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Abstract: CloudSim is a versatile simulation framework for modeling cloud infrastructure com-
ponents that supports customizable and extensible application provisioning strategies, allowing
for the simulation of cloud services. On the other hand, Distributed Acoustic Sensing (DAS) is a
ubiquitous technique used for measuring vibrations over an extended region. Data handling in DAS
remains an open issue, as many applications need continuous monitoring of a volume of samples
whose storage and processing in real time require high-capacity memory and computing resources.
We employ the CloudSim tool to design and evaluate a cloud computing scheme for long-range,
polarization-independent DAS using coherent detection of Rayleigh backscattering signals and un-
cover valuable insights on the evolution of the processing times for a diverse range of Virtual Machine
(VM) capacities as well as sizes of blocks of processed data. Our analysis demonstrates that the
choice of VM significantly impacts computational times in real-time measurements in long-range
DAS and that achieving polarization independence introduces minimal processing overheads in
the system. Additionally, the increase in the block size of processed samples per cycle results in
diminishing increments in overall processing times per batch of new samples added, demonstrating
the scalability of cloud computing schemes in long-range DAS and its capability to manage larger
datasets efficiently.

Keywords: polarization-independent detection; distributed acoustic sensing; cloud computing; CloudSim

1. Introduction

Optical fiber sensors constitute a key element of intelligent monitoring systems as
they are adaptable, are resistant to harsh environmental conditions, and can be easily
integrated into existing fiber-optic infrastructures. Among others, Distributed Acoustic
Sensing (DAS) involves the use of an optical fiber to detect and measure acoustic signals
over a long distance [1,2]. By transmitting coherent signals through the fiber and analyzing
the coherent Rayleigh backscattered light and its temporal change at each point due to
acoustic disturbances, DAS systems can transform fiber-optic cables into a continuous,
high-resolution array of microphones [3,4]. This technology enables the monitoring of
extensive areas of long infrastructure with a single fiber [5], making it particularly useful
for applications in a number of areas include smart buildings and the transportation and
energy industries.

DAS has various applications ranging from offshore leakage detection in oil and gas
wells and pipelines to perimeter security [6], as well as monitoring the structural safety
and integrity of critical infrastructure including railways and highways [7] and long-haul
power transmission lines. A common scheme for DAS is coherent OTDR, also known
as phase-sensitive OTDR (φ-OTDR), wherein the coherent Rayleigh backscattering from
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pulses of light from a narrow linewidth laser are observed with regard to the change in
intensity and phase caused by local disturbances. Monitoring the evolution of the change
in amplitude and phase of the backscattering along the fiber provides information on the
distributed temperature or the vibrations induced by events which leave specific signatures.
For continuous monitoring, especially at long distances, multiple cycles of traces, each with
hundreds of thousands of samples, need to be acquired and stored for further processing
to extract information on the magnitude, location, and frequency of disturbances [8].

In φ-OTDR, the coherent Rayleigh backscattering from each point along the fiber
consists of a speckle pattern determined by the randomly varying birefringence along the
fiber. In coherent detection in DAS via beating of the backscattering with a local oscillator
having a certain polarization, the received signal is inevitably affected by polarization
mismatch, ultimately resulting in polarization fading, which is detrimental to the mea-
surement. This might necessitate the use of expensive polarization-maintaining fibers as a
sensor. However, the use of polarization diversity mitigates this problem, thereby enabling
accurate measurement of vibrations regardless of the type of fiber used and the state of
polarization of the backscattered light from any position along the fiber [8].

1.1. Interrogation Schemes and Data Handling in DAS

The use of cloud systems in enterprise IT solutions for fiber optics has been showing
steady growth and continues to constitute a significant part of the total revenue, which is
expected to be USD 1.3 billion in 2025, as per a recent survey [9]. As shown in Figure 1,
not only the share of the total revenue but also the growth in revenue of cloud com-
puting have been steadily growing, in clear contrast to traditional systems, which have
shown stagnation.

Figure 1. Trend of total revenue and growth revenue of enterprise IT spending, showing the trends in
the use of cloud and traditional systems [9].

While processing these data with conventional algorithms for real-time event extrac-
tion in itself remains difficult, in response to the growing demand for intelligent solutions,
future monitoring systems require more valuable postprocessing on large datasets, which
will be difficult to handle using standalone computing systems. There are studies which
tackle the real-time processing of large amounts of data representing distance, depth, and
wave velocity density obtained from DAS arrays in micro-seismic monitoring using deep
learning using convolutional neural networks [10].

The high volume and velocity of DAS data necessitate big data tools, including cloud-
based storage and analytics for scalable, real-time analysis. Data science and cloud solutions
are expected to enhance DAS applications in environmental monitoring and IoT, especially
within smart cities. As DAS sensors generate diverse data, cloud IoT applications and big
data tools facilitate effective data management for large-scale, multi-parameter monitoring
systems [11,12]. Considering the additional postprocessing needed to extract relevant
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information from raw traces, designing and evaluating the use of a cloud-based signal
processing system capable of handling algorithms of varying degrees of complexity in the
high volume of data involved in Distributed Acoustic Sensing is highly desirable.

Research on DAS has focused on improving the cost-effectiveness and precision
of interrogation schemes, exploring its applications in security, and integrating it with
advanced technologies [13,14]. The Distributed Fiber-Optic Intrusion Sensor (DFOIS),
based on φ-OTDR, detects and locates intruders by sensing phase changes due to pressure
on buried fibers [15]. Enhanced fiber designs, with better signal-to-noise ratios, allow
accurate, rapid monitoring, beneficial for seismic activity detection, disaster monitoring,
and oil exploration [13]. Machine learning and data science are crucial for processing
DAS’s vast data, providing actionable insights for applications in industrial monitoring,
smart cities, and infrastructure integrity [11]. DAS can also be used to detect intrusions
by monitoring acoustic signals along fiber routes, boosting situational awareness and
response [12].

More recently, the increase in the number and complexity of devices in the IoT archi-
tecture has necessitated edge and cloud computing [16]. Cloud simulators enable analysis
of multiple parameters for a large number of devices and offer application interfaces for
visualization [17], including in the placement and optimization of edge server comput-
ing [18].

