (i.e., between January 1st, 2017 
and December 31st, 2019), 891 mixed rehabilitation cycles have 
been performed at the SMP hospital, including 60,534 
neuromotor treatments in total, out of which 15,933, 
corresponding to 26.32%, were performed with upper limb 
robotic devices. Out of the 891 rehab cycles, 83 involved 
outpatients (Ptreat% = 9.32%), 306 day-cases (Htreat% = 34.34%), and 
502 inpatients (Dtreat% = 56.34%). The average number of 
treatments per cycle (S) is 67.94, the average number of robotic 
treatments per cycle is 17.88 and the average number of 
conventional treatments per cycle is 50.06.

The average hourly costs sustained by the SMP hospital for 
physiotherapists and assistants in the considered period were 19.50 

TABLE 2 Values of Barthel index at admission for the three different settings (outpatients, day cases and inpatients).

Group Median (q1/2) First quartile(q1/4) Third quartile (q3/4)

outpatient 83.00 74.25 88.00

day cases 68.00 45.00 82.00

inpatients 41.87 27.00 56.00
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€/h and 16.48 €/h, respectively. The duration of a single treatment 
(both robotic and conventional) is 45 min.

For what concerns the costs related to energy consumption, 
we considered an average price of energy (pe) of 0.36 €/kWh and an 
average power absorption (e) of 0.28 kW, which is the average of the 
maximum power absorption of the four robots.

The overall purchase cost of the robotic solutions, which were 
acquired in the end of 2015, (pr) was 152,256 €, VAT included, while 
the maintenance costs (mr) were 15,767 € per year. In compliance with 
the standard accounting procedure of the hospital, the robotic solution 
lifetime (lfr) was considered to be 8 years.

With regard to training on the use of robotic solutions, this was 
initially provided by the manufacturers to a small group of physiotherapists 
without charging additional costs. This group of experienced 
physiotherapists was subsequently periodically involved in training their 
peers. For this reason, we  evaluated the cost of training in terms of 
productivity loss. In particular, we estimated that 75 physiotherapists’ slots 
(each lasting 45 min) need to be devoted to training during the robot’s 
lifetime, resulting in an overall cost of 1371.09 €.

As described above, a percentage of 25% was added to all direct 
costs (both for conventional and robotic treatments) to account for 
facility overheads.

The maximum number of robotic treatments per year that can 
be delivered in the robotic gym (R*n) has been calculated based on 
the following data:

 • The robotic gym is open 50 weeks a year,
 • Each week, 55 rehab slots are available (10 slots per day from 

Monday to Friday plus 5 slots on Saturday),
 • Three treatments can be delivered in each slot.

In total, 8,250 treatments/year can be delivered in the robotic gym.
On the other hand, based on the experience of SMP clinicians, the 

maximum average percentage of robotic treatments in a cycle (R/S) 
has been set to 35%.

3.2 Cost difference

All the data reported above have been used to evaluate the overall 
cost of mixed rehab cycles actually sustained by the hospital in the 
3-years period and to calculate the theoretical cost of an equivalent 
number of conventional treatments. The difference (DCost) between 
the costs of the actual mixed rehab cycles delivered in the 3 years and 
the theoretical conventional equivalent is −44191.06€, in favor of 
mixed therapy. Considering the 891 mixed rehab cycles delivered in 
the period, this means an average saving of −49.60€ per mixed cycle 
compared to a conventional one.

The cost difference between a single robotic treatment and a 
conventional one (Cr - CT) is −2.77 € in favor of robotics, which represents 
a saving of 15.17% with respect to the cost of a conventional treatment.

3.3 Sensitivity analysis

The values reported in Table 3, representing the average values of 
the parameters recorded in the SMP hospital in the 3 years, have been 
used to calculate the numeric values of partial derivatives and DIMs.

Evaluating the partial derivatives and DIMs in the positions of 
Table 3 results in the values reported in Table 4.

The DIM provides information on the relative importance of the 
model parameters, while the direction of change (i.e., if an increment 
of the parameter causes DCost to increase or decrease) is given by the 
corresponding partial derivative. Given the definition of DCost in 
Equation 1, the more negative the derivative of a parameter is, the less 
a robotic rehabilitation cycle costs for higher values of such parameter.

Under the assumption that the proportions between P, D and H 
do not vary, we can evaluate the variation of DCost as a function of 
the two independent variables n (n = P + D + H) and R. The color-map 
in Figure 2 shows how DCost changes as the two parameters R and n 
vary. Negative values of DCost (i.e., in favor of mixed rehabilitation) 
are represented in green, positive values of DCost (i.e., in favor of 
conventional rehab) have a red color, and the black line represents the 
boundary between these two situations (i.e., DCost = 0). In the 
color-map presented in Figure 2, the SMP situation is represented by 
the blue cross (R = 17.88 and n = 297) that lies on the green area. 
Suppose now to be  interested in maximizing the savings while 
respecting the organizational and clinical constraints (i.e., 
R·n 8250<=  and R / S 0.35<= ).

