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Abstract

A rapid transition towards renewable energy sources is crucial to address climate change and im-
prove local energy independence. However, the acceptability of this transition often faces resistance
due to concerns about potential job-losses in the fossil-intensive sectors, while the employment po-
tential of renewable energy technologies remains unclear. In this study, we address this concern by
employing a novel and detailed geolocalized dataset of energy power units across four technologies
and three decades, to examine the employment impacts of renewable energy investments in four large
European countries. To mitigate for the possible non-random allocation of renewable energy tech-
nologies, we leverage the physical potential of each region in relation to renewable energy sources,
to isolate its exposure to technology-speciőc investments. We őnd that the deployment of renewable
energy plants has a positive and long-lasting impact on employment. Our central estimates suggest
that 1 MW of new renewable energy installed capacity creates around 40 jobs in 7 years locally,
indicating that 1 Million USD invested in renewable energy technologies generates approximately
15 jobs over the same time frame. These estimates are mostly driven by the effects generated by
the solar and wind installations on the construction sector. We őnd evidence of substantial hetero-
geneities across regional features, where rural and low-income areas are the ones experiencing the
largest employment effect from renewable energy deployment. Overall, our őndings suggest that
green energy investments can constitute as a strategic asset to spur local jobs and encourage rural
development.
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1 Introduction

Addressing climate change requires a rapid shift of the energy system from fossil-intensive to renewable energy

sources. According to the latest International Renewable Energy Agency (2023) report, annual investments must

increase at least fourfold to align with the 1.5°C Scenario, as fossil fuels currently supply 80% of the world’s

total energy (International Energy Agency, 2023). The recent turmoil in European energy commodity markets,

triggered by geopolitical tensions and disruptions in natural gas and coal supplies, has further highlighted the

relevance of renewables as strategic assets to improve local energy security, by decreasing dependence on external

sources, reducing energy prices and overall inŕation volatility (Cevik, 2022; Garratt and Petrella, 2022; Caldara

et al., 2022). Beyond climate mitigation and energy security concerns, switching from conventional to renewable

energy sources entails a change in the spatial arrangement of the energy generation system, with signiőcant

economy-wide implications (Stern and Stiglitz, 2023). One of the most debated consequences concerns the effects

of decarbonization on employment in energy and related sectors, as new industries emerge and old ones decline

(Pai et al., 2021). Despite the relevance that the topic occupies in policy debate, the potential of renewable

energy technologies in generating job opportunities and spurring growth is still largely unknown. Model-based

projections estimate that the energy transition will generate 14 million new jobs in the RE sector by 2030, while

employment in oil, gas and coal fuel supply and energy generation declines by around 5 million, leading to a net

increase of nearly 9 million jobs (IEA, 2021). However, the effect is still largely unclear, polarizing the political

debate and leading to exaggerated claims from across the political spectrum (Bowen, 2012; Deschenes, 2018;

Böhringer et al., 2013). Thus, understanding how the decarbonization of the energy sector will affect jobs is

crucial to reduce climate risk uncertainty, to align policy decisions for a just transition, and to improve the social

acceptability of renewable energy deployment.

In this study, we contribute to these ongoing debates by presenting new empirical evidence on the effects

of the deployment of renewable energy sources on regional employment dynamics. Leveraging a novel dataset

with detailed geographical information on power plants installations in Denmark, France, Germany and UK, we

exploit the geographical and time variation in the regional energy mix to unveil systematic sectoral heterogeneity

and to identify the green energy technologies that exert the most signiőcant inŕuence on aggregate employment.

We focus on regions as unit of analysis since global and national estimates may conceal geographically

dispersed socio-economic effects. Indeed, renewable energy plants create employment and economic activity

in a more decentralized and dispersed manner compared to the conventional energy industry, which is based

on large centralized energy generation units (Jenniches, 2018; IRENA and ILO, 2021). Regions with high levels

of employment in fossil fuel industries, especially where renewable energy potential is low, may lose their

substantial relevance in favor of renewable energy generation locations. In contrast, locations that are not

traditionally integrated in the energy system might experience gains in employment and economic performance

following renewable energy investments. This may be particularly relevant for economically less-favored regions

(Creutzig et al., 2014; Clausen and Rudolph, 2020).

Due to the presence of strategic decisions and economic coordination, the identiőcation of renewable energy

deployment effects is a challenging exercise. The non-random allocation of these installations, both over years
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and across locations, may create endogeneity issues, potentially impacting the validity of empirical estimates.

To mitigate these concerns and to estimate a causal relationship from green energy investments to employment

outcomes, we adopt a research design that use a region-speciőc physical suitability measure of the territory

for each energy technology, capturing exposure to technology-speciőc installations. In this regard, we use a

shift-share instrument, as popularized by Bartik (1991) and Blanchard and Katz (1992), combining the differential

exposure to renewable energy investments of each region with an aggregate measure of changes in the energy

mix, to isolate arguably exogenous variations in local energy deployment. Using instrumental variable local

projections (LP-IV, Jordà, 2005; Jordà, 2023), we identify and estimate dynamic local employment average effects

resulting from renewable energy investments, measured in terms of deployment in megawatt (MW) units. Even

if we can only indirectly infer a monetary value from energy power plant installations, throughout the paper,

we use the terms łinvestmentsž and łinstallationsž interchangeably, as the construction and the deployment of

power plants involves the formation of őxed capital.

Our results show that the effects of renewable energy installations are positive and long-lasting. In seven years,

1 MW of renewable installed capacity generates 40 new jobs, equivalent to approximately 14 jobs for $1 million

spent in the development and the deployment of renewable power plants. These effects spillover to neighbouring

locations and hide structural consequences for the regional economies, concentrating in the construction and

agricultural sectors. Wind and solar power technologies are the main drivers of overall effects, particularly in

regions (i) with lower GDP per capita levels and (ii) that are relatively more specialized in agricultural activities.

Finally, we complement our rich set of results investigating the impacts on overall economic activity measured

by GDP. Overall, evidence suggest that the investment multiplier, i.e., the dollar amount of GDP produced by a

dollar of investments in energy plants development, exceeds 1 after 4 to 5 years.

Our paper contributes to the blossoming research investigating the employment impacts of green energy

investments. Current evidence is mainly based on input-output (IO) models, with the resulting estimates

indicating sizeable positive employment effects at the national or global level (Pollin et al., 2009; Fragkos and

Paroussos, 2018; Pai et al., 2021). However, while these models provide valuable projections of the potential

net employment implications of the energy transitions, they heavily rely on simplifying assumptions on the the

economic and technological structure (Breitschopf et al., 2013; Jenniches, 2018). First, IO tables typically do

not differentiate between renewable and conventional energy sectors, necessitating additional assumptions to

retrieve technology-speciőc estimates. Secondly, IO tables are generally provided at the national level, hence

analyses at a őne regional or sub-regional level are often not available or they are derived from the national ones

with additional simpliőcations (Bowen, 2012; Xie et al., 2023). Indeed, the aggregate results obtained with the

IO approach might hide disparities across regions and group of workers, thus overlooking distributional issues.

The nature and the extent of such impacts at the regional level might depend on the energy potential and the

socio-economic characteristics of the area, such as local labour availability or manufacturing capacity (Ulrich et al.,

2012; Kapetaki et al., 2020). Rural areas often have a good potential for renewable energy development. However,

different studies suggest that this potential is often unfulőlled or that employment beneőts from renewable energy

development leak outside the region because of the scarcity of skilled labour in the area (Creutzig et al., 2014;
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Clausen and Rudolph, 2020). Productive agricultural plots are often well-suited for development of wind and

solar plants due to favorable land attributes. This has created substantial concerns about potential drawbacks to

agriculture communities due to land displacement for renewable energy production (Hernandez et al., 2015). On

the other hand, renewable energy plants, especially wind turbines and photovoltaics, can become an additional

source of income for landowners, who can either sell or rent land to energy providers, or directly become energy

producers themselves. In these cases, co-location of renewable energy sources can increase farmers’ revenues

and improve őnancial stability during volatile weather and market conditions (Cuppari et al., 2021; Mills, 2018).

Additionally, recent experimental research shows that both windmills and agrivoltaics can provide favourable

microclimatic conditions which increase crop yield and productivity (Kaffine, 2019; Al Mamun et al., 2022; Mills,

2018).

To date, there are few empirical studies estimating the local employment impacts of investing in renewable

energy technologies. For the US, Brown et al. (2012) estimate that 0.5 jobs were created per MW of wind power

capacity installed over the period 2000-2008, while Hartley et al. (2015) őnd no job impact of wind investments

for 2001-2011 in Texas. For Europe, Costa and Veiga (2021) őnd that wind investments reduces unemployment

during the construction phase (in the range -0.39 to -0.55 jobs/MW) in Portuguese municipalities. These effects

are felt mainly for unskilled male workers, while the smaller, yet sustained effects during the maintenance and

operations phase seem to affect mostly workers with college degrees. Using use monthly data for Spanish

municipalities, Fabra et al. (2023) őnd that solar energy investments have a positive local impact multiplier both

in the phases before and during the year after the startup. They estimate that in the months following the startup

date, deployment of solar technologies generates 1.47 jobs-year/MW in municipalities and 3.48 jobs-year/MW

in counties, while during construction the employment multipliers are larger, at 4.55 jobs-year/MW in counties

2.47 jobs-year/MW in municipalities. As for wind, their results show that investments have no effect on rising

employment, but slightly reduce unemployment during the construction and maintenance phases (-0.19 and -0.35

jobs/MW, respectively). While these studies are a relevant effort to investigate the local impacts of renewable

energy investments on local jobs, to our account, there are two main aspects which are still not considered. On

the one hand, they do not provide any granularity as to which industrial sectors are affected by the renewable

energy investments. Understanding which sectors are affected by the energy transition is relevant to evaluate

its distributional effects. On the other hand, the analysis is limited to short-term impacts, during the different

development phases, and does not provide insights into the longer-term emerging macroeconomic dynamics.

If the infrastructure project has cumulative impacts on local economic activity, the most important effects on

economic development may appear in the long run. Severnini (2022), for example, őnd that the construction

of hydro dams in USA in the őrst half of the 20th century conferred a substantial boost to economic growth,

increasing population density by over 50% after 30 years and by over 130% after 60 years. Hydroelectric power

provision resulted in a cheap local power advantage, leading to a sustained yet dissipating long-term growth

path.

Our paper also relates to the literature on the estimation of (public and private) investment multipliers. Fol-

lowing the recent reappraisal of the macroeconomic role of őscal policy (Ramey, 2019), many recent contributions
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have exploited more granular data to estimate regional multipliers1. For instance, Popp et al. (2022) analyze the

effects of łgreen componentž of the American Recovery and Reinvestment Act (ARRA), across a wide spectrum of

projects including renewable energy installations, R&D programs, job training for green occupations, or energy

efficiency. They őnd that $1 million generates 15 jobs in 7 years in US commuting zones.

To the best of our knowledge, our study stands among the őrst to estimate the causal effects of deploy-

ing renewable energy plants on employment by adopting an empirical econometric approach within a uniőed

framework. As a notable exception, Batini et al. (2022) address the impact of clean energy investments on macroe-

conomic dynamics by using a factor-augmented VAR model on a global panel of developed countries, estimating

effects of renewable investments that are stronger and more long-lasting than their conventional counterparts.

Our őndings complement this, revealing similar output multipliers following renewable investments. However,

as detailed in the following sections, our disaggregated approach enable us to identify direct and spillover

impacts, drivers, mechanism at play and relevant heterogeneity behind the average overall effects.