Among others, a pioneering deployment of a fiber-optic DAS system for permanent
flow monitoring in a tight gas well in Northern British Columbia was explored [19]. The
system was installed with three main goals: continuous wellbore flow monitoring, real-time
data access for team collaboration, and refining DAS for future oil and gas applications.
This DAS solution enhances well and reservoir surveillance, often constrained by risks,
costs, and logistical issues in traditional monitoring. With constant access to high-resolution
flow data, DAS enables high-frequency monitoring, ideal for unconventional reservoir
projects. Results confirm DAS’s capability to record real-time flow data accessible via a
secure web interface, though challenges remain with large data volumes, data transfer, and
system durability.

1.2. Advanced Signal Processing in DAS and Big Data Systems

A number of signal processing schemes have been used for event detection in DAS [2].
Conventional methods often focus on basic event detection but lack robust classification
capabilities and tend to produce high false alarm rates [20]. To address this, machine
learning (ML) approaches for event detection using DAS data are used. For instance, ML
significantly enhances optical fiber sensor capabilities as it can be used to improve signal
demodulation, enhance discrete and distributed sensor accuracy, and advance optical
fiber speckle pattern processing. There are also studies where machine learning was
used in optical fiber sensors to address issues with phase demodulation algorithms [21].
Furthermore, the use of convolutional neural networks able to classify events with methods
employing the phase and intensity stacking in a φ-OTDR based on coherent detection has
been proposed and demonstrated [22]. The use of the algorithm on a dataset for measuring
the phase and intensity changes was shown to yield classification accuracy of 88.2%.

The integration of machine learning with DAS offers a transformative approach to
pipeline monitoring, enhancing the ability to detect and classify potential threats to pipeline
integrity. Machine learning enhances the utility of DAS by automating the recognition of
patterns in the captured vibration data [23]. Features are then extracted from the processed
signals in either the time domain (e.g., energy distribution, correlation), frequency domain
(e.g., Fast Fourier Transform (FFT), spectral coefficients), or time–frequency domain (e.g.,
wavelet transforms). Among these, frequency-domain features are particularly effective due
to their physical relevance and ability to distinguish between event types based on spectral
characteristics [2], hence the need to focus on FFT signal processing for event extraction.

Furthermore, the integration of machine learning into DAS systems, referred to as
DAS and Pattern Recognition Systems (PRS), not only reduces false alarms but also pro-
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vides richer contextual information about the detected events. These systems process raw
vibration signals into usable data through feature extraction, followed by classification to
assign the signals to specific categories, such as threat or non-threat. A typical DAS and PRS
framework comprises acquisition equipment to capture signals, a feature extraction module
to generate feature vectors, and machine learning models to perform classification [23].
Pattern recognition in DAS has evolved with the integration of advanced signal processing
and machine learning techniques. The combination of intensity and phase data, deep
learning models, and data augmentation methods has significantly enhanced the capability
of DAS systems to accurately classify events in real-time scenarios. These advancements
ensure the practical deployment of DAS in complex environments, making it a robust
solution for diverse monitoring applications [22].

Hence, it is evident that it is important to have scalable means to implement signal
and data processing algorithm schemes in DAS with cloud computing systems for not
only conventional processing systems but also new ones employing machine learning and
pattern recognition for event extraction, identification, and classification.

The integration of cloud-based big data platforms into upstream oil and gas (O&G)
operations to enhance productivity, safety, and cost efficiency was also addressed [24].
The study addresses industry challenges posed by rapid data growth from fiber-optic
sensing, highlighting issues like data overload, incompatible systems, and secure data
needs. To tackle this, a scalable, secure cloud-based platform for real-time downhole data
processing was proposed using Apache Kafka for ingestion, Apache Spark for processing,
and Apache Cassandra for storage. The cloud approach saves costs by reducing hardware
and IT needs, offering reliability and scalability, and helping O&G operators focus on core
objectives. The contribution shows that a cloud-based architecture enhances real-time data
processing, supporting data-driven decision-making, profitability, and competitiveness in
digital oilfield operations.

While different aspects of DAS have been studied in detail, there are limited inves-
tigations of tools and approaches for rendering long-range distributed sensors suitable
for real-time monitoring [25]. This is, to the best of our knowledge, the study of a cloud
simulation tool for modeling the signal processing in sample distributed fiber sensing
systems. One key step forward in this direction requires quantifying the type, number, and
specifications of resources required for a scenario of real-time monitoring with dynamic
distributed sensing. Specifically, the intermediate data handling and signal processing
in a DAS system involves acquisition of multiple traces and subsequent processing with
spectral computations and phase demodulation techniques. Given that, often, knowing the
exact storage and processing resources for a given system requires tests on real systems,
which are costly, it is convenient to use tools which simulate the cloud architecture and
allow prediction of expected performances in simple, readily available machines.

One such tool is CloudSim, which has been used in many design scenarios spanning a
number of applications. The tool has been widely used by researchers and engineers with
various approaches, including ones for simple processing [26], and adaptations for simulation
of distributed functions as a service (FaaS) [27]. The various scheduling algorithms in cloud
environments have been captured by the simulation tool and shown to serve as effective design
tools to determine cloud solutions for multiple scenarios. Among others, CloudSim has been
used to simulate computations in smart grids by studying parameters such as the number and
bandwidth of VMs as well as the RAM and cloudlet length [28].

In this contribution, we design and evaluate a cloud computing scheme using the
CloudSim simulation tool, which takes in data in the format of raw traces acquired from
a DAS system for polarization-independent detection of distributed vibrations. The algo-
rithms for extracting the phase by combining the in-phase and quadrature components
of the coherent Rayleigh backscattering signal in the fast and slow polarization axes are
implemented in the CloudSim tool. A comparison of the performances in terms of reduced
processing times for different specifications of virtual machines with varying RAM size and
processing power has been performed for one or more of the sequential algorithms needed
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to extract the response of the fiber from raw data. Our analysis informs implementations
of a cloud computing system for real-time signal processing in a distributed dynamic
sensing system.

This paper is organized as follows: The theory of signal processing with polarization
diversity coherent detection of coherent Rayleigh backscattering is presented in Section 2.1,
followed by a brief description of CloudSim in Section 2.2. Then, in Section 3, we present
the experimental setup of the proposed interrogation system, while Section 4 outlines the
design of the signal processing scheme in CloudSim. Plots of experimental and analysis
results and respective descriptions appear in Section 5, followed by additional discussions
and conclusions in Section 6.

2. Theory
2.1. Operating Principle of Polarization Diversity Hybrid

Coherent optical systems permit a low signal-to-noise ratio and compensate for several
types of propagation impairments while preserving phase information of the optical signal.
When a pulse of light from a highly coherent laser source is delivered to the sensing fiber,
the phase of the backscattered Rayleigh light conveys the vibration information [29,30].