By increasing the parameter R to the maximum value that respects 
the constraint R / S 0.35<=  (i.e., R 0.35·67.94 23.78= = ) it is 
possible to obtain a saving of 111.70 € in favor of a mixed rehabilitation 
(green star in Figure 2). Such value is therefore achievable with an 
increment of R of +32%. On the other hand, to achieve the same 
DCost value (red star in Figure 2), the parameter n would need to 
be increased by 77% to reach 562 cycles per year. However, the latter 
scenario cannot be implemented as the number of robotic treatments 
needed, exceeds those that the robotic gym can provide, according to 
the constraints described previously. Being DCost a monotonically 
decreasing function of both R and n, the maximum savings can 
be obtained by increasing both R and n in such a way that they reach 
the limits given by the constraints: R = 23.78 and n = 346.93. 
Consequently, the maximum possible value of DCost is −131.68 €.

TABLE 3 Average values of parameters R, P, D and H used for evaluating 
partial derivatives.

Parameter Average value in the 
considered period

R 17.88 (treatments/cycle)

P 27.67 (cycles/year)

D 167.33 (cycles/year)

H 102.00 (cycles/year)

TABLE 4 Results of partial derivatives and DIM evaluated in the situation 
of SMP hospital.

Parameter Partial derivative 
value

DIM

R −10.53 0.576

P −0.65 0.055

D −0.43 0.219

H −0.48 0.150
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TABLE 5 Results of distribution fitting procedure. The name of the distributions and the parameters defining their shape are reported.

Parameter Distribution name Parameters

R Truncated normal Mean = 5.77; standard deviation = 18.48; left limit = 1

Pmonth Truncated normal Mean = 0.13; standard deviation = 2.84; left limit = 0

Hmonth Gamma Shape = 12.8; rate = 0.92

Dmonth Weibull Shape = 2.88; scale = 9.54

3.4 Probabilistic simulation and statistical 
analysis

Figure 3 and Table 5 show the results of the probability density 
distributions fitting obtained by minimizing the AIC.

It is worth noticing that the mean parameter of truncated normal 
distributions is not equal to the mean value of the sampled distribution.

Using the PDFs described in Table  5, we  performed two 
different simulations.

The first one was aimed at evaluating the probability of obtaining 
given levels of savings when the average number of robotic treatments 
(R) is increased to 23.78. In particular, we evaluated the probability 
that the mixed rehabilitation costs less than the conventional one [i.e., 
( )0p DCost < ] and the probability of obtaining savings equal to at 

least 85% of −111.70€ [i.e., ( )94.95p DCost < − ].
The second simulation was aimed at evaluating the probability of 

obtaining given levels of savings when both parameters R and n are 
increased to achieve the maximum possible level of saving (i.e., 
R = 23.78; n = 346.93; DCost = −131.68 €). Similarly, to the first 
simulation, we evaluated the probability that the mixed rehab cost less 
than the conventional one [i.e., ( )0p DCost < ] and the probability of 
obtaining savings equal to at least 85% of 131.68€ 
[i.e., ( )111.93p DCost < − ].

For the first simulation we sampled the values of the parameter R 
on a translation of its PDF obtained by increasing the value of the 
mean parameter in such a way to obtain a distribution whose sampled 
data had an average value of 23.78. The resulting translated PDF of R 
have a mean parameter value of 17.3. For the second simulation 
we also translated the PDF of n in such a way to obtain a distribution 
whose sample data had an average value of 346.93.

Figure 4 depicts the histograms of the two simulations and Table 6 
reports the values of probability in the situations described above.

4 Discussion

In this work, we presented a model that allows to calculate the cost 
difference between mixed (i.e., a combination of robotic and 
conventional treatments) and purely conventional rehabilitation. The 
model, retrospectively applied to the data retrieved from one of the 
hospitals of Fondazione don Gnocchi, showed that the mixed 

FIGURE 2

Color-map representing how DCost varies in function of the 
parameters R and n. The DCost gradient is represented on the right 
side of the figure and moves from green (DCost<0) to red (DCost>0). 
The black line represents the situation where DCost = 0. The situation 
of the SMP hospital is represented by the blue cross (R = 17.88 and 
n = 297). The dashed area represents the situations that cannot 
be achieved due to the organizational and/or clinical constraints 
( · 8250R n <=  and R/S = 0.35, where S = 67.94). The green star represents 
the maximum DCost achievable by increasing R while the red star 
represents the same DCost value achieved by increasing n.