The rest of the paper is structured as follows. Section 2 details the description of our dataset. Section 3

illustrates the econometric speciőcation and the research design while Section 4 shows and comments the results.

Finally, Section 5 concludes.

2 Data

To investigate how the deployment of renewable energy (RE, henceforth) technologies affects job creation, we

have assembled a dataset with newly geolocalated information on energy installed capacity, encompassing 4

renewable and 4 conventional power sources. We integrate these data with measures of energy potential,

employment statistics and other macroeconomic indicators at the regional (NUTS-3) level in selected countries,

including Denmark, France, Germany and United Kingdom2. Our őnal dataset spans nearly four decades, from

1991 to 2018, and covers a total of 669 NUTS-3 regions.

2.1 Data on energy plants deployment

To construct regional variables on energy deployment, we draw on different sources of micro-data on power

plant commissioning, since no other sources can directly provide us with regional-level information on green

and conventional power installations. We harvest data for RE plants from the łRenewable power plantsž dataset,

provided by the free-of-charge data platform Open Power System Data (OPS, 2020), which combines open-source

databases for a number of countries in Europe3. The dataset offers an exhaustive list of power plant units,

along with information regarding their geolocalization, energy technology, net generation (electricity) capacity

and the commissioning date. The commissioning of a power plant marks the last step of construction, which

1Example ranges from public expenditure multipliers (Nakamura and Steinsson, 2014; Auerbach et al., 2020), to infrastructure
investment multipliers (Leduc and Wilson, 2017), to R&D investment multipliers (Moretti et al., 2023; Pallante et al., 2023)

2The NUTS classiőcation (Nomenclature of territorial units for statistics) is a hierarchical system for partitioning the economic
territory of the EU and the UK. The system serves as a tool for analyzing socio-economic regional outcomes, at different levels
of aggregation.

3The latest version we are using, 2020-08-25, is available at https://doi.org/10.25832/renewable_power_plants/
2020-08-25
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involves running and testing the plants’ components and processes before the plant is set into operation. The

commissioning date for the power plants is available from 1990 to 2020 and, together with geolocalization, is

missing for some countries. Consequently, to exploit the time dimension of power unit installations, we restrict

our dataset to four countries: Denmark, France, Germany and United Kingdom. The energy technologies are

categorized into wind (onshore and offshore), solar (photovoltaic), hydro, and bioenergy (biofuels and biogas).

In the case of Denmark, France and Germany, OPS compiles data on all energy units with a minimum installed

capacity of 1 kilowatt (kW), thus including all units that may be part of the same power plant. Consequently,

we will have multiple observations for a single power plant. Conversely, in the case of United Kingdom, units

are aggregated to create a single observation for each power plant with a minimum capacity 1 megawatt (MW).

This distinction is particularly relevant for wind plants which typically consist of multiple wind turbines, each

characterized by a speciőc energy capacity. In this case, the unit of observation for wind energy will be the

single wind turbine. Accordingly, all UK wind power plants with less than 1 MW of installed capacity would be

łselected outž. To ensure that this exclusion does not introduce bias into our results, we show that our estimates

are stable when excluding the United Kingdom from the analysis (see Appendix B). Moreover, we aggregate

power plant units by plant location to obtain power plant speciőc observations. Equivalent information related

to conventional power plants is available in the łPower Plant Trackerž dataset, provided by Enerdata4. The

conventional technologies in this dataset are categorized into coal, oil, natural gas, and nuclear power plants.

Finally, this dataset also includes decommissioning dates for units that are no longer active.

We build our energy-investment variables by aggregating energy plant observations over years and across

regions, so to provide volumes of newly installed capacity for each power source, and decommissioned capacity

for conventional energy technologies. The regional installed capacity in a given year is deőned as the cumulative

aggregate installed capacity, subtracting eventual decommissioned capacity. A region with no observations in the

sample across all energy sources is considered to be missing. If there are no observations for a single technology

in a given region, the installed capacity for that technology in the region is considered to be zero.

From Enerdata, we also retrieve information about the average costs associated to the setup of a new energy

power plant, also deőned as overnight costs or capital expenditures (CAPEX), along with their average size

(measured in kW). This data is available by country, year and technology, allowing us to assign - with a certain

degree of approximation - a monetary value to every kW of installed capacity. This approach will ultimately

enrich the interpretation of the effects of energy installations on jobs creation.

4The Enerdata dataset includes also the details related to RE sources. After conducting a thorough analysis and cross-
comparison of the two datasets, we conclude that the OPS dataset provides a more comprehensive representation of green
power technologies. Indeed, Enerdata includes power plant units with an installed capacity above 100 kW, whereas the
minimum observed capacity for OPS is 1 kW. RE technologies are characterised by small plant units and generate energy in
a decentralised manner throughout the territory (IRENA, 2020). Therefore, ignoring all units below 100 MW might lead to
underestimating the amount of renewable installed capacity and overlooking much of its crucial implications. Due to the
dispersed nature of green power technologies, collecting exhaustive and detailed data, especially regarding plant coordinates,
can be challenging. The Open Power System dataset excels in collecting data comprehensively and extensively, with only
0.11% of geolocalization data missing, compared to Enerdata’s 43% missing entries. According to IRENA (2019), the aggregate
renewable installed capacity in the four observed countries in 2018 amounted to 231.76 gigawatt (GW). Our dataset identiőes
196.67 GW, while Enerdata reports 125.87 GW.
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2.2 Employment data and other regional economic indicators

We source employment data from Cambridge Econometrics’ European regional database ARDECO, which com-

bines data from Eurostat and other national sources to provide historical time-series of European regional

economic statistics. We have retrieved a version of the dataset updated to March 2020 , which covers a period

from 1980 to 2018. This allows us to collect information for the United Kingdom, no longer available in the sub-

sequent versions of the dataset. We match data from ARDECO with our energy investments data (available for

1990-2018) and, to avoid the possible bias given by the German uniőcation in 1990 and the subsequent integration

of the post-socialist East Germany in the national statistics, we take employment data starting from 1991. The

data for employment is available at NUTS-3 level and is disaggregated into six sectors consistent with NACE

Rev.2 sectoral deőnitions, namely: Agriculture, Forestry and Fishing (A); industry excluding construction (B-E);

construction (F); wholesale, retail, transport, accommodation and food services, information and communication

(G-J); őnancial and business services (K-N); non-market services (O-U). Table A.1 in Appendix A provides an

overlook of the sectors comprised within the ARDECO macro sectoral deőnition.

Finally, from the same data source, we take data on regional gross domestic product (GDP) at constant

(2015) prices for our selected countries at NUTS-3 level, as well as data on gross őxed capital formation and

compensation of employees (wages) at NUTS-2 regional level.

2.3 Data on Renewable Energy Potential

We collect data on the regional potential for the installation of renewable power sources from the dataset

developed by Oakleaf et al. (2019). The dataset reports a łdevelopment potential indexž (DPI) which quantiőes

the suitability of each 1-km area of land for the development of selected technologies, ranging from 0 (low) to 1

(high). The index is measured by applying a spatial multi-criteria technique, described in Oakleaf et al. (2019),

which accounts for both the resource potential of the area (such as wind-speed or solar irradiance for wind and

solar energy technologies, respectively) and for land feasibility factors (such as suitable land cover and slope).

We aggregate each 1-km spatial potential development index along energy source within each NUTS3, to

obtain the aggregate regional potential for solar, wind, bio-energy and hydro.

2.4 Descriptive Analysis

Our őnal dataset is a balanced panel of 18061 observations (1.6% in Denmark, 14.4% in France, 60% in Germany,

24 % in UK). Table 1 provides summary statistics regarding power plant dimensions for total renewables, as well

as a breakdown by technology. Each power plant is identiőed by clustering the power generator units belonging

to the same geo-location and plant ID. The plant size is proxied by the average installed capacity per power plant,

measured in MW. Capital expenditures (CAPEX per MW) indicate the average capital costs associated to the

development of a power plant. In our sample, the average plant size stands approximately at 0.8 MW. Among

the different RE sources, wind power plants have the largest share of newly installed capacity, accounting for

51% of the total, while constituting only 7.7% of the new plants created. This makes wind energy the source with
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highest power intensity among renewable alternatives, producing an average of 5.28 MW per plant. On the other

hand, solar power plants are responsible for 83% of the new renewable power generating plants. They contribute

37.2% of the new installed capacity but they are the smallest in size, with an average of 0.36 MW per plant. Less

common technologies in our dataset include bionenergy and hydro, which together make up 11.4% of the total

new installed capacity.

Table 1: Investment Metrics by RE Technology

New Plants New Capacity Plant Size Capex per MW

(Thousands) % (GW) % (MW) (Mill. $)

Bioenergy 11.612 5.7 16.08 9.9 1.38 6.54
Hydro 5.908 2.8 3.17 1.9 0.54 6.61
Solar 169.173 83 60.25 37 0.36 2.49
Wind 15.791 7.7 83.33 51.2 5.28 2.23
Total Renewable 202484 100 162.82 100 0.8 2.79

Figure 1: Installed Capacity over Time (GW)
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The evolution of the energy mix has been certainly determined by various aspects, including demand-side

factors such as energy consumption, supply-side factors like technological change, and more recent energy and

climate policy actions. Figure 1 illustrates these trends. During this period, the total installed capacity in the four

countries nearly doubled, going from 216 GW in 1991 to 409 GW in 2018. RE capacity accounts for 64% of this

growth, contributing to 14% of the energy mix in 1991 to 48% in 2018. Conventional energy investments amount

to 94.2 GW, but this is accompanied by decommissioning of 69.4 GW, resulting in a net positive variation in

conventional energy of 24.8 GW. The growth in renewables exhibits large heterogeneity, both across technologies

and between countries. Wind and solar are the green technologies which grew most overall, driving the energy

transition so far, accounting for 86% of the total RE growth5.

5See Table A.4 in Appendix A for more details
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Figure 2: Installed Capacity per Capita
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Figure 2 provides an overview of the geographical distribution of conventional and RE in the initial and őnal

period of our sample. A clear distinction emerges between the distribution of conventional and RE unit locations:

while green technologies are widely dispersed across all regions, fossil-fuel plants are more concentrated. This

evidence suggests that a green transition entails a spatial transformation of the energy system (Jenniches, 2018),

with possible knock-on effects on regional economies. Finally, in line with the evidence highlighted in Figure 1, the

location of energy plants reliant on conventional technologies has barely changed over both time and geography.

3 Empirical strategy & methods

3.1 Empirical Specification

We exploit the geographical and temporal variation of our data to model the employment effects of energy

investment shocks using panel direct local projections (LPs). Firstly developed for univariate time series settings

(Jordà, 2005), LPs have been widely implemented in panel data analysis as well (see Auerbach and Gorodnichenko,

2013; Choi et al., 2018; Jordà et al., 2020, among others). For our baseline model we run a series of regressions for
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different horizons, ℎ = {1, ..., 𝐻}, as follows:

𝑌𝑙 ,𝑡+ℎ − 𝑌𝑙 ,𝑡−1

𝑌𝑙 ,𝑡−1
= 𝛽ℎ

𝑁𝑒𝑤𝑅𝐸𝑙 ,𝑡

𝑌𝑙 ,𝑡−1
+

4
∑

𝑟=1

𝜃ℎ
𝑟 𝑋𝑙 ,𝑡−𝑟 + 𝛼ℎ

𝑙
+ 𝜂ℎ𝑐 𝛿

ℎ
𝑡 + 𝜖ℎ

𝑙,𝑡
(1)

where 𝑙, 𝑡 and ℎ index location, time and horizon, 𝑌 is regional employment, and 𝑁𝑒𝑤𝑅𝐸 - our variable of

interest - denotes the new renewable installed capacity in MW. Energy investment changes are normalised with

lagged employment levels, so that the coefficient of interest 𝛽ℎ can be interpreted as the ℎ-period ahead cumulated

employment multiplier, indicating the number of jobs generated by an extra MW of renewable installed capacity

in period 𝑡.