Coherent systems operating with a single polarization typically include a receiver in
which the received signal is mixed with a local oscillator (LO) operating at a frequency
close to the former. Then, the LO and Rayleigh backscattering (RBS) signal are fed to
an optical hybrid, followed by a pair of balanced photodetectors (PBDs) for each of the
in-phase and quadrature components of the beat signal and subsequently digitized with an
analog-to-digital converter (ADC) which feeds a Digital Signal Processing (DSP) system to
extract the change in amplitude and phases induced by perturbations along the fiber [31].
The balanced detection suppresses the common-mode noise between the signal and the LO.
However, due to the fiber’s randomly varying birefringence, the backscattering signal’s
polarization is not always aligned with that of the LO. To solve this problem, a polarization
diversity receiver is employed in a coherent receiver. Figure 2 shows the configuration
of the generic polarization diversity coherent receiver, wherein two optical hybrids are
combined in a polarization diversity configuration. First, the incoming signal with an
arbitrary state of polarization (SOP) is separated into two linear polarization components
with a polarization beam splitter (PBS).

Figure 2. Configuration of the polarization diversity hybrid with a balanced photodiode. PBS:
polarizing beam splitter.
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In a φ-OTDR-based DAS system, the detected signal is the probe pulse’s coherent RBS.
Assume the complex electric field of RBS light can be described as

Es(t) = As(t)expj(ωst+θs(t)+θ(t)) (1)

where As(t), ωs (t), and θs (t) are the complex amplitude, the angular frequency, and the
initial phase of the signal, respectively, and θ(t) is the phase change induced by the refractive
index variation along the fiber. Similarly, the complex electric field of the LO used as a
reference at the receiver can be written as

EL(t) = ALexpj(ωLt+θL(t)+θ(t)), (2)

where AL, ωL, and θL (t) are the complex amplitude, the angular frequency, and the phase
of the local oscillator, respectively. AL is a constant given that the local oscillator has a
continuous wave. The incoming signal has an arbitrary SOP and LO, which are separated
into two linear polarization components (x and y) with a PBS. Each polarization is then
given to the 90° optical hybrid. Output signals from the PBS are given by

Esx(t) = Asx(t)expj(ωst+θ(t)+θ(t)) (3)

Esy(t) = Asy(t)expj(ωst+θs(t)+θ(t)) (4)

ELx(t) = ALxexpj(ωLt+θL(t)) (5)

ELy(t) = ALyexpj(ωLt+θL(t)), (6)

where Esx(t), Esy (t), Asx (t), and Asy (t) are complex electric fields and amplitudes of the
transmitted signal in the x and y polarization, respectively.

Inside each polarization’s 90° hybrid, the LO power is split into two branches equally,
and one of these arms is phase-shifted by 90°. Similarly, the RBS signal is split equally into
two branches. The output signals of the x polarization from a 90° hybrid will be 1/2Esx(t),
1/2ALx, 1/2AjLx. The same thing happens in the y polarization, and the coefficient of ½
comes from the equal splitting of the signal.

Each branch of the LO output is coupled with the respective branch of the RBS signal
with a 3 dB optical coupler that adds a 180° phase shift to either the signal field or the LO
field. We can obtain four outputs Ex1 (t), Ex2 (t), Ex3 (t), and Ex4 (t) for the x polarization’s
hybrid, as shown in Figure 2.

For each polarization state, we can obtain four electric field outputs that are incident
on the upper and lower photodiodes as shown from Equation (7) to Equation (14). For the
x polarization’s 90° hybrid, we can obtain the following outputs [32]:

Ex1(t) =
1

2
√

2
(Esx(t) + ELx(t)) (7)

Ex2(t) =
1

2
√

2
(Esx(t)− ELx(t)) (8)

Ex3(t) =
1

2
√

2
(Esx(t) + jELx(t)) (9)

Ex4(t) =
1

2
√

2
(Esx(t)− jELx(t)) (10)

Note that in Equations (9) and (10), j refers to the shifting of one arm of the LO by
90 degrees inside the x polarization hybrid.

We can similarly form the y polarization’s 90° hybrid:

Ey1(t) =
1

2
√

2
(Esy(t) + ELy(t)) (11)
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Ey2(t) =
1

2
√

2
(Esy(t)− ELy(t)) (12)

Ey3(t) =
1

2
√

2
(Esy(t) + jELy(t)) (13)

Ey4(t) =
1

2
√

2
(Esy(t)− jELy(t)) (14)

The current output of each photodetector is proportional to the square of the magni-
tude of the total incident electric flux [33]. The incident wave on the first photodetector is
Ex1(t) which, using Equation (7), results in

Ix1(t) =
R
8
[(Asx(t))2 + (ALx)

2 + 2Asx(t)ALxcos((ωs − ωL)t + (θs(t)− θL(t)) + θ(t))] (15)

where R is the responsivity of photodetectors. Using Equation (8) for the second photode-
tector, we obtain

Ix2(t) =
R
8
[(Asx(t))2 + (ALx)

2 − 2Asx(t)ALxcos((ωs − ωL)t + (θs(t)− θL(t)) + θ(t))] (16)

Ix(t) = Ix1(t)− Ix2(t) =
R
2

Asx(t)ALxcos((ωs − ωL)t + (θs(t)− θL(t)) + θ(t)) (17)

In the quadrature output component of the photodiode, one arm of the LO is shifted
by 90°, and using Equation (9) for the third photodiode, we obtain [31]

Qx1(t) =
R
8
[(Asx(t))2 + (ALx)

2 + 2Asx(t)ALxcos((ωs − ωL)t + (θs(t)− θL(t)) + θ(t) +
π

2
)] (18)

Equation (18) is simplified as

Qx1(t) =
R
8
[(Asx(t))2 + (ALx)

2 + 2Asx(t)ALxsin((ωs − ωL)t + (θs(t)− θL(t)) + θ(t))] (19)

Using Equation (10) for the last photodiode of the x polarization gives

Qx2(t) =
R
8
[(Asx(t))2 + (ALx)

2 − 2Asx(t)ALxsin((ωs − ωL)t + (θs(t)− θL(t)) + θ(t))] (20)

The balanced detector output of the quadrature component is then given by

Qx(t) =
R
2

Asx(t)ALxsin((ωs − ωL)t + (θs(t)− θL(t)) + θ(t)) (21)