FIGURE 3

From left to right, histograms of the parameters R, P, D and H with the PDFs fitting obtained by minimizing the AIC (red lines).
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rehabilitation approach allowed to reduce the cost of rehabilitation 
compared to a conventional rehabilitation. By analyzing the sensitivity 
of the model to its parameters, it was possible to identify the conditions 
for optimizing the efficiency of robotic rehabilitation. Finally, the 
introduction of a probabilistic simulation approach allowed to take 
into consideration the intrinsic variability of the parameters of the 
model and evaluate the probability of achieving given level of savings 
with the robotic rehabilitation.

The model, the graphical representation of cost difference, and the 
probabilistic simulation approach are tools to support healthcare 
providers in making data-driven decisions about investing in 
robotic rehabilitation.

The statistically significant differences of the values of Barthel 
index at admission among the three groups of patients (inpatients, 
day cases and outpatients) support the organizational model 
adopted by the SMP hospital, which differentiate the rehabilitation 
procedures, and consequently the level of costs, among the 
three groups.

The mixed rehabilitation approach (i.e., a combination of robotic 
and conventional treatments in the rehabilitation cycle) adopted by 
the SMP hospital allowed to save more than 44 thousands € in a 
3-years period. This represents a saving of around 4% with respect to 
the overall costs of conventional neuromotor rehabilitation, which 
includes both upper and lower limb treatments. If we focus on the 
upper limb treatments, which are the target of the technological 
devices considered and represent around 35% of the total neuromotor 
treatments delivered in the hospital, the mixed approach allowed to 

reduce the costs related to the rehabilitation of the upper limb district 
of around 11%.

The sensitivity analysis of the cost model clearly demonstrated that, 
in the situation of the SMP hospital, which already has a considerable 
number of mixed rehab cycles per year (n), the parameter having the 
largest influence on the cost difference is the number of robotic 
treatments per cycle (R) as demonstrated both by the partial derivatives 
and the DIM. This means that the efficiency of robotic rehabilitation in 
the SMP hospital can be improved more effectively by increasing the 
number of robotic treatments administered in each cycle, rather than, 
for example, recruiting new patients to increase the number of mixed 
rehabilitation cycles delivered. In our model, we also introduced two 
constraints that reflect the maximum number of robotic treatments that 
can be delivered in the robotic gym (8,250 per year—organizational 
constraint) and the maximum average percentage of robotic treatments 
in a rehab cycle (35%—clinical constraint). The latter takes into 
consideration the fact that not all the neuromotor rehab treatments can 
be delivered using the set of technological devices described in this 
paper. These two constraints must be taken into account when defining 
the values of the parameters that optimize the cost difference (DCost). 
In consideration of this limits, the highest level of savings that can 
be achieved by increasing only the R parameter (DCostmaxR) is −111.70 
€ per cycle, which represent a saving of around 9% with respect to the 
overall costs of conventional neuromotor rehabilitation and 26% of the 
costs of upper limb treatments. On the other hand, a similar level of 
savings cannot be achieved by increasing the parameter n alone due to 
the constraint on the maximum number of robotic treatments that can 

FIGURE 4

Histograms resulting from the simulations of cost differences (DCost). On the left side the simulation with R varying around the mean value of 23.78 
and n fixed at 297, on the right side the simulation with R varying around the mean value of 23.78 and n varying around the mean value of 346.93.

TABLE 6 Results of the simulations. The fourth column reports the probability of obtaining at least the levels of savings indicated in the third column, 
with the parameters R and n indicated in the first two columns.

R n DCost threshold Probability of saving at least DCost 
threshold

23.78 297 <0 € 98.14%

23.78 297 <−94.95 € 79.5%

23.78 346.93 <0 € 99.59%

23.78 346.93 <−111.93 € 62.62%
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be delivered each year. The same result is clearly represented by the 
color-map of Figure 2 that presents the situation of the SMP hospital 
(blue cross) and the increases that should be done on parameters R 
(green star) and n (red star) to achieve the same level of savings 
(−111.70 € per cycle).

The maximum level of saving, achievable by increasing at the same 
time R and n (DCostmax) in such a way that they reach the limits given 
by the organizational and clinical constraints, is 131.68 € which 
represent a saving of around 10.6% with respect to the overall costs of 
conventional neuromotor rehabilitation and 30.3% of the costs of upper 
limb treatments.