We also include a vector of control variables 𝑋: lagged values of 𝑁𝑒𝑤𝑅𝐸, current and lagged values of new

conventional installed capacity, decommissioned energy capacity for conventional technologies, as well as growth

rates of GDP, wages and total investment (measured as őxed capital formation). All variables enter with four-year

lags. The selection of the maximum number of lags involves a trade-off. On the one hand, we aim to incorporate

the evolution of demand patterns and productivity dynamics that could act as confounding factors. On the other

hand, the inclusion of more lags comes at the cost of reducing the number of years available for analysis. This

trade-off is particularly relevant given the limited size of our sample, which further decreases when focusing

solely on the periods when renewable technologies penetrate the economy (see Figure 1). All speciőcations

include location őxed effects 𝛼𝑙 , needed to control for unobserved regional heterogeneity. As investments in RE

sources have been objective of national policy interest in the last decades, we include and country-by-year őxed

effects 𝜂𝑐𝛿𝑡 to isolate the effects of energy investments by those that are driven by such policy interventions. The

latter are especially important in our setting because the European Union, since the 2009 Treaty of Lisbon, has

gained signiőcant legislative authority also in the energy sector6. The choice of including just country-by-year

őxed effects may omit determinants of RE investments that depend on policies carried at a more decentralized

level. Even more so for Germany, as it is the sole federal state in our sample, where each länder (NUTS-1 in our

setting) may possess more discretion. However, the Federal Constitution of Germany gives extensive legislative

power in the energy sector to the federal government and the same applies to policy measures aimed at spurring

RE adoption (Saurer and Monast, 2021). This would justify our more conservative speciőcation that features

country-by-year őxed effects. Furthermore, our assumption is supported by a set of robustness checks performed

in Section 4, which show that even controlling for time-variant-NUTS-1 speciőc shocks, the dynamic response of

employment to RE deployment remains remarkably stable. Finally, the maximum horizon over which we observe

the effect of RE deployment is 𝐻 = 7. Standard errors are clustered at NUTS-3 region level to account for the

potential unobserved heterogeneity in the errors structure.

We extend our baseline speciőcation in Equation (1) along several dimensions. Firstly, we investigate the

heterogeneous impacts of aggregate RE deployment, unpacking the effects by employment sector, 𝑖 = {1, ..., 6}:

6Examples include the liberalization of the energy markets, the regulation on the unbundling of utility companies and more
recently, the łEU Energy Unionž policy objective as well as the establishment of the EU Directive on the Emissions Trading
System - ETS (Saurer and Monast, 2021).
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𝑌𝑖 ,𝑙 ,𝑡+ℎ − 𝑌𝑖 ,𝑙 ,𝑡−1

𝑌𝑙 ,𝑡−1
= 𝛽ℎ

𝑁𝑒𝑤𝑅𝐸𝑙 ,𝑡

𝑌𝑙 ,𝑡−1
+

4
∑

𝑟=1

𝜃ℎ𝑋𝑙 ,𝑡−𝑟 + 𝛼ℎ
𝑙
+ 𝜂ℎ𝑐 𝛿

ℎ
𝑡 + 𝜖ℎ

𝑙,𝑡
. (2)

Secondly, we examine the total employment effect of clean energy investments by technology 𝑘, where 𝑘 can be

Bioenergy, Hydro, Solar or Wind:

𝑌𝑙 ,𝑡+ℎ − 𝑌𝑙 ,𝑡−1

𝑌𝑙 ,𝑡−1
= 𝛽ℎ

𝑘

𝑁𝑒𝑤𝑅𝐸𝑘,𝑙,𝑡

𝑌𝑙 ,𝑡−1
+

4
∑

𝑟=1

𝜃ℎ𝑋𝑙 ,𝑡−𝑟 + 𝛼ℎ
𝑙
+ 𝜂ℎ𝑐 𝛿

ℎ
𝑡 + 𝜖ℎ

𝑙,𝑡
. (3)

In both Equation (2) and (3) employment variation and energy investments are normalised by total regional

employment.

Furthermore, to unravel the nature of these effects, we explore to which extent structural economic conditions

of regions under scrutiny matter in explaining the overall results. Speciőcally, we examine whether employment

responses to investments in RE power sources differ in relatively wealthier regions, as measured by quartiles

of real GDP per capita, and in regions that are relatively more rural, determined using a measure of revealed

comparative advantage in agriculture (as deőned in Section 4.1). To address this, we augment the baseline

speciőcation to account for potential non-linear effects of energy-investments multipliers. In particular, given the

economic condition indicator𝐸𝐶 = {Income,Rural}, calculated at the beginning of our sample, and the maximum

number of categories 𝑛𝐸𝐶 for each indicator (2 for Rural and 4 when considering quartiles of real GDP-per-capita

distribution), we build and interact a set of dummies 𝐷𝐸𝐶 with our measure of energy investments. More

formally, we estimate a regression with the following speciőcation:

𝑌𝑙 ,𝑡+ℎ − 𝑌𝑙 ,𝑡−1

𝑌𝑙 ,𝑡−1
=

𝑛𝐸𝐶
∑

𝑑=1

(

𝛽ℎ
𝑁𝑒𝑤𝑅𝐸𝑙 ,𝑡

𝑌𝑙 ,𝑡−1
× 𝐷𝐸𝐶

𝑑

)

+

4
∑

𝑟=1

𝜃ℎ
𝑟 𝑋𝑙 ,𝑡−𝑟 + 𝛼ℎ

𝑙
+ 𝜂ℎ𝑐 𝛿

ℎ
𝑡 + 𝜖ℎ

𝑙,𝑡
𝐸𝐶 = {Income,Rural}. (4)

Finally, we want to investigate whether the RE investments in a given region beneőt also the sorrounding

areas, by exploring the presence of geographical spillovers. To this purpose, we estimate the following regression:

�̃�𝑙 ,𝑡+ℎ − �̃�𝑙 ,𝑡−1

�̃�𝑙 ,𝑡−1
= 𝛽ℎ𝑜𝑢𝑡

𝑁𝑒𝑤𝑅𝐸𝑙 ,𝑡

�̃�𝑙 ,𝑡−1
+

∑

𝑟

𝜃�̃�𝑙 ,𝑡−𝑟 + 𝛼𝑙 + 𝛿𝑡 + 𝜂𝑐𝛿𝑡 + 𝜖𝑙 ,𝑡 , (5)

where �̃�𝑙 ,𝑡 and �̃�𝑙 ,𝑡 denote respectively the employment and the control variables for those regions that are

adjacent to region 𝑙. More formally, �̃�𝑙 ,𝑡 = 𝑑(𝑙 , 𝑙′)𝑌𝑙 ,𝑡 , where 𝑑(𝑙 , 𝑙′) = 1 if region 𝑙′ is adjacent to region 𝑙 and

0 otherwise. The same reasoning applies for �̃�𝑙 ,𝑡 . The coefficient 𝛽ℎ𝑜𝑢𝑡 denotes the size of the spillovers and it

should be interpreted as the average cumulated effect (over horizon ℎ) of an extra MW of renewable capacity

installed in region 𝑙 on the employment of its neighbouring regions.

In the őnal section of the paper, we examine the broader economic impacts of RE investments by replacing

employment with regional GDP as the dependent variable. We adjust the speciőcations in Equations (1), (3), and

(5) accordingly.

The use of LPs to estimate dynamic effects has become increasingly popular, as it imposes a minimal model

structure and can easily accommodate non-linearities in the form of heterogeneous treatment effects (Montiel Olea
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and Plagborg-Mùller, 2021; Jordà, 2023). However, in order to consistently estimate these treatment effects, we

need to isolate variation in energy investments that is arguably exogenous to unobserved factors that may affect

regional employment dynamics. The next section discusses our approach to address the endogeneity problem

associated with our measure of regional energy investments.

3.2 Endogeneity Issues and Identification Strategy

Our parameter of interest 𝛽 denotes the dynamic effect of investments in RE sources on employment growth.

As speciőed in Section 3.1, the preferred speciőcations (1) - (4) include a rich lag structure that captures the

evolution of demand- and supply-side factors (in line with the applied macro and regional economic literature

since the seminal papers by Blanchard and Quah, 1989; Blanchard and Katz, 1992). Moreover, our regressions

feature a wide set of region and country-by-year őxed effects, thus ruling out a handful of confounding factors

that would otherwise bias the estimated coefficients (such as local and global demand trends, supply shocks and

country-speciőc policy shocks, among others).

Notwithstanding, endogeneity concerns may still arise and undermine the validity of our estimates. Indeed,

RE investments may respond to unobserved characteristics that also predict changes in the level of employment.

For example, investments in region 𝑙 could be triggered by changes in local demand factors, which are proxied

by considering the evolution of wage and investment growth rates. Spikes in productivity may also spur local

energy investments, and we try to accommodate for this by including lagged values of the growth rate of GDP7 , 8.

Additionally, regions that are already on a łgreen trajectoryž tend to attract more green energy investments

since they often have structural characteristics associated with rapid economic growth (Popp et al., 2022). To

control for this potential inŕuence, we incorporate lagged values of our explanatory variable, as well as data

on commissioning and decommissioning capacity of conventional power plants in the region. Furthermore,

our framework is well-suited to address this issue. Indeed, our panel regression with variables expressed in

changes, time and region őxed effects is equivalent to a speciőcation in levels that accounts for region-speciőc

linear time trends. Thus, our model effectively considers the fact that regions on a łrenewable investmentž path,

are consequently more likely to receive investments of this sort.

What is left is the amount of energy investments that region 𝑙 receives at time 𝑡. For example, it might

be the case that central governments prioritize investment in municipalities with lower income or employment

levels to boost development in the areas, or in regions with stronger capabilities in dealing with energy-related

technologies. On the other hand, political inŕuences may convey ŕows of investments to locations that would

not be considered as ideal candidates. In all these cases, the so-called łpicking winnersž or ławarding losersž

problem would bias OLS results (Costa and Veiga, 2021).

7Although lagged variations in employment would better proxy demand shocks, we prefer not to include them. In panel
settings - particularly short panels - with őxed effects, incorporating autoregressive terms of the dependent variable can
introduce bias in our 𝛽ℎ , even when dealing with a substantial number of cross-sectional units (Nickell, 1981).