Similarly, the corresponding values of in-phase and quadrature components of the y
polarization are given by

Iy(t) =
R
2

Asy(t)ALycos((ωs − ωL)t + (θs(t)− θL(t)) + θ(t)) (22)

Qy(t) =
R
2

Asy(t)ALysin((ωs − ωL)t + (θs(t)− θL(t)) + θ(t)) (23)

In this experiment, the signal and the LO come from the same laser, but since the
AOM shifts the pulse’s frequency, the backscattering will be centered at the frequency
difference ωs-ωL and can be obtained using analog or digital downconversion. Assuming
the difference between the signal’s initial phase and that of the LO are the same, i.e.,
θs−θL=0, the four in-phase and quadrature component outputs are simplified as follows:

Ix(t) =
R
2

Asx(t)ALxcos(θ(t)) (24)
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Qx(t) =
R
2

Asx(t)ALxsin(θ(t)) (25)

Iy(t) =
R
2

Asy(t)ALycos(θ(t)) (26)

Qy(t) =
R
2

Asy(t)ALysin(θ(t)) (27)

Then, the amplitude and the phase of the RBS along the fiber can be obtained from the
combined in-phase and quadrature components, I and Q, as

As =
√
(Ix(t))2 + (Iy(t))2 + (Qx(t))2 + (Qy(t))2) (28)

θ(t) = tan−1(
Qx(t) + Qy(t)
Ix(t) + Iy(t)

) (29)

Finally, after phase unwrapping, the phase change induced by any perturbation along
the fiber can be demodulated by subtracting the phase from an adjacent position:

△θ = θz2(t)− θz1(t) (30)

Among other signal processing methods in DAS, the FFT is used to obtain the fre-
quency response of vibrations at each sensing point along the fiber, and it is an efficient
way of calculating the N-point DFT, which for a discrete signal X is given by

X(k) =
N−1

∑
n=0

x(n)Wkn
N for k = 0, 1, . . . , N − 1

where
WN = e−j 2π

N for N = 2, 4, 8, 16, . . .

2.2. Simulation of Cloud Computing with CloudSim

The concept of cloud computing describes a computing paradigm where shared re-
sources are used to run applications rather than relying solely on local servers or personal
devices. Similar to cloud computing, grid computing leverages the unused processing
power of all computers connected to a network to solve complex problems that are beyond
the capabilities of a single standalone system [34,35]. Cloud computing is gaining pref-
erence due to several factors. Cloud services offer flexibility, exhibit dynamic behavior,
operate without the need for dedicated servers, and feature NoSQL databases that provide
significantly lower access latency. Examples of cloud storage services include Google Drive,
Dropbox, OneDrive, and MediaFire. These advantages have contributed to the widespread
use of cloud computing in developing scalable solutions across industries such as retail,
finance, transportation, and entertainment, where consistently fast response times are
achieved even under peak load conditions involving tens of millions of requests [36].

Cloud infrastructure components, such as data centers, VMs, resource provisioning
strategies, and the entire behavior of cloud systems, can be simulated using CloudSim
tools. The application provisioning strategies are generic and highly extensible. CloudSim
currently has the capability to simulate and model cloud environments, including both
individual clouds and interconnected clouds. Researchers have utilized CloudSim for
investigating cloud resource provisioning and energy-efficient management of data center
resources [37]. The tool, which is primarily developed in Java, is freely available under the
LGPL license. A comprehensive discussion regarding cloud computing architectures can
be found in [38–40].
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3. Experimental Setup

The experimental setup of the φ-OTDR based on the polarization diversity hybrid
scheme is shown in Figure 3. The continuous light emitted by a narrow linewidth laser
source operating at 1550 nm and a linewidth of 100 Hz was split by a 99:1 coupler. Then
the light in the upper branch was amplified by an erbium–ytterbium doped fiber amplifier
(EYDFA) and injected into an acoustic–optic modulator (AOM) to generate pulses with
a width of 100 ns and a repetition rate of 8.33 kHz. Then, an optical bandpass filter was
used to remove the amplified spontaneous emission (ASE) noise, and the filtered pulse was
launched into a 10 km single-mode sensing fiber through a circulator.

Then, the filtered light was injected into a 90° polarization diversity hybrid (PDH),
which consists of two single-polarization 90° optical hybrids for extraction of change in
the phase and amplitude induced by perturbations while suppressing polarization fading.
Finally, the LO in the lower branch and the backscattering signal were mixed in a 90°
optical hybrid. A polarization controller (PC) was inserted in the lower branch to match
the polarization of the LO with that of the signal. The output of the PDH was given to the
four balanced photodetectors to detect the beating that had a 100 MHz bandwidth.

Figure 3. Experimental setup.

4. Design of a Signal Processing Scheme for Long-Range DAS Using CloudSim

Figure 4 shows a system designed to integrate a DAS system with cloud services. In a
cloud environment, one of the key components is the system developed for transmitting
large-scale data to cloud storage. This requires designing and implementing a method for
efficiently transferring the substantial amounts of data generated by the DAS system to the
cloud. Another essential element is the framework created for the real-time preprocessing
of DAS data, which includes the steps needed to prepare the data for both storage and
subsequent analysis [25].
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Figure 4. Block diagram of the developed system [25].

The step-by-step guide to setting up a cloud simulation project using CloudSim
(cloudsim-5.0) can be found in [25]. The simulation flow for the signal processing of sensor
data in a CloudSim framework is shown in Figure 5. The simulation starts with initializing
CloudSim, creating a data center for managing cloudlet tasks on VMs. A broker then
allocates resources and schedules tasks across VMs. After setting up, the simulation runs
until tasks finish, followed by a summary of execution times and resource usage to assess
cloud performance. The full explanation of the simulation process can be found in [25].

Figure 5. Block diagram of simulation flow for the basic scenario [25].

The schematic in Figure 6 represents implementation of a signal processing system for
a DAS sensor using CloudSim. After setting up CloudSim, the next step is understanding
its components and functionalities. System requirements, including hardware and data,
are then defined, followed by creating project classes for data centers, VMs, and cloudlets.
The simulation runs several different Java classes for differential and FFT computations. If
errors occur in any stage of the processing, class creation is revisited; otherwise, outputs
are generated for further MATLAB analysis, which includes visualization and statistical
analysis. The detailed descriptions of the workflow can be found in [25].
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Figure 6. Schematic representation of the implementation of signal processing of DAS sensor data in
CloudSim [25].