In our work, we introduced a probabilistic simulation approach to 
take into account the intrinsic variability of some of the parameters of 
the model. In particular, the number of robotic treatments prescribed 
by a clinician to a specific patient (reflected in the parameter R) depends 
on a number of factors that cannot be easily predicted or modeled. A 
similar consideration holds true for the number of rehab cycles that the 
hospital performs each year in the different settings (reflected in the 
parameters P, H, and D) which depend on factors that are not fully 
under the control of the healthcare provider. The other parameters (e.g., 
cost of robots, cost of maintenance, cost of consumables, robot lifetime, 
hourly cost of personnel, and duration of treatment) can be considered 
less variable.

We applied the probabilistic simulation approach to evaluate the 
probability of achieving a given level of savings by varying the 
parameters R and n around the values that allow to achieve the 
maximum possible level of savings. Table 6 shows that simulations 
indicate a high probability (p > 98%) of achieving savings (DCost<0) 
when the average number of robotic treatments per cycle is 23.78 and 
the number of mixed rehabilitation cycles per year is at least 297. The 
probabilities of achieving at least 85% of the maximum savings 
achievable by increasing R only, or R and n together, are lower, as 
expected: ( )0.85· 79.5%maxRp Dcost DCost< =  and 
( )max0.85· 62.62%p Dcost DCost< = . The difference between these 

two probabilities is due to the fact that, to achieve the maximum level 
of savings (DCostmax), the robotic gym must be  used close to its 
maximum capacity and, given the variability of R and n together with 
the organizational constraint (R*n < 8,250), this is less probable than 
achieving the lower number of robotic treatments per year required to 
reach DCostmaxR.

The results of our study demonstrate that technology-based upper 
limb rehabilitation pathways can be  less expensive, compared to 
conventional rehabilitation, if an appropriate organizational model is 
applied. This is in line with what was found in other studies where one 
physiotherapist supervised more than one patient at the same time (22, 
27, 40). On the other hand, as one would expect, when a 1 to 1 patient-
physiotherapist ratio is applied, technological rehabilitation results more 
expensive than the conventional one (23).

Compared to other studies which have analyzed the costs of upper 
limb robotic rehabilitation based on hypothetical number of yearly 
robotic treatments that could potentially be  delivered with a given 
organizational model (22, 23, 27, 40), our approach is based on the 
retrospective analysis of real world data, and this allowed us to estimate 
the actual savings achieved by the hospital.

Our economic analysis must be understood in light of the fact that 
upper limb treatment necessitates a large number of rehabilitation 
sessions, which are frequently made possible by technological 

advancements. In fact, one of the goals of adopting rehabilitation 
technologies is to increase therapy intensity. This is critical considering 
the rehabilitation field’s ongoing human resource scarcity. As a result, 
increasing the number of robotic sessions in a single therapy cycle may 
represent not only a strategy to get better therapeutic results, but also to 
make the treatment more economically feasible.

The results of this study are expected to provide valuable insights 
for healthcare providers and policymakers. By demonstrating the 
economic feasibility of the multi-patient technological rehabilitation 
model, this research can contribute to the wider adoption of this 
innovative technology. This, in turn, has the potential to improve access 
to effective upper limb rehabilitation for a larger patient population.

5 Limitations

The study has some limitations to be acknowledged. Firstly, all 
the data is derived from a single hospital and this limits the 
generalizability of the findings to other settings or countries. 
Additionally, while the study primarily focuses on cost analysis, it 
does not provide details on the long-term clinical outcomes and the 
sustainability of robotic rehabilitation which should 
be further investigated.

The assessment of the study through the Consolidated Health 
Economic Evaluation Reporting Standards checklist (41) indicates 
that 23 items, out of the 28, are fulfilled. The missing items are relative 
to a formal document for the health economic analysis plan (item 4), 
the characterization of subgroups of the target population (item 18) 
and the consequent analysis of impact for the different subgroups 
(item 19), and the lack of engagement with patients for the design of 
the study (item 21) and consequently the missing analysis of impact 
of such involvement (item 25).

6 Conclusion

This study examined the economic feasibility of integrating 
technological and conventional therapies for upper limb 
rehabilitation in the clinical practice of an Italian rehabilitation 
hospital equipped with a robotic gym. Through a retrospective cost 
analysis, we found that the mixed rehabilitation approach, within 
a specific organizational model allowing a single physiotherapist 
to supervise up to four patients concurrently, allowed cost savings 
compared to the conventional rehabilitation model. These findings, 
together with the clinical effectiveness of the robotic approach, 
underscore the viability of leveraging technologies to optimize 
resource utilization and enhance rehabilitation outcomes, offering 
valuable insights for healthcare decision-makers in terms of the 
sustainability of robot-assisted rehabilitation practices in real 
clinical settings.
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