8As speciőed in Section 2, investments are measured with őxed capital formation, which is the expenditure on produced
tangible or intangible assets that are used in the production process for more than one year. Among other, the assets
include dwellings and non-residential buildings, civil engineering works, transport equipment, and cultivated assets (trees
and livestock). Wages and capital formation are provided at NUTS-2 level. We control the robustness of our estimates both by
estimating a model speciőcation which excludes the variables from the analysis (see Table B.1) and by clustering the errors at
NUTS-2 region level (results are available upon request).
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In order to mitigate for the non-random allocation of investment ŕows across regions we propose an in-

strumental variable strategy that isolates a component of energy investments that is orthogonal to time-varying,

unobserved characteristics of regions that also affect changes in employment. The instrumental variable combines

a proxy for the relative exposure of each region with a measure of aggregate shifts in the RE mix. To measure the

relative exposure of each region to investment shocks, we use an indicator of local RE potential, aggregating

by territorial unit the granular (1-km) development potential indexes provided by Oakleaf et al. (2019), which

quantiőes the inherent potential and development feasibility of technology-speciőc investments. The identi-

őcation strategy rests on two key assumptions. Firstly, areas endowed with a higher RE potential are more

exposed to aggregate RE investment shocks (instrument relevance). Secondly, differences in regional exposures

do not depend on any unobserved regional factors affecting employment, such as the strategic choice to invest

in RE technologies within a particular area (instrument validity). In our case, the relative exposure to aggregate

changes in the RE mix is solely determined by the natural attributes of the location, speciőcally the presence and

accessibility of the natural resources essential for the operation of the chosen energy technology. For instance,

wind turbines are more likely to be installed in areas with high wind speeds, where each turbine generates more

electricity compared to areas with lower wind speeds (Costa and Veiga, 2021).

Before building our instrumental variable, we aggregate the 1-km spatial development potential for each

energy source within each NUTS-3 region to obtain the aggregate regional potential for solar, wind, bio and

hydro energy sources. In the spirit of Bartik (1991), we then use these measures of regional potential to construct

a weighted sum of new installations in energy capacity aggregated by country as follows:

𝑁𝑒𝑤𝑅𝐸𝐼𝑉
𝑙,𝑡

=

∑

𝑘 𝑠𝑙 ,𝑘𝑁𝑒𝑤𝑅𝐸
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑘,𝑡

𝑌𝑙 ,𝑡−1
(6)

where 𝑠𝑙 ,𝑘 = 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑘,𝑙/𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑘
is the measure of region 𝑙 potential as a share of the country’s total

potential for technology 𝑘, and 𝑁𝑒𝑤𝑅𝐸
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑘,𝑡
measures the aggregate new installed capacity of the region’s

country. To provide an intuition of how our IV works we compare, in Figure B.1 (Appendix B), the observed and

the predicted level of RE deployment for two NUTS-3 regions, Schwäbish (DK) and Bornholm (DE). The plots

suggest that every time a region experience a sudden increase in the amount of RE deployment, our measure of

relative exposure mitigates this effect, thus predicting an amount of RE investments that is conditioned by the

potential of the region.

Our instrument reŕects that the potential for RE investments drives investment decisions within country-

speciőc strategies and not at a generalised EU level. For instance, although France has the highest potential

for solar energy deployment, the regions receiving the largest investments in this technology are in Germany,

which has relatively lower solar potential (see table A.5)9. To reŕect this, our instrument combines country-level

aggregate shifts in RE investments with each region’s potential, measured as a share of its national potential.

Fortunately, our research design ensures that the method we use to calculate the shares of potential devel-

9In this regard we show, in Figure A.11, the correlation between the regional ranking of solar potential and solar installed
capacity, calculated either over the entire sample (A.11a) or within countries (A.11b). The őgures show that, when the regional
ranking is computed over the entire sample, the correlation between potential and installed capacity is 0.47. Conversely, when
the ranking is calculated within countries, the correlation is higher.
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opment, which should motivate the exclusion restriction (Goldsmith-Pinkham et al., 2020), will not affect the

validity of the instrument. For instrument relevance, we implement the heteroskedasticity-robust F-statistic, or

Kleibergen-Paap Wald statistic, which tests for the joint signiőcance of the őrst stage regressors in settings with

one endogenous variable and non-homogeneous errors (Kleibergen and Paap, 2006). The next Section will show

the results of our empirical analysis and in all Tables and Figures displaying IV regressions, we report the value

of the őrst-stage F-statistic, either averaged over horizons or shown for each local projection.

According to the econometric speciőcation, we implement slight variations of the instrument deőned in

Equation (6). In particular, when estimating the employment multiplier generated by investing in renewable

technology 𝑘 (cfr., Equation 3), we instrument the endogenous variable 𝑁𝑒𝑤𝑅𝐸𝑘,𝑙,𝑡/𝑌𝑙 ,𝑡−1 by isolating the 𝑘

component of the energy mix. Instead, when we estimate the geographical spillover effects as modelled in

Equation (5), we simply normalize the new installed capacity in renewables by the lagged value of employment

in the neighbouring region.

4 Results

We estimate models in Equation (1) to (4) using instrumental variable local projections (LP-IV). The dynamic effects

of aggregate renewable investment on total regional employment, estimated using our baseline speciőcation in

Equation (1) - with 𝑁𝑒𝑤𝑅𝐸𝐼𝑉
𝑙,𝑡

as instrumental variable (see Equation 6) - are displayed in Figure 3, which plots the

year-by-year cumulative number of jobs that, on average, are created by installing one MW of RE power sources.

Employment steadily rises following RE investments, suggesting the presence of persistent and permanent long-

term effects. While the initial impact is modest and not strongly signiőcant Ð5.2 jobs created in the őrst year

Ðthe effect grows signiőcantly over a seven-year period, leading to the creation of approximately 40 jobs. To

contextualize these őndings, the average plant capacity in our sample is 0.8 MW. This means that installing a

single plant generates approximately 4.2 jobs immediately and 32.4 jobs over a seven-year period. Additionally,

with capital expenditures averaging $2.79 million per MW, an investment of $1 million in renewable energy

plants results in roughly 1.9 jobs created immediately and 14.5 jobs over seven years. A tentative explanation for

these results is that green investments stimulate regional demand, leading to increased employment to support

the expanding economic activity. This increase is likely to trigger positive externalities due to the presence of

complementarities and synergies with energy technologies, generating increasing returns to scale (Vona et al.,

2019).

Even if we are convinced of the validity of the research design, we need to check whether our instrument is

correlated with the endogenous regressor 𝑁𝑒𝑤𝑅𝐸𝑙 ,𝑡 . Under weak instruments, IV estimates are biased towards

OLS and the standard errors may provide unreliable inference. To mitigate these concerns, we report the value

of the őrst-stage F-statistic that is well above the usual cut-off level of 10 for which an instrument is considered

weak10.

Our estimates align in magnitude with the őgures presented by Popp et al. (2022), who found that 1 million

10Figure 3 displays the average value of F-statistic, computed across all projections. For additional details, in column (1) of
Table C.2 we report the value of the őrst stage statistics for each horizon ℎ.
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Figure 3: Impact of Aggregate Renewable Energy Investments on Employment
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Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on total regional employment,
measured as the number of jobs created, according to Equation (1). The control variables include four lagged terms of
GDP growth, renewable investments, wages growth, capital formation growth and conventional energy commissioning and
decommissioning. The regression includes NUTS-3 region and country-by-year őxed effects. Standard errors are clustered at
NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and 95% conődence level, respectively. The
F-statistic reported is an average computed over the different time horizons ℎ.

dollars of the łgreenž component of the American Recovery and Reinvestment Act (ARRA) resulted in the

creation of approximately 15 jobs over 7 years. In turn, these őgures are smaller compared to the multipliers

associated to ARRA őscal package, which span from 7 to 38 jobs per year per $1M spent (Chodorow-Reich, 2019a).

It’s worth noting that our measure of łinvestmentž slightly differs from those related to the ARRA. In its green

component, for example, investments are not conőned to RE infrastructure development, but also include energy

retroőts, public transportation, and waste management. Nonetheless, our results suggest that the development

of RE power generating facilities may constitute a key driver of employment stimulus in the context of the energy

transition.

There are several factors that can undermine the stability of the results. To corroborate them, we perform a

series of robustness checks, exploring how our main estimates are sensitive to model (miss)speciőcation, data

őltering, and identiőcation strategy. The rich lag structure of control variables and the wide set of region and

country-by-year őxed effects could potentially impose a heavy structure on the model.

As a due exercise, we explore how the main coefficient of interest, 𝛽ℎ , changes as we progressively include

current and lagged values of the control variables. The results, as shown in Table B.1, indicate that the inclusion

of these controls stabilizes the estimates of 𝛽ℎ within a relatively narrow range, effectively capturing demand

and supply side factors as well as local energy investment decisions. Another concern relates to the shape of the

dynamic response of employment, as plotted in Figure 3. Particularly, if the effects do not vanish or stabilize at

longer horizon, we would be concerned that we are not properly isolating exogenous variation in local investment

in RE sources. Instead, we could be capturing some preexisting trends that inŕuence dynamics over time. Given

the size of our sample and the lag structure imposed to the model, we proceed with caution when calculating and
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interpreting jobs multiplier at longer horizons. Nevertheless, we perform this exercise and present the results in

Figure B.2a. As expected, conődence bands widen signiőcantly, and the point estimate stabilizes after 10 years

at around 90-100 jobs generated per MW.

Due to countries’ differences in the institutional setting, some authority can be granted at the sub-national

level for decisions related to renewable energy policies such as the allocation of energy investments. We have

already pointed out in Section 3 that this is not the case for Germany, the only federal state in our sample.

However, to rule out possible contributions that more localized energy policy may play in confounding the

effects of RE deployment, we check whether our results are robust to the inclusion of NUTS1-by-year rather than

country-by-year őxed effects (cf., Equation 1). Although not our preferred approach due to the rigidity imposed

on the regression by the larger and more demanding őxed effect structure, the results show remarkable stability

and consistency with those obtained with our baseline equation, as illustrated in Figure B.3, in Appendix B. This

seems to suggest that in our research design, policy-related decisions at a more localized level do not signiőcantly

alter the magnitude and the dynamical response of employment.

We conducted several additional robustness checks, as presented in Table B.3. Firstly, we examine the impact

of excluding the UK from our sample due to data limitations in reporting wind energy units smaller than 1 MW,

as discussed in Section 2.1. Despite this exclusion, our estimates remain remarkably stable. Another issue related

to our data pertains to bio and hydro energy installations, which constitute a smaller portion, approximately

11.3%, of the total newly installed capacity. Observations related to these sources can potentially act as outliers

within our sample or they can affect employment outcomes through different transmission mechanisms, as they

tend to be more centralized and less dispersed compared to wind and solar energy units. In both scenarios,

including them in the sample can potentially inŕuence our aggregate results in Figure 3. To address this concern,

we estimated our model excluding these energy sources, and observe that the magnitude and signiőcance of the

estimates remains substantially invariant to this data őlter.

Finally, we also consider alternative speciőcations of the instrumental variable. As deőned in Equation (6),

our instrumental variable combines a measure of regional exposure (shares of national RE potential) with an

aggregate shift in national new installed capacity. We őrst alter slightly our instrument speciőcation by excluding

the regional own investment observation in constructing the national shift. By removing the idiosyncratic

technology-location component of the investment shift, this instrument speciőcation, deőned as leave-one-out

(Goldsmith-Pinkham et al., 2020), addresses a possible őnite sample bias. However, since our sample is made

of 669 locations, using leave-one-out to estimate the national investment growth matters little in point estimates.