5. Results and Discussion

Figure 7a shows the coherent Rayleigh backscattering traces before they are fed to the
polarization diversity hybrid, and Figure 7b shows the overlaps of the raw Ix, Qx, Iy, and
Qx after the PDH, proving that the RBS traces have high SNR and exhibit common-mode
noise suppression.

(a) (b)

Figure 7. Sample of 3 RBS traces: (a) Before being fed to the PDH. (b) Overlapped raw traces from
the four outputs of the PDH.

The amplitude of the individual polarization components (x and y) with no averaging
are reported in Figure 8. As illustrated in the figure, the signal-to-noise ratios (SNRs) of the
two individual amplitude traces differ due to the effects of polarization.

Figure 8. Demodulated amplitude traces. Left: x polarization; right: y polarization.
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5.1. Processing Times for Varying VM Capacity

In the signal processing scheme which is designed and evaluated using the CloudSim
framework, cloudlet lengths are carefully measured in Million Instructions (MI) to ac-
curately assess the computational intensity of various operations. Specifically, the pro-
cessing is applied to the equivalent size of the samples in the sensor data from real-time
measurements in polarization-independent long-range DAS using delayed self-mixing of
coherent Rayleigh backscattering signals in an 18,750 by 416 matrix, which is a total of
7,812,504 numbers.

With regard to representation formats, single-precision floating-point numbers are
used to represent real numbers, following the IEEE 754 standard which requires 4 bytes
(32 bits) of storage per number. This means that each individual sample, whether it is an
input or an output in a computational process, occupies 4 bytes of memory.

In the designed computing scheme, where the first batch of data contains 781,250 num-
bers, to calculate the total memory or storage size required for this batch, we multi-
ply the number of samples by the memory size for each value: 781,250 numbers ×
4 bytes per number = 3,125,000 bytes. Considering 1 MB = 1,048,576 bytes, the size in
megabytes is 3,125,000 bytes

1,048,576 ≈ 2.98 MB. Hence, we use 4 MB for the total memory require-
ments for the first batch. Then, as the batch size increases, the total file size increases
proportionally. For instance, if the batch size doubles, the data size also doubles, leading to
a corresponding increase in memory usage.

This calculation applies to both the input and the output files if the output data follow
the same format. Therefore, each time the batch size increases, the file sizes for both
input and output will grow proportionally. In this paper, we are processing batches of
increasing size, so the memory or storage demand for both input and output files will
increase consistently.

Regarding the computational intensity of all the computations involved in the real-time
measurements in a polarization-independent long-range DAS, the first step in the proposed
system is the polarization diversity computation, which serves as a crucial preprocessing
stage for data analysis. In this phase, we process a total of 10 batches of data. To enhance
real-time processing capabilities, we plan to generate an additional 10 batches within each
of the initial batches, resulting in a total of 100 batches to effectively manage the data flow.

Each batch comprises approximately 781,250 samples. The signal processing for
polarization-independent measurements in DAS involves various mathematical operations,
including additions, multiplications, and divisions. To assess the computational intensity of
these operations, we assume that the data will first be converted into binary representation
before being processed by computer circuits.

The operations involve substantial computations, whose load is evaluated by express-
ing it in terms of MI. After conducting the necessary calculations for the first batch, we
estimate that the total computational requirement amounts to approximately 487.5 MI.

As we progress through the subsequent batches, we anticipate an increase in the num-
ber of instructions required. This escalation in computational intensity can be attributed to
various factors, including the cumulative data from previous batches and the complexity of
the operations involved in the polarization diversity algorithm. Each following batch will
therefore require an increasingly larger number of MI, reflecting the growing computational
demands of processing larger datasets and executing more complex operations.

Figure 9 shows the relationship between the processing time and cloudlet length
for preprocessing operations. In plot (a), the processing time for VM 1 when processing
100 cloudlets is approximately 18.94450 ms, while for the best-performing VM 10, the
processing time is 0.41222 ms. This indicates a substantial difference in performance
between the worst and best VMs in this scenario. In contrast, in plot (b), the processing
time for VM 1 for the same number of cloudlets (100) is about 51,891.42998 ms, and for VM
10, it is 38.13402 ms. The plots show not only that as the sample size per cycle increases,
the computational intensity of the preprocessing increases but also that as the VM capacity
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increases, the variability in processing times gets discretized, as can be seen in the staircase-
type plots starting from VM 5.

The computations involved in calculating the differential based on magnitude are
quite complex and consist of several mathematical operations. These operations include
additions, multiplications, and a series of further additions, subtractions, and multipli-
cations, particularly for the square root calculation. The square root function, in many
computational algorithms, involves an iterative process where multiple arithmetic opera-
tions are carried out to approximate the result. This makes the magnitude computation
relatively intensive when processing large batches of data. In our system, we previously
assumed batch processing to optimize performance and handle real-time requirements. As
stated earlier, for the first batch, we are limiting the number of samples per trace in order to
streamline the processing. Specifically, we are working with 1875 samples per trace and a
total of 416 traces for the first batch.

(a) (b)

Figure 9. Analysis of processing time and cloudlet utilization for the preprocessing focusing on
two distinct scenarios comprising the following: (a) 416 consecutive cycles of measurements where
18,750 samples are taken for a single cycle measurement, and (b) 832 consecutive cycles of measure-
ment where 468,750 samples are taken for a single cycle measurement. Note that the number of
cloudlets increases for each cloudlet ID on the horizontal axis. The measurements are conducted in a
10 km optical fiber.

For this first batch of data, after performing the necessary calculations, we estimate that
the total number of instructions required for the magnitude computation is approximately
1248 MI. This estimation includes all the arithmetic operations mentioned earlier, including
the square root operations, which are computationally expensive due to the iterative steps
involved in achieving an accurate result. The value of 1248 MI is based on the size of
the batch (1875 samples per trace and 416 traces) and the complexity of the operations
performed during the magnitude calculation. As we process additional batches, we will
compute the required number of instructions for each batch in a similar manner. The
computational intensity is expected to increase as we process larger batches or apply more
complex algorithms. Furthermore, for each batch, we will generate another 10 sub-batches
to ensure that the system maintains real-time processing capabilities. These sub-batches
allow us to handle data incrementally, improving the efficiency and speed of the overall
system without overwhelming the computational resources.

Once we have calculated the instructions required for the magnitude computation,
the next step is to calculate the instructions needed for the differential operation. The
differential operation, while less computationally intensive than the magnitude calculation,
still involves a series of arithmetic operations, primarily additions and subtractions. For
the first batch, we estimate that the total number of instructions required for the differential
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operation is is calculated to be 20 MI. This relatively lower number reflects the fact that the
differential operation is simpler and requires fewer complex computations compared to the
magnitude calculation. By combining the computational loads from both the magnitude
and differential operations, we gain a clearer understanding of the total processing require-
ments for the first batch. As we move forward with the subsequent batches, we will repeat
this process, adjusting the instruction counts as needed based on the size and complexity of
each batch. The goal is to ensure that our system can handle the data processing efficiently
while maintaining the accuracy of the computations.

Figure 10 shows an investigation of the processing time and cloudlet utilization in
the differential operation of a polarization-independent long-range DAS system, focusing
on the detection using the magnitude value. The measurements without preprocessing
are labeled as Data 1, while those that involve preprocessing are shown as Data 2. Two
distinct scenarios are examined to understand the impact of different measurement cycles
and preprocessing methods on the system’s performance. In plot (a), the solid line (Data 1)
represents the processing time for VM 1 at 100 cloudlets, where the maximum big data
processing time is approximately 47.59345 ms. For VM 9, the processing time is significantly
lower, at around 0.92227 ms. The broken line (Data 2) in plot (a) shows that for VM 1,
the processing time for 100 cloudlets is about 6001.84080 ms, while for VM 9, it is around
133.55787 ms. The second scenario (plot b) focuses on the differential operation of the
system, comparing the results obtained with and without preprocessing. This comparison
aims to assess the impact of preprocessing on the system’s detection capabilities and overall
performance. Through these two scenarios, the analysis offers valuable insights into the
influence of different measurement configurations and preprocessing on the system’s
processing time and cloudlet utilization, thus contributing to a better understanding of
the DAS system’s performance under varying conditions. In plot (b), the solid line again
shows the processing time for VM 1 at 100 cloudlets to be about 47.59345 ms, the same
as in plot (a) for Data 1, because it is the same process. For VM 9, the processing time is
1.22535 ms. For the broken line in plot (b), The processing time for VM 1 at 100 cloudlets
is about 66.29941 ms. It can also be seen that VM 9’s processing time for 100 cloudlets is
1.63002 ms. When comparing the two plots, the solid lines (Data 1) in both plot (a) and
plot (b) are identical, because it is the same process. However, the broken lines (Data 2)
reveal significant differences. As shown in plot (a), the processing times for VM 1 and
VM 9 are much higher in Data 2, with VM 1 taking about 6001.84080 ms and VM 9 taking
around 133.55787 ms. Comparing plot (a) and plot (b), considering the solid lines and
broken lines, shows that the preprocessing does not add a significant computation load
compared to adding more columns to the data (i.e., adding more samples per cycle). This
shows that the preprocessing added to make the DAS system polarization-independent is
not computationally intensive.

Figure 11 shows the analysis of processing time and cloudlet utilization for the differ-
ential operation of a polarization-independent long-range DAS system, where the detection
is based on the magnitude value. The primary focus is to assess the effect of introducing
preprocessing for polarization diversity computation. In the plot, the solid line (Data 1)
indicates that the processing time for VM 1 when handling 100 cloudlets (the maximum
data size) is approximately 6001.84080 ms. For VM 9, the processing time for the same
workload is about 100.15572 ms. The broken line (Data 2) in the plot further accentuates
this difference. For VM 1, the processing time for 100 cloudlets under the conditions of
Data 2 is even higher, reaching around 8365.61552 ms. Similarly, for VM 9, the processing
time also increases, reaching approximately 139.55369 ms. This shows that the conditions
represented by Data 2 lead to generally higher processing times for all VMs. Similar to
the case of differential operations, the results indicate that the preprocessing step does
not significantly increase computational load compared to adding more columns to the
data (i.e., increasing the number of samples per cycle), once again confirming that the
preprocessing applied to achieve polarization independence in the DAS system is not
computationally intensive. The process of calculating the differential traces from phase
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involves a computationally intensive algorithm for phase calculations from in-phase and
quadrature components with subsequent phase unwrapping and, finally, the computation
of the differential phase itself, which is need for calculating the phase change relative to an
adjacent point.

(a) (b)

Figure 10. Processing time and cloudlet utilization for the differential operation of the system when
using the magnitude value for the detection for different cycles of measurements performed varying
the samples per cycle: (a) comparison of two different sampling schemes discussed in the previous
figure with solid lines indicated as Data 1 for 18,750 samples and broken lines for 468,750 samples
indicated as Data 2, both for magnitude differential operation, and (b) comparing the differential
operation without the preprocessing shown as Data 1, and with preprocessing, shown as Data 2.

Figure 11. Processing time and cloudlet utilization for the differential operation on the DAS data in
the cloud environment when using the magnitude value for the detection, showing a comparison of
the effect of adding the preprocessing (polarization diversity computation) to our computation. The
analysis focuses on the two distinct scenarios described in Figure 10.
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One of the most computationally demanding aspects of phase data processing is the
phase unwrapping operation. Due to the nature of phase measurements, phase data often
appear wrapped, meaning that they are restricted to a certain range (typically between
−π/2 and π/2). To increase the range , we need to “unwrap” the phase, effectively recon-
structing the true phase values by removing discontinuities. Phase unwrapping algorithms
are iterative in nature and involve complex operations, often requiring a significant amount
of computational resources to ensure accuracy and avoid errors, particularly when dealing
with large datasets.

The unwrapping operation is aimed at extending the range of the arctan function,
and its most common implementation consists of the following steps: For each value of
the phase θ(i) for i[1, N], N being the total number samples, it iteratively calculates the
difference between two adjacent values δi = θ(i)− θ(i − 1). If δi > π, it subtracts 2π from
all values of θ(k) in the range [i, N]. If instead δi < −θ, it adds 2π to all subsequent values
of θ(k) in the range [i, N] [41].

Finally, the differential operation itself is performed after the previous stages. The
differential operation involves calculating the change in the unwrapped phase with re-
spect to an adjacent point. While this step is less complex than phase unwrapping, for
distributed sensing, it still involves a series of addition and subtraction operations over
a large number of samples, contributing to the overall computational load. Based on the
batch processing system assumed earlier, for the first batch, we have a data structure that
includes 1875 samples per trace and a total of 416 traces.