Secondly, we substitute national shares with full-sample shares of RE potential, and the national shift with the

full-sample aggregate counterpart. Results qualitatively holds as the dynamic response of aggregate employment

growth is similar to our preferred speciőcation, although with larger magnitudes and less precision. For the

other two speciőcations, we adapt our approach to be more in line with the traditional formulation of the

Bartik instrument. Here, the shares of technology 𝑘 are computed with respect to the full sample installed

energy capacity. Although it’s more challenging to argue that the alternative shares approximate a near-random

allocation of energy investments, we conduct these tests to examine the sensitivity of our estimates to instrument
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variations. In one of these alternative speciőcations, the shares are őxed at the year 2000, which is before

renewables began to gain traction. In the other case, we used lagged values of the shares, creating a predicted

amount of investments based on previous regional exposure. The results in Table B.3 indicate that in all cases,

our preferred instrument demonstrates higher predictive power, as evidenced by a lower value of the other

instruments’ őrst stage F-stat. In the case of full-sample energy potential shares, the reason behind this is discussed

in more detail in Section 3.2. When we őx the value of the shares to the łpre-greenž era, we conődently argue

that these shares are orthogonal to unobserved determinants of green investments. However, they provide very

little variation that we aim to isolate, as many of the regions under analysis have barely any level of renewable

installed capacity. Finally, the Bartik instrument variant that utilizes lagged values of the shares has a larger

F-stat, indicating strong correlation with regional deployment of RE sources. However, the exclusion restriction

necessary for the instrument validity is less likely to be satisőed, as previous shares of regional RE capacity can

be correlated with unobserved characteristics that also predict employment dynamics. This is also suggested by

the IV estimates approaching the value of OLS estimates (see Table C.1).

4.1 Inspecting the mechanisms

The IV estimates reveal that OLS is downward biased (Table C.1), suggesting that the effects of RE development are

obfuscated by factors that explain both RE deployment and employment growth. This motivates the importance

of examining the mechanisms behind our results, to better understand the implications of the energy transition.

For this reason, we exploit the nature of our dataset to further inspect the effects shown in Figure 3, seeking to

understand which sectors beneőt the most from the development of the RE sources and, in particular, which

technology has contributed the most to this transformation.

Effects by sector. We begin by unpacking the dynamic effects by sectoral employment, following the spec-

iőcation in Equation (2). The results, as shown in Figure 4, reveal that the largest and most signiőcant impacts

are in the construction sector, followed by the agricultural one. In the construction sector, the installation of 1

additional MW of renewable capacity results in an immediate impact of 4.6 jobs and a cumulative increase of

40 jobs in 7 years. Back-of-the-envelope calculations suggest that, over the time horizon, RE projects generate

approximately 32 jobs per plant and 14.4 jobs per $1 Million invested. It is important to note that this sector

includes construction of buildings, civil engineering and utility projects, making it a signiőcant contributor to

the development of RE power plants. In the agriculture sector, the impacts are smaller but signiőcant after 5

years, with nearly 11 jobs generated per MW installed. This translates to approximately 4 jobs for $1 Million

invested and approximately 9 jobs per plant. Unfortunately, we are not able to go further in the disaggregation

but if we assume that a signiőcant portion of the workforce in the construction and agricultural sectors consists

of unskilled laborers, our őndings align with those of Popp et al. (2022), where green investments within the

ARRA favoured unskilled workers in the construction sector.

Effects by Power Sources. As shown in Table 1, investments in RE vary across power technologies. We want to

test whether this heterogeneity matters in explaining the employment impacts of their deployment (See Figures 3

and 4). It is not merely a matter of which power source generates more employment, but which one explains
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Figure 4: Impact of Aggregate RE Investments on Sector-Speciőc Employment
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Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on sector-speciőc regional
employment, measured by the number of jobs created in each sector, according to Equation (2). The control variables include
four lagged terms of GDP growth, renewable investments, wages growth, capital formation growth and conventional energy
commissioning and decommissioning. The regression includes NUTS-3 region and country-by-year őxed effects. Standard
errors are clusterd at NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and 95% conődence
level, respectively. The average F-statistic for the őrst stage, computed over the different time horizons ℎ, is 99.64.
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more the aggregate effect that we are observing. Figure 5 presents the results for the speciőcation in Equation (3),

where we disentangle the effect on total employment by energy source. As recalled in Section 3.2, in estimating

the effects for technology 𝑘, we construct the instrument using just the share of energy 𝑘 potential and the

corresponding national aggregate shift. Bionenergy is the power technology that is associated with the highest

employment multiplier, reaching 407 jobs after 7 years. Wind and solar follows with an estimated employment

multiplier over 7 years that equals 115 and 27, respectively. To assign a monetary value to these magnitudes, we

calculate that, in 7 years, for an additional $1 million spent for the development of bioenergy, solar and wind

energy sources, the number of jobs created in the regions increase by 62, 52 and 12, respectively.

The estimate for the aggregate effect of total renewables should be considered as a weighted average of

estimated coefficients by energy sources. Notably, the estimates for solar and wind energy deployment closely

align with the overall effect 𝛽ℎ estimated for Equation (1). Given that wind and solar energy sources constitute

together the majority of the total new installed capacity in the sample (51 and 37%, respectively), the aggregate

results seems to be primarily driven by these power technologies. Additionally, the signiőcantly larger average

values of the őrst stage F-statistic indicate that wind and solar energy installations are more widely spread across

geographies and over time (as shown in Figure 1), thus providing more variation for the identiőcation of the local

effects on employment. In constrast, the lower values of the average F-statistic for both Bionenergy and Hydro

translate to very wide conődence bands, making estimates less precise compared to wind and solar11.

For robustness checks, we run a series of regressions for each sector of the economy on each renewable source

deployment. This additional analysis, presented in Figure C.1 in Appendix C, largely conőrms that solar and

wind power sources contribute the most to the effects observed at both aggregate level and within the construction

and agricultural sectors.

Regional Heterogeneities. Thus far, our őndings indicate that the construction and agricultural sectors have

been the most affected by the deployment of wind and solar power sources, which in turn play a predominant

role in explaining the aggregate effects. To further explore the role of regional economic structures in fueling the

mechanism that brings RE deployment to spur local employment growth, we examine the non-linear dynamic

effects of RE investments with respect to two economic indicators 𝐸𝐶: regional specialization, which allows us

to classify regions as rural versus non-rural, and a ranking of regions from ’poorer’ to ’richer’ based on quartiles

of the real GDP per capita distribution.

As for regional specialization, we build an index inspired by the Revealed Comparative Advantage (RCA)

index in Balassa (1965). A region 𝑙 is comparatively specialised in sector 𝑖 when its ratio of employment in sector

𝑖 to total employment in the same sector exceeds the analogous ratio calculated for the entire sample. In this case,

the region will exhibit a specialization coefficient larger than 1:

𝑅𝐶𝐴𝑙 ,𝑖 =

𝑋𝑙 ,𝑖/
∑

𝑗 𝑋𝑙 ,𝑖

𝑋𝑇
𝑖 /
∑

𝑖 𝑋
𝑇
𝑖

≥ 1, (7)

where the employment of sector 𝑖 in region 𝑙 is denoted by 𝑋𝑙 ,𝑖 and 𝑋𝑇
𝑖

is the employment in sector 𝑖 in the

11In Table C.2 in Appendix we show the values of the őrst stage F-statistic for all horizons and for all the instruments
implemented in our regressions.

19



Figure 5: Impact of Technology - Speciőc Investments on Employment
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Notes: The őgure plots the dynamic impact, estimated via LP-IV, of technology-speciőc investments on overall regional em-
ployment, measured by the number of jobs created, according to Equation (3). The control variables include current values
of investments in the remaining non-instrumented energy technologies, and four lagged terms of GDP growth, aggregate re-
newable investments, wages growth, capital formation growth and conventional energy commissioning and decommissioning.
Standard errors are clustered at NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and 95%
conődence level, respectively. The F-statistic reported is an average computed over the different time horizons ℎ, which serves
as indicator of the relevance of each technology-related instrument.

whole sample. Figure 6 displays the correlation between the regional deployment of RE over the entire period

(𝑅𝐸𝑙 =
∑2018

𝑡=1991 𝑅𝐸𝑙 ,𝑡 ) and the regional comparative specialisation at the beginning of our sample in 1991. Both

variables are log-transformed. We observe a strong correlation of 0.64 between RE plant development and

initial employment shares in agriculture. This result aligns with expectations, as rural areas, comparatively

more specialized in agriculture and forestry activities, tend to offer more space and synergies for clean energy

technologies (Clausen and Rudolph, 2020). RE investments also exhibit positive correlations with initial shares

in the construction sector (0.3) and negative correlations with shares in the őnancial and business sectors (-0.34).

Given this evidence, we want to investigate whether the rural areas are able to absorb the employment

effects generated by the commissioning of green power plants. We categorize regions as łruralž if they reveal

a comparative advantage in the agricultural sector, denoted by an RCA of 1 or greater, while other regions are

classiőed as łnon-ruralž. Approximately 38% of regions fall into the rural category, accounting for 64% of total

installed RE capacity (103 GW).

Using non-linear LP-IV estimation, as detailed in Equation (4), we assess the employment effects of RE

deployment in rural and non-rural regions (𝐸𝐶 = {Rural, Non-rural}). Figure 7 displays the results, revealing

larger but less precise impacts in non-rural regions, possibly due to lower investment ŕows in these areas.

Nevertheless, positive and persistent long-term employment impacts are observed in rural areas. When we

analyze the sector-speciőc impacts (as presented in Figure C.2 in Appendix), a notable distinction emerges

between rural and non-rural areas. Speciőcally, while the major effects in non-rural regions primarily stem from

the construction sector, the effects on agriculture are found only in rural areas, reŕecting the specialization of these

regions in this particular sector. This observation leads to two key interpretations. Firstly, the positive inŕuence

on agricultural employment can be attributed to the presence of strong input complementarities - agrivoltaic
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Figure 6: Correlation between aggregate regional RE investments over the period (1991-2018) and
initial (1991) RCA (as deőned in equation (7). Both variables taken in log
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farms, for instance - which in turn increases local demand and boost overall economic activity, extending the

renewable investments effects beyond the energy sector (for instance, by fostering activities to connect the utility

projects to high-voltage transmission lines). Secondly, the availability of renewable power sources in the rural

areas generates a cheap local power advantage, echoing the mechanism identiőed in the impact of hydroelectric

dams in the United States during the 20th century in USA by Severnini (2022). The availability of the cheaper

energy sources lowers energy input costs for agricultural production, stimulating growth and employment in the

sector over the medium and long term.

As for the second economic indicator, we investigate whether regions with different income levels, proxied by

quartiles of real GDP per capita distribution, experience heterogeneous impacts in response to RE investments.

Notably, rural regions are also (but not limited to) those characterized by lower income levels. The estimation of

non-linear effects when 𝐸𝐶 = {𝐼𝑛𝑐𝑜𝑚𝑒} can help dissecting whether is the sectoral or income heterogeneity that

primarily drives the employment stimulus resulting from RE source deployment. Results for this speciőcation

are highlighted in Figure 8. For regions positioned above the median of the real GDP per capita distribution

(3𝑟𝑑 and 4𝑡ℎ quartiles), the deployment of RE plants does not seem to signiőcantly spur employment growth.

Conversely, regions below the median of the distribution (1𝑠𝑡 and 2𝑛𝑑 quartiles) experience sizeable stimulus

effects, with employment multipliers reaching 39 and 60, respectively, over a 7-year period.

In summary, these őndings suggest that RE technologies have the potential to stimulate employment and

enhance economic growth, particularly in regions with lower income levels. This result is also in line with

the macroeconomic literature on infrastructure investments, as the deployment of RE can act as a catalyst for

economic expansion in areas that may lack sufficient infrastructure, either due to higher uncertainty in returns
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Figure 7: Impact of Aggregate RE Investments on Employment in Rural and Non-Rural Areas
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Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on total regional employment
in rural and non-rural areas, according to Equation (4). Employment is measured as the number of jobs created. The control
variables include four lagged terms of GDP growth, renewable investments, wages growth, capital formation growth and
conventional energy commissioning and decommissioning. The regression includes NUTS-3 region and country-by-year őxed
effects. Standard errors are clusterd at NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and
95% conődence level, respectively. The average F-statistic, computed over the different time horizons ℎ, is 99.64.

Figure 8: Impact of Aggregate RE Investments on Employment Across Regional Income Distribution
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Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on total regional employment
in areas categorised into quartiles of real GDP per capita distribution, according to Equation (4). Employment is measured as
the number of jobs created. The control variables include four lagged terms of GDP growth, renewable investments, wages
growth, capital formation growth and conventional energy commissioning and decommissioning. The regression includes
NUTS-3 region and country-by-year őxed effects. Standard errors are clusterd at NUTS-3 region level. The darker and lighter
shaded regions correspond to a 90% and 95% conődence level, respectively. The average F-statistic, computed over the different
time horizons ℎ, is 99.64.
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on investments (see Gbohoui, 2021) or because they possess signiőcant potential for productivity gains following

increased overall investment levels (Ramey, 2021).

4.2 Geographic Spillovers

Thus far, we documented sizeable average effects of regional investments in the deployment of renewable power

sources on employment growth. However, it is important to note that these regional estimates might not

necessarily hold for larger geographies, such as entire countries. NUTS-3 regions represent very small and

open economies, where workers can easily move from one region to another through commuting or migration.

Accordingly, ŕows of investment can attract workers and other entrepreneurs from surrounding regions towards

regions receiving larger ŕows of investments in renewables. Or, they can beneőt from the latter as the result of

the presence of spillover effects.

To investigate whether neighboring regions can beneőt from such investments, we examine the presence of

geographical spillovers by estimating Equation (5), focusing on the coefficient 𝛽ℎ𝑜𝑢𝑡 , which measures the number

of jobs that are generated in region 𝑙′ over horizon ℎ following the development of RE plants in region 𝑙. Our

results, displayed in Table 2, indicate that, on average, RE projects developed in one region signiőcantly stimulate

employment in surrounding regions. Over a 7-year horizon, employment steadily increases, amounting to 25 jobs

for each MW installed. This suggests the presence of substantial spillover effects arising from RE investments,

implying that our baseline regional estimates in Figure 3 might represent a lower bound for their national

counterpart. This őnding aligns with recent evidence in the őscal policy literature, where local-level public

expenditures and investments have been found to generate substantial spillovers without signs of crowding-out

effects (Chodorow-Reich, 2019a; Auerbach et al., 2020).

Table 2: Spillover Effects of Investing in Aggregate RE on Employment Levels of the Neighbouring
Regions

Horizon (ℎ = 0) (ℎ = 1) (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5) (ℎ = 6) (ℎ = 7)

Employment 2.073*** 3.898** 6.769*** 9.621*** 13.394*** 19.466*** 19.050*** 24.629***
(0.772) (1.564) (2.422) (3.129) (3.571) (4.707) (5.387) (6.536)

F-stat 132.82 171.16 259.23 229.44 187.42 204.83 176.07 145.07

The table reports the spillover effects of aggregate renewable investments on employment in the neighbouring regions, estimated
via LP-IV according to Equation 5, for horizons ℎ = 0, ..., 7. Employment is measured as number of jobs created, and output is
measured as $1 Million real GDP generated. The control variables include four lagged terms of GDP growth, renewable invest-
ments, wages growth, capital formation growth and conventional energy commissioning and decommissioning. All regressions
include NUTS-3 region and country-by-year fixed effects. Standard errors are clustered at NUTS-3 region level. The last row of
the table reports the first stage F-statistic for each horizon.
p < 0.1, ** p < 0.05, *** p < 0.01

4.3 Effects on Regional Output

Solar and wind power technologies emerge as the primary drivers of the employment effects, particularly within

sectors characterized by lower value-added activities like agriculture and construction. Moreover, it is worth

noting that these two sectors differ in their labour intensity, with agriculture being is less labor-intensive, especially
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in advanced economies like those in our sample, and construction being instead more reliant on labor. Given

these insights, it is worth investigating whether the development of RE installations can exert substantial effects

on the broader regional economy. To this end, we examine the impact of RE development on economic activity,

replacing the outcome variable 𝑌 with regional GDP in our regressions (1), (3) and (5) . We apply the same

research design outlined in Section 3.2, arguing that its validity and relevance still hold12.

Figure 9: Impact of Aggregate Renewable Energy Investments on Output
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Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on total regional output,
measured as $1 Million real GDP generated, according to Equation (1). The control variables include four lagged terms of
employment growth, renewable investments, wages growth, capital formation growth and conventional energy commissioning
and decommissioning. The regression includes NUTS-3 region and country-by-year őxed effects. Standard errors are clustered
at NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and 95% conődence level, respectively.
The F-statistic reported is an average computed over the different time horizons ℎ.

12Consistent with our baseline speciőcation, where we intentionally excluded lagged terms of employment growth as controls
to reduce potential bias, we adopt a similar approach in our GDP regression (Nickell, 1981). Consequently, we do not include
lagged GDP growth values as controls. Robustness checks for alternative speciőcations are reported in Table B.2 in Appendix
B.
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Table 3: Impact of RE Investments on Output

Dependent Variable: Output Growth

Explanatory Variable: Predicted RE Deployment (MW)

(ℎ = 0) (ℎ = 1) (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5) (ℎ = 6) (ℎ = 7)
F-stat

Aggregate

Outward Spillover (𝛽ℎ
𝑜𝑢𝑡) 0.141* 0.476*** 0.976*** 1.381*** 1.611*** 1.890*** 1.969*** 2.375*** 140.27

(0.079) (0.160) (0.248) (0.333) (0.419) (0.567) (0.672) (0.828)

By Technology 𝑘 - Regional (𝛽ℎ
𝑘
)

Bioenergy -0.648 1.076 5.833 10.024* 12.143* 14.484* 17.405** 20.927** 11.85
(1.536) (3.083) (4.556) (5.858) (7.054) (7.856) (8.701) (10.281)

Hydro 4.483 7.166 6.394* 3.975 5.414 6.889 9.155* 7.523* 4.03
(3.071) (4.861) (3.588) (4.030) (4.555) (4.772) (5.451) (4.402)

Solar 0.722*** 1.800*** 3.063*** 3.788*** 3.860*** 3.405** 2.905* 3.479* 95.05
(0.272) (0.529) (0.784) (0.979) (1.141) (1.350) (1.561) (2.033)

Wind 0.115 0.122 0.194 0.139 0.870 1.600 3.979 8.274** 38.24
(0.370) (0.690) (0.989) (1.263) (1.659) (2.420) (3.562) (4.148)

The table outlines the effects of RE investments on output, measured as $1 Million real GDP generated. Each row reports the estimates obtained
using a different specification, for horizons ℎ = 0, ..., 7. For all equations, the control variables include four lagged terms of employment growth,
renewable investments, wages growth, capital formation growth and conventional energy commissioning and decommissioning. For technology-
specific regressions, the control variables include the investments in the other, non-instrumented, RE sources. All regressions include NUTS-3 region
and country-by-year fixed effects. Standard errors are clusterd at NUTS-3 region level. The F-statistic reported is an average computed over the different
time horizons ℎ.
p < 0.1, ** p < 0.05, *** p < 0.01

Figure 9 and Table 3 report the effects of installing 1 MW of RE capacity on GDP, measured in millions of

dollars. As evident from Figure 9, the dynamic response of GDP growth to RE investments mimics the results

for employment analyzed in previous sections. On impact, GDP increases by nearly $0.4 million and continues

to rise steadily in the long run, reaching approximately $3.8 million after 7 years.

As shown in the first line of Table 3, neighboring regions also benefit from these investments, as spillover

effects increase significantly to around $2.3 million after 7 years. Recalling that, on average, the cost of investing

in 1 MW of renewable power plants amounts approximately to $2.79M/MW (cfr., Table 1), our estimates imply

that the green energy investment multiplier - i.e., the dollar amount of GDP produced by a dollar of investments

in energy plants development - exceeds 1 after only 5 years (or 4 years if we include the spillover effects). Our

estimates on impact are lower compared with the country-level evidence collected by Batini et al. (2022), who

reported a “green investment” impact multiplier within the range of 1.2 to 1.5. As previously argued, our

analysis focuses exclusively on local green investments involving the development of renewable power facilities,

suggesting that our estimates may represent a lower-bound measure of national renewable investment multipliers

(Chodorow-Reich, 2019a)13. When we break down the effects and examine the contribution of each technology

to the overall impact, we can conclude that, similar to employment, solar and wind power sources make the most

substantial contributions.

13In Table C.1 we report the OLS estimation results for the response of output. In contrast, Table B.4, report the same battery
of robustness checks that we conduct for the employment response.
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4.4 Decommissioning of Conventional Power Plants

In the face of the energy transition, conventional sources are experiencing increasing decommissioning as well as

waves of commissioning, mostly driven by the advancement of energy technology production based on natural

gas combustion, as shown in Table A.4 in Appendix A. While the primary focus of our study is on RE sources,

our baseline model in Equation (1) controls for regional (dis-) investments associated with conventional energy

sources. This inclusion allows us to investigate the relationship between these activities and employment growth.

Even though our analysis does not provide estimates that can be interpreted as causal, the dynamic correlations

shown in Figure 10 reveal interesting patterns. We őnd that dis-investments of the conventional power plants does

not lead to job displacement in the region, but is instead positively associated to small employment effects in the

short term. However, we caution the interpretation of these estimates since the decommissioning of conventional

power plants might reŕect external factors which our speciőcation does not account for, generating issues of

endogeneity that we are not addressing here and go beyond the scope of the paper. Notwithstanding, this

exploratory evidence seems to discard signiőcant negative employment impacts of decommissioning, suggesting

instead non-negligible positive effects on local economic activity along the energy transition that European

regions are experiencing.

Figure 10: Impacts of Decommissioning Conventional Power Plants on Employment
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Notes: The őgure plots the effects on total regional employment ofthe decommissioning of conventional energy plants, which
are included as control variables in our baseline Equation 1. The regression includes NUTS-3 region and country-by-year őxed
effects. Standard errors are clusterd at NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and
95% conődence level, respectively.

5 Conclusions

Efforts to decarbonize the energy sector primarily directed at mitigating climate change are bringing about an

unprecedented spatial transformation of the energy generation system (Jenniches, 2018). The consequences for

the creation and distribution of jobs remain still unclear. Whether these actions will represent an opportunity to

stimulate further investments and reduce uncertainty about climate risk, crucially hinges on the unfolding of the

employment effects (Stern and Stiglitz, 2023).

In this paper, we provide new empirical evidence on the effects of green energy investments on employment
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dynamics. Using a newly assembled dataset on RE power plants commissioning covering nearly 3 decades and

including 669 NUTS-3 regions across Denmark, France, Germany and UK, we estimate the dynamic causal effects

of deploying RE plants on employment, using instrumental variable local projections (LP-IV, Jordà, 2005; Jordà,

2023). To the best of our knowledge, this paper is one of the őrst attempts to explore these effects within a

unique framework, covering regional economies across different countries and allowing for an exploration of

heterogeneity and underlying mechanisms. To identify investment shocks at regional level, we employ a shift-

share identiőcation strategy. This approach relies on the differential regional exposure, measured as the regional

shares of land development potential for selected technologies, to global shocks in the energy mix.