After accounting for all the steps in the phase differential computation—preprocessing,
phase calculation, phase unwrapping, and the differential operation—the total compu-
tational load for the first batch is estimated to be approximately 2624 MI. This figure
represents the cumulative computational intensity of all the aforementioned processes
required to process the phase data in a single batch. As we proceed to process additional
batches, the MI values for each subsequent batch will be calculated accordingly, following
the same approach as outlined for the first batch. Importantly, as previously discussed, we
will also generate 10 sub-batches within each batch to enhance the system’s ability to per-
form real-time processing. This subdivision of batches ensures that the system can handle
incremental processing and improve overall efficiency, allowing for more manageable and
scalable computational loads as the data are processed.

Figure 12 shows the relationship between the processing time and cloudlet length
for the magnitude FFT operation. The details for the figure are the same as in Figure 10
except that this is for FFT. In plot (a), the solid line (Data 1) shows that the processing
time for VM 1 when handling 100 cloudlets (the maximum big data) is approximately
299.66082 ms. For VM 9, the processing time under the same conditions is much lower, at
around 6.83191 ms. The broken line (Data 2) in plot (a) shows that VM 1’s processing time
for 100 cloudlets is dramatically higher, around 45,692.94081 ms, while VM 9 processes the
same workload in about 1015.41807 ms. In contrast, in plot (b), the solid line represents the
same processing times as in plot (a), where VM 1 takes about 299.66082 ms and VM 9 takes
5.13126 ms for processing 100 cloudlets (the maximum big data). However, the broken line
in plot (b) presents less processing time compared to plot (a). In plot (b), VM 1’s processing
time for 100 cloudlets (the maximum data) is about 318.37834 ms, which is significantly
lower than the 45,692.94081 ms seen in plot (a). Similarly, VM 9’s processing time is only
7.20945 ms, slightly higher than the time seen in the solid line but still far lower than the
1015.41807 ms in plot (a) under Data 2 conditions. The comparison between plot (a) and
plot (b) reveals what we have already observed in previous results. We can also see that the
FFT computation needs more resources than the differential operation. From the plots, we
can see that it requires almost five times the computations required for the differential.
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(a) (b)

Figure 12. Processing time and cloudlet utilization for the FFT operation when using the magnitude
value for the detection. An analysis on different cycles of measurements with varying the samples-
per-cycle measurement points. The analysis focuses on two distinct scenarios as stated in the previous
figure. It is the same except that this is for the FFT operation.

The computation of the FFT is a crucial step in many signal processing applications,
and it is computationally intensive due to the large number of arithmetic operations
required, particularly when dealing with large datasets. For the first batch of data, we
calculate the computational intensity of the magnitude FFT to be approximately 5863 MI.
This value is based on the size of the batch and the complexity of the FFT algorithm. In
addition to this, we must also account for the computational requirements of the magnitude
calculation itself, which we previously determined to be around 1245 MI. Therefore, for the
first batch, the total computational intensity for both the magnitude FFT and magnitude
calculation is the sum of these two values, yielding a total of approximately 7108 MI.

With regard to the FFT of the phase, for the first batch, the computational intensity is
expected to be similar to that of the magnitude FFT, which is around 5863 MI. However,
the phase FFT also requires additional computations for the phase unwrapping algorithm.
These steps are necessary to prepare the phase data for FFT analysis and, as noted earlier,
are computationally demanding. The phase sensitivity calculation and phase unwrapping
together add a significant number of instructions to the overall computational load. After
adding these requirements, we estimate that the total computational intensity for the phase
FFT and associated operations for the first batch comes to approximately 7968 MI. Finally,
we need to add the computational intensity requirement of the preprocessing, which will
result in total computational intensity of approximately 8468 MI.

As with our previous calculations, we will extend this approach to subsequent batches,
ensuring that the computational intensity is evaluated in batches. Each additional batch
will be processed similarly, and the total computational requirements will increase propor-
tionally as the size of the data grows. Additionally, the earlier consideration of processing
10 sub-batches per batch will apply here as well, ensuring that the system maintains
real-time processing capabilities while handling large datasets efficiently.

Figure 13 depicts the processing time and cloudlet utilization, focusing on phase dif-
ferential and phase FFT operations. The analysis is based on measurements conducted over
different cycles, with varying numbers of samples per cycle, to evaluate the system’s perfor-
mance under two distinct scenarios. In the first scenario (plot a), the system’s performance
is analyzed using phase differential computation. In plot (a), the solid line (Data 1) shows
that the processing time for VM 1 at 100 cloudlets is approximately 98.36686 ms, while for
VM 9, the processing time is much shorter, around 2.37368 ms. This highlights a significant
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performance gap between the least and most efficient VMs in handling large data. The
broken line (Data 2) in plot (a) indicates a substantial increase in processing time for both
VMs under different data conditions. For VM 1, the processing time for 100 cloudlets rises
to around 12,227.41954 ms, while for VM 9, it increases to about 271.90426 ms. The second
scenario replicates the same conditions as the first but focuses on phase FFT processing
instead of phase differential computation. In both scenarios, the results offer a detailed
understanding of how different computational approaches—phase differential and phase
FFT—affect the overall performance of the DAS system when applied to long-range optical
sensing over multiple cycles and varying sample sizes. In plot (b), the solid line shows
the processing time for VM 1 at 100 cloudlets as approximately 352.31586 ms, which is
significantly higher compared to plot (a). Similarly, VM 9 processes the same workload in
about 8.01542 ms which, while still faster than VM 1, is much higher than its corresponding
time in plot (a). The broken line in plot (b) depicts an even larger processing time for
both VMs when handling the maximum data. VM 1’s processing time reaches around
51,891.42998 ms, while VM 9’s processing time increases to 1153.14877 ms, further illustrat-
ing the increase in workload. Comparing the two plots, it is evident that the FFT operation
is more computationally intense than the differential operation while using the phase for
the computation in both cases. The analysis also shows that the phase computation is
more intense that the magnitude computation. Note that the phase calculation includes the
arctan and the phase unwrapping computations.

(a) (b)

Figure 13. Examination of processing time and cloudlet utilization for the phase differential and phase
FFT operation: an analysis on different cycles of measurements with varying the samples-per-cycle
measurement points. The analysis focuses on two distinct scenarios: (a) comparing two different
sampling sizes discussed in previous analyses (solid lines indicated as Data 1 for 18,750 samples and
broken lines for 468,750 samples indicated as Data 2) for phase differential computation, and (b) the
same analysis as in (a) but for phase FFT processing.

Figure 14 shows the relationship between the processing time and cloudlet length for
the magnitude FFT operation when using the magnitude value for the detection including
the effect of the computational intensity of the preprocessing. This relationship is examined
under two distinct scenarios, a 416 cycle of measurement and 832 cycles of measurement,
both conducted for a polarization-independent long-range DAS system. In the plot, the
solid line shows that the processing time for VM 1 at 100 cloudlets (the maximum data size)
is approximately 45,692.94081 ms. For the best-performing VM, VM 9, the processing time
for the same workload is significantly lower, at around 761.59642 ms. The broken line in the
plot illustrates a similar trend, with processing times increasing slightly for both VMs. The
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processing time for the VM for 100 cloudlets is approximately 47,942.07757 ms, which is
higher than the time seen in Data 1. Similarly, VM 9’s processing time increases slightly to
around 799.03595 ms. A comparison of the plots shows that as the computational intensity
of the system increases either by increasing the cycles or by increasing the samples per
cycle, the preprocessing computational increment on all of the system’s computational
intensity becomes smaller and smaller.

Figure 14. Investigation of processing time and cloudlet utilization for the FFT operation when using
the magnitude value for the detection to compare the effect of adding the preprocessing (polarization
diversity computation) to our computation. The analysis focuses on two different sampling scenarios
discussed in the previous figures.

5.2. Mean Processing Times for Varying VM Capacity and Incremental Sample Sizes

In Figure 15, we analyze the mean processing time for each virtual machine in differ-
ential operations. In comparing the two plots, in plot (a), the maximum mean execution
time is around 120 ms, while the minimum is approximately 5 ms. This results in a range of
115 ms between the highest and lowest execution times. On the other hand, in plot (b), the
maximum mean execution time reaches 180 ms, and the minimum mean execution time is
about 5 ms, giving a wider range of 175 ms. This shows that the processing time differences
between with and without the preprocessing becomes insignificant when an efficient VM
is used.

Figure 16 depicts the processing time associated with incremental data in optical fiber
measurements during magnitude differential operations. The focus is on examining how
the system’s computational performance scales as the data volume increases, particularly
in the context of long-range optical sensing. In comparing the two plots, we observe
significant differences in how the increase in processing time behaves as the number
of columns increases. In plot (a), the maximum increment in execution time for every
200 columns is approximately 0.64288 ms, while the minimum increment is negligible.
This suggests that for smaller computational loads, such as 200 columns, the execution
time increases in relatively small increments. In plot (b), the maximum increment in
execution time for every 5000 columns is substantially larger, reaching 108.396 ms, while
the minimum increment is still negligible. We can see from the plots that as the amount of
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additional samples per cycle increases, the increment in processing time for each added
batch decreases. It is also evident that as the amount of additional samples per cycle
increases, the increment in processing time for each added batch diminishes regardless of
the VM picked, and this decrease is observed when adding batch sizes of both 200 and
5000 columns, hence confirming its scalability.

(a) (b)

Figure 15. Determining the mean processing time for each virtual machine in differential operations:
a comparative analysis on a single cycle versus multiple cycles in a 10 km optical fiber. The investiga-
tion is conducted under two distinct conditions: (a) the magnitude differential operation with the
preprocessing included, and (b) the phase differential operation with the preprocessing included.

(a) (b)

Figure 16. Change in processing time for incremental data in optical fiber measurements (for
each additional column) during the magnitude differential operations: (a) for every increment
of approximately 200 columns, and (b) for every increment of approximately 5000 columns. The
measurements are conducted in a 10 km long optical fiber. This examination aims to understand the
computational scalability of these operations in the context of increasing data volume.

6. Conclusions

The plots for the preprocessing time illustrate that the added preprocessing steps
to achieve polarization independence in the DAS system do not introduce a substantial
computational overhead. This highlights that while other operations contribute to the
overall computational intensity, the specific preprocessing required to make the system
polarization-independent remains relatively lightweight in comparison.

Our analysis on the computational times also suggest that as the system’s computa-
tional load increases—whether by adding more cycles or increasing the number of samples
per cycle—the relative impact of the preprocessing on the system’s total computational
intensity diminishes. In other words, the preprocessing becomes less of a bottleneck as
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the overall system’s computational requirements grow. This observation is reinforced
by the mean execution time plot, which shows that when using a highly efficient VM,
the difference in processing time between scenarios with and without preprocessing be-
comes almost negligible. The preprocessing step, while necessary for making the DAS
system polarization-independent, does not significantly hinder system performance in
such configurations.

Furthermore, the incremental plots highlight a key aspect of scalability: as the number
of samples per cycle increases, the additional processing time required for each successive
batch of sample increments diminishes. This demonstrates that the system is capable of
handling increased data throughput efficiently, as the system’s performance scales well
with the growing input size. The scalability is maintained even when the system is made
polarization-independent, ensuring the processing in the dynamic sensing system can
manage larger datasets without encountering detrimental computational slowdown.

In summary, the findings emphasize that although certain operations, such as FFT and
phase-based processing, impose higher computational demands, the preprocessing added
to achieve polarization independence remains computationally manageable. Moreover,
the system exhibits strong scalability, where increasing the number of samples per cycle
leads to diminishing processing time increments, further supporting its capacity to handle
large-scale operations.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog-to-digital Converter
AOM Acoustic–optic Modulator
ASE Amplified spontaneous emission
BPD Balance Photodetector
DAS Distributed Acoustic Sensing
DFOIS Distributed Fiber-Optic Intrusion Sensor
DSP Digital Signal Processing
EYDFA Erbium-ytterbium doped fiber amplifier
FFT Fast Fourier Transfer
FUT Fiber Under Test
LO Local oscillator
LD Linear Dichroism
MIPS Million Instruction Per Second
ML Machine learning
NoSQL Not only SQL
PBDs Pair of balanced photodetectors
PBS Polarization beam splitter
PC Polarization controller
PDH Polarization diversity hybrid
PRS Pattern Recognition Systems
PZT Piezoelectric Transducer
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RBS Rayleigh backscattering
SMF Single-mode fiber
SNR Signal-to-noise ratio
SOP State of polarization
VM Virtual machine
φ-OTDR Phase-Sensitive Optical Time Domain Reflectometery
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