Our study reveals that the regional employment multiplier for green investments, measured as the number

of jobs created by the installation of 1 MW of renewable energy, reaches 40 in about seven years. This őgure

also corresponds to approximately 14 jobs generated per $1 million spent on renewable power plants. Wind

and solar power technologies drive these results, given their higher representation across European regions

and wider adoption over the years. In the four countries under study, we őnd evidence of job gains within

the construction and agricultural sectors - 40 and 11 jobs generated in seven years, respectively. These sectors

are typically more labour-intensive and characterized by stronger complementarities and synergies with RE

technologies. Furthermore, these effects spillover to neighbouring locations, suggesting that the estimated relative

job multiplier can be interpreted as a lower bound its national counterpart, a őnding that is somewhat common in

the cross-sectional őscal policy literature (Chodorow-Reich, 2019b). Additionally, we őnd relevant non-linearities,

as the jobs generated out of green energy installations are signiőcant in regions with a higher specialization in

agricultural activities (deőned as rural areas) and in relatively poorer regions, as measured by GDP per capita

levels. Finally, our results complement the national output multipliers estimated by Batini et al. (2022). We

observe that following green investments, regional output mirrors the dynamic response of employment, with

signiőcant direct and spillover effects, primarily driven by solar and wind technologies. Speciőcally, the green

energy investment multiplier for output - i.e., the dollar amount of GDP produced by a dollar of investments in

renewable energy plants development - exceed 1 after 5 years (4 if we add the estimated spillover effects). From

a policy perspective, our őndings reveal that renewable energy investments can serve as in important source of

local stimulus, especially in rural areas. They have the potential to reshape regional economies, effectively acting

as place-based policies. Moreover, our results suggest that more stringent climate policy, such as environmental

regulations that mandate the adoption or the installation of renewable power technologies, are not necessarily

displacing jobs in the manufacturing sector and in polluting industries.

A necessary and complementary aspect of our analysis shall be left for further research. For sake of clarity, we

have not dwelved into the other phase of the energy transition, namely the effects of progressive decommissioning

of conventional plants on employment. We hint at this at the end of analysis. Indeed, we őnd that controlling

for investment in conventional energy plants does not change the magnitude and the dynamics of our estimates.

Furthermore, our őndings suggest that the decommissioning of conventional power plants is positively correlated

to local job creation in the short-term. A proper identiőcation of these events needs to be addressed as we őnd

preliminary results compelling.
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Appendix A Data & Descriptives

Table A.1: Sectors of Economic Activity according to NACE Rev.2

Macro-sector Sectors

Agricolture, forestry and őshing (A) Agricolture, forestry and őshing (A)
Industry (B-E) Mining and Quarrying (B)

Manufacturing (C)
Electricity, gas, steam and air conditioning supply (D)
Water supply; sewerage, waste management and remediation activities (E)

Construction (F) Construction (F)
Wholesale etc (G-I) Wholesale and retail trade; repair of motor vehicles and motorcycles(G)

Transportation and storage (I)
Accommodation and food service activities (H)
Information and communication (J)

Financial and business services (K-N) Financial and insurance activities (K)
Real estate activities (L)
Professional, scientiőc and technical activities (M)
Administrative and support service activities (N)

Non-market services (O-U) Public administration and defence; compulsory social security (O)
Education (P)
Human health and social work activities (Q)
Arts, entertainment and recreation (R)
Other service activities (S)
Activities of households as employers(T)
Activities of extraterritorial organisations and bodies (U)

Table A.2: Descriptive Statistics of Socioeconomic Variables

Mean Std.Dev Min Median Max
Growth rates (%)

Total Employment 0.54 2.53 -30.63 0.61 36.11
Agriculture -0.06 0.63 -16.41 -0.01 29.80
Construction -0.02 0.63 -10.11 0.00 10.27
Industry -0.21 1.18 -25.90 -0.08 10.73
Wholesale 0.23 0.96 -13.19 0.21 10.26
Financial & Business Services 0.25 0.77 -7.94 0.22 10.00
Non-market Services 0.36 0.98 -14.43 0.35 26.34
GDP (Mill. $) 1.62 4.02 -29.81 1.73 55.38
Wages 1.56 2.95 -21.04 1.64 33.27
Capital Formation 1.43 6.80 -28.08 1.68 169.64

Levels (Thousands)

Total Employment 140.85 162.84 8.00 95.14 2036.32
Agriculture 3.08 3.98 -0.20 1.84 42.33
Construction 9.45 9.01 0.00 6.76 152.66
Industry 23.01 20.17 0.92 16.92 270.93
Wholesale 37.97 47.45 2.00 24.28 637.43
Financial Services 23.29 41.62 0.00 11.36 663.47
Other Services 44.04 53.59 2.00 28.01 787.65
GDP (Mill. $) 11.41 16.38 0.60 6.80 253.74
Wages 40.02 36.96 2.49 29.87 360.60
Capital Formation 16.21 15.86 0.92 12.44 167.20
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Table A.3: Descriptive statistics of Energy Variables

(MW) Mean Std.Dev Min Median Max

New Capacity

Bioenergy 0.85 9.91 0.00 0.00 673.10
Solar 3.34 9.95 0.00 0.04 233.80

Hydro 0.17 2.35 0.00 0.00 203.00
Wind 4.61 21.36 0.00 0.00 688.50

Renewable 8.98 26.62 0.00 0.87 691.20

Oil 0.14 4.73 0.00 0.00 400.00
Coal 1.22 33.30 0.00 0.00 2120.00

Natural Gas 3.42 52.10 0.00 0.00 2305.00
Nuclear 0.62 29.37 0.00 0.00 1500.00

Conventional 5.40 68.54 0.00 0.00 2305.00

Decommissioned Capacity

Oil 0.57 26.33 0.00 0.00 2340.00
Coal 1.77 42.26 0.00 0.00 2400.00

Natural Gas 0.44 16.06 0.00 0.00 1350.00
Nuclear 1.01 33.22 0.00 0.00 2407.00

Conventional 3.79 62.18 0.00 0.00 2407.00

Table A.4: New and Decommissioned Capacity by Technology.
Values expressed in GW.

New Capacity
1991-2018

Decommissioned
1991 -2018

Net variation

Total % Total %

Total 260.7 100 69.4 100 191.3 ⇑
Renewable 166.5 63.9 / / 166.5 ⇑
Bioenergy 18.7 7.2 / / 18.7 ⇑
Hydro 4.2 1.6 / / 4.2 ⇑
Solar 60.3 23.1 / / 60.3 ⇑
Wind 83.3 32.0 / / 83.3 ⇑
Conventional 94.2 36.1 69.4 100 24.8 ⇑
Coal 23.1 8.8 32.6 47 - 9.5 ⇓
Oil 2.6 1 10.2 14.7 - 7.6 ⇓
Natural gas 60.8 23.3 7.9 11.4 52.9 ⇑
Nuclear 7.7 3.0 18.6 26.8 - 10.9 ⇓
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Table A.5: Top 20 Regions according to solar energy potential and installed capacity

Rank Solar Energy Potential Solar Energy Installed Capacity (2018)

1 FRI12 - France FRI12 - France
2 FRI13 - France UKK30 - UK
3 FRI11 - France DE949 - France
4 FRC13 - France FRI13 - France
5 FRF23 - France UKK15 - UK
6 FRC11 - France UKH12- UK
7 FRB01 - France DE256 - Germany
8 DK032 - Denmark DEA34 - Germany
9 FRK11 - France DE228 - Germany
10 FRG02 - France DE409 - Germany
11 FRI34 - France DE40B - Germany
12 FRB03 - France DE40G - Germany
13 DK050 - Denmark DEE05 - Germany
14 FRI32 - France DE80J - Germany
15 FRC14 - France UKK43 - UK
16 FRG01 - France DE227 - Germany
17 FRG05 - France DEF0C - Germany
18 FRE21 - France UKK23 -United Kingdom
19 FRH03 - France DE22B - Germany
20 UKE22 - United Kingdom DE80N - Germany

Figure A.11: Regional ranking according to solar energy potential and installed capacity
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Notes: The őgures plot the relation between the ranking of the sample regions in terms of their solar potential and in terms
of their aggregate solar installed capacity at the end of the sample period. In őgure A.11a the positioning of each region, for
both potential and capacity, is computed over the entire sample. The maximum rank in this case is 669, accounting for all the
regions in the sample. The correlation between region potential and installed capacity ranking is reported at the bottom of the
plot at 0.47. In őgure A.11b the positioning of each region, for both potential and capacity, is computed within its country.
The maximum rank in this case is 401, as the country with the largest number of observations is Germany with 401 NUTS-3
regions. The correlation between region potential and installed capacity ranking is reported at the bottom of the plot at 0.87.
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Appendix B Robustness Checks

Figure B.1: Actual New Renewable Energy Investments vs Predicted First-Stage Predictions
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Notes: The őgures report observed vs predicted renewable energy investments (in MW) in the Schwäbisch Hall district of the
German State Baden-Württemberg in panel B.1a, and in the Bornholm province in Denmark in panel B.1b.

Table B.1: Impact of Aggregate RE Investments on Employment: Alternative Speciőcations

Dependent Variable: Employment Growth
Independent Variable: Predicted Aggregate RE Deployment

(1) (2) (3) (4) (5) (6) (7)

(ℎ = 0) 2.192 3.994* 4.175 4.070 5.125* 5.204* 4.980
(2.332) (2.381) (2.907) (2.912) (2.996) (3.010) (3.765)

(ℎ = 1) 0.148 9.119** 10.192** 9.973** 11.529** 11.608** 11.142*
(4.599) (4.192) (5.014) (5.034) (4.998) (5.015) (6.321)

(ℎ = 2) -3.555 13.627** 14.800** 14.391** 17.082** 17.149** 16.916*
(6.845) (6.048) (7.092) (7.116) (6.987) (7.015) (8.691)

(ℎ = 3) -3.345 18.497** 19.620** 19.142** 23.207*** 23.343*** 23.512**
(8.536) (7.506) (8.726) (8.745) (8.685) (8.722) (10.652)

(ℎ = 4) 0.693 25.229*** 26.132*** 25.445*** 30.294*** 30.447*** 31.265***
(9.355) (8.489) (9.524) (9.531) (9.575) (9.610) (11.952)

(ℎ = 5) 5.975 26.309*** 25.535*** 24.520** 29.970*** 30.141*** 32.807***
(10.672) (9.052) (9.671) (9.726) (9.705) (9.721) (12.421)

(ℎ = 6) 9.579 25.681*** 24.210** 22.970** 29.918*** 29.988*** 33.088***
(11.799) (9.807) (10.278) (10.275) (10.262) (10.250) (12.621)

(ℎ = 7) 22.232 34.955*** 34.452*** 32.996*** 40.357*** 40.369*** 42.975***
(14.359) (11.745) (12.010) (11.972) (11.907) (11.871) (14.340)

Average First-stage 172.71 146.98 97.64 97.75 99.58 99.73 100.41

Controls

Output growth ✓ ✓ ✓ ✓ ✓ ✓

Renewable investments ✓ ✓ ✓ ✓ ✓

Conventional investments and dis-investments ✓ ✓ ✓ ✓

Wages growth ✓ ✓ ✓

Capital Formation growth ✓ ✓

Employment growth ✓

The table outlines the effects of predicted RE investments on regional employment, measured as number of jobs generated. Each
row reports the estimates obtained using a different specification, for horizons ℎ = 0, ..., 7. Our baseline regression is (6). All
control variables are lagged up to four periods. The regression includes NUTS-3 region and country-by-year fixed effects. Standard
errors are clustered at NUTS-3 region level. The F-statistic reported is an average computed over the different time horizons ℎ for
each specification.
p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.2: Impact of Aggregate RE Investments on Output: Alternative Speciőcations

Dependent Variable: Output Growth
Independent Variable: Predicted Aggregate RE Deployment

(1) (2) (3) (4) (5) (6) (7)

(ℎ = 0) 0.851*** 0.344* 0.384* 0.375* 0.396* 0.394* 0.184
(0.231) (0.188) (0.203) (0.206) (0.213) (0.212) (0.276)

(ℎ = 1) 1.197*** 0.803** 0.956** 0.935** 0.965** 0.967** 0.651
(0.392) (0.378) (0.410) (0.414) (0.421) (0.421) (0.516)

(ℎ = 2) 1.577*** 1.585*** 1.810*** 1.772*** 1.786*** 1.779*** 1.353*
(0.569) (0.574) (0.632) (0.636) (0.627) (0.627) (0.734)

(ℎ = 3) 1.789** 1.990*** 2.212*** 2.176*** 2.189*** 2.193*** 1.725*
(0.714) (0.759) (0.831) (0.834) (0.820) (0.817) (0.915)

(ℎ = 4) 1.841** 2.286*** 2.484*** 2.409*** 2.495*** 2.520*** 1.942*
(0.814) (0.848) (0.892) (0.900) (0.903) (0.898) (1.009)

(ℎ = 5) 1.938** 2.375** 2.460** 2.394** 2.522** 2.547** 1.784
(0.957) (0.982) (1.013) (1.023) (1.023) (1.019) (1.119)

(ℎ = 6) 2.092* 2.493** 2.572** 2.537** 2.830** 2.850** 1.893
(1.097) (1.120) (1.147) (1.155) (1.151) (1.150) (1.268)

(ℎ = 7) 2.533* 3.114** 3.307** 3.312** 3.749*** 3.760*** 2.529*
(1.385) (1.365) (1.389) (1.395) (1.402) (1.402) (1.527)

Average First-stage 182.71 152.21 118.93 118.83 122.16 122.45 122.76

Controls

Employment growth ✓ ✓ ✓ ✓ ✓ ✓

Renewable investments ✓ ✓ ✓ ✓ ✓

Conventional investments and dis-investments ✓ ✓ ✓ ✓

Wages growth ✓ ✓ ✓

Capital Formation growth ✓ ✓

Output growth ✓

The table outlines the effects of predicted RE investments on regional output, measured as 1 Million $ real GDP generated.
Each row reports the estimates obtained using a different specification, for horizons ℎ = 0, ..., 7. Our baseline regression
is (6). All control variables are lagged up to four periods. The regression includes NUTS-3 region and country-by-year
fixed effects. Standard errors are clustered at NUTS-3 region level. The F-statistic reported is an average computed over
the different time horizons ℎ for each specification.
p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.3: Impact of Aggregate Renewable Investments on Employment: Robustness Checks

Dependent Variable: Employment Growth

Explanatory Variable: Predicted RE Deployment (MW)

(ℎ = 0) (ℎ = 1) (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5) (ℎ = 6) (ℎ = 7)
F-stat

Restricted Sample

Excluding UK 4.338** 8.117** 12.806*** 19.712*** 26.281*** 28.558*** 27.669*** 34.823*** 123.98
(1.722) (3.319) (4.684) (5.980) (6.930) (7.882) (8.679) (10.279)

Wind and Solar 5.169* 11.785** 17.030** 21.356** 27.866*** 26.310*** 25.751** 37.354*** 120.29
(3.059) (5.149) (7.240) (8.754) (9.648) (9.974) (10.492) (12.280)

Alternative Instruments

Leave-one-out 5.735* 12.444** 18.341** 25.010*** 32.419*** 32.050*** 31.807*** 43.027*** 89.950
(3.309) (5.428) (7.500) (9.305) (10.172) (10.195) (10.732) (12.395)

Full-Sample Potential 18.413* 30.178** 40.459** 49.706** 61.061** 52.089** 51.363* 71.605* 40.46
(10.307) (14.325) (17.935) (22.846) (27.692) (26.283) (29.604) (38.863)

Fixed Shares 5.935* 12.064** 24.946** 28.712** 32.107** 31.681* 29.966 36.230 33.46
(3.292) (5.650) (10.204) (12.625) (14.655) (17.566) (19.586) (23.684)

Lagged Shares 3.407** 6.112* 9.943** 14.830** 17.879** 19.111** 21.983** 28.955*** 101.33
(1.734) (3.199) (4.952) (6.477) (7.429) (7.950) (9.042) (10.780)

The table outlines the effects of predicted RE investments on total regional employment, measured as number of jobs created.
Each row reports the estimates obtained using a different specification. In the first two rows, our baseline specification is
regressed over a restricted sample, respectively excluding observations for the UK in the first row, and keeping only the
aggregate investments for wind and solar as explanatory variable in the second one. We adopt four different alternative
instrument strategies. Leave-one-out consists in out in our baseline shift-share instrument calculated excluding the shift for
the region in analysis. In the last three alternative instruments, the regional shares are calculated out of the total sample and
interacted with full-sample shifts in renewable energy capacity. Full-Sample Potential interacts region potential as a share of
the total sample potential for technology 𝑘 with full-sample new capacity for technology 𝑘. For the last two specifications, the
instrument is constructed using an alternative measure of regional exposure given by the past renewable energy investments
occurred in the region. In Fixed Shares the regional shares of investments are kept fixed at the year 2000; Lagged Shares uses
the shares of technology-specific regional investments out of the total sample, lagged one year. For all equations, the control
variables include four lagged terms of GDP growth, renewable investments, wages growth, capital formation growth and
conventional energy commissioning and decommissioning. The regression includes NUTS-3 region and country-by-year
fixed effects. Standard errors are clustered at NUTS-3 region level. The darker and lighter shaded regions correspond to a
90% and 95% confidence level, respectively. The F-statistic reported is an average computed over the different time horizons
ℎ for each specification.
p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.4: Impact of Aggregate RE Investments on Output: Robustness Checks

Dependent Variable: Output Growth

Explanatory Variable: Predicted RE Deployment (MW)

(ℎ = 0) (ℎ = 1) (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5) (ℎ = 6) (ℎ = 7)
F-stat

Restricted Sample

Excluding UK 0.478** 1.141*** 2.077*** 2.686*** 2.822*** 2.756*** 2.729** 3.464** 120.57
(0.197) (0.373) (0.543) (0.719) (0.870) (1.025) (1.185) (1.449)

Excluding 0.395* 0.936** 1.694*** 2.088** 2.408*** 2.391** 2.634** 3.557** 117.77
Bio and Hydro (0.208) (0.426) (0.641) (0.831) (0.908) (1.038) (1.166) (1.427)

Alternative Instruments

Leave-one-out 0.409* 0.998** 1.855*** 2.277*** 2.606*** 2.614** 2.925** 3.857*** 112.36
(0.228) (0.447) (0.664) (0.860) (0.938) (1.056) (1.194) (1.461)

Full-sample Potential Shares 0.838*** 1.638*** 2.950*** 3.297*** 3.850*** 3.750*** 3.786** 4.930** 46.55
(0.308) (0.596) (0.881) (1.115) (1.273) (1.446) (1.574) (1.919)

Fixed Shares 1.814*** 2.721*** 4.321*** 4.868** 5.169** 5.231* 5.347* 6.460* 30.98
(0.458) (0.863) (1.554) (2.050) (2.416) (2.778) (2.932) (3.453)

Lagged Shares 0.610*** 1.105*** 1.468*** 1.671*** 2.103*** 2.502*** 2.988*** 3.752*** 119.71
(0.192) (0.340) (0.508) (0.637) (0.767) (0.875) (0.987) (1.205)

The table outlines the effects of predicted RE investments on regional output, measured as 1 Million $ real GDP generated.
Each row reports the estimates obtained using a different specification. Each row reports the estimates obtained using a
different specification. In the first two rows, our baseline specification is regressed over a restricted sample, respectively
excluding observations for the UK in the first row, and keeping only the aggregate investments for wind and solar as
explanatory variable in the second one. We adopt four different alternative instrument strategies. Leave-one-out consists in
out in our baseline shift-share instrument calculated excluding the shift for the region in analysis. In the last three alternative
instruments, the regional shares are calculated out of the total sample and interacted with full-sample shifts in renewable
energy capacity. Full-Sample Potential interacts region potential as a share of the total sample potential for technology 𝑘
with full-sample new capacity for technology 𝑘. For the last two specifications, the instrument is constructed using an
alternative measure of regional exposure given by the past renewable energy investments occurred in the region. In Fixed
Shares the regional shares of investments are kept fixed at the year 2000; Lagged Shares uses the shares of technology-specific
regional investments out of the total sample, lagged one year. For all equations, the control variables include four lagged
terms of employment growth, renewable investments, wages growth, capital formation growth and conventional energy
commissioning and decommissioning. The regression includes NUTS-3 region and country-by-year fixed effects. Standard
errors are clusterd at NUTS-3 region level. The F-statistic reported is an average computed over the different time horizons ℎ
for each specification.
p < 0.1, ** p < 0.05, *** p < 0.01
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Figure B.2: Long-run Impact of Aggregate RE Investments on Employment

(a) Employment
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(b) Output
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Notes: The őgure plots the long-run dynamic effect, estimated via LP-IV, of aggregate renewable investment on: B.2a regional
employment ; B.2b regional output. Employment is measured as the number of jobs created, while output is measured as as
1 Million $ real GDP generated. The control variables include four lagged terms of RE investments, wages growth, capital
formation growth, and conventional energy commissioning and decommissioning. The regression on employment growth
includes four lagged terms of GDP growth, while the regression on output growth includes four lagged terms of employment
growth. The regressions includes NUTS-3 region and country-by-year őxed effects. Standard errors are clustered at the NUTS-3
region level. The darker and lighter shaded regions correspond to a 90% and 95% conődence level, respectively. The reported
F statistic is an average computed over different time horizons ℎ.

Figure B.3: Impact of Aggregate RE Investments on Employment with Alternative Fixed Effects
Structure

F−stat: 101.15F−stat: 101.15F−stat: 101.15F−stat: 101.15F−stat: 101.15F−stat: 101.15F−stat: 101.15F−stat: 101.15

33.9

26.127.5
30.2

23.9

18.2

10.2

3.6

0

20

40

60

1 3 5 7
Years

N
ew

 J
o

b
s 

p
er

 M
W

Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on total regional employment,
measured as the number of jobs created. Instead of NUTS-3 and country-by-year őxed effect, as in the baseline equation (1),
the regression includes NUTS-3 region and NUTS1-by-year őxed effects. The őxed effect structure allows us to control for
degrees of sub-national discretionality in energy policies, as the one granted for example to the federal states in the case of
Germany. The control variables include four lagged terms of GDP growth, renewable investments, wages growth, capital
formation growth and conventional energy commissioning and decommissioning. Standard errors are clustered at NUTS-3
region level. The darker and lighter shaded regions correspond to a 90% and 95% conődence level, respectively. The F-statistic
reported is an average computed over the different time horizons ℎ.
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Appendix C Other estimates

Table C.1 displays the OLS regression results using 3.1. Overall, the OLS estimations report a positive correlation

between RE investments and local employment, with growing coefficients over tthe time horizon.

Table C.1: Impact of Aggregate RE Investments on Employment and Output: OLS Estimates

Explanatory Variable: Aggregate Renewable Investments

(ℎ = 0) (ℎ = 1) (ℎ = 2) (ℎ = 3) (ℎ = 4) (ℎ = 5) (ℎ = 6) (ℎ = 7)

Dependent Variable:

Employment 0.272 1.742** 2.705** 3.380** 4.744** 4.427* 4.024 9.517***
(0.557) (0.883) (1.215) (1.485) (2.015) (2.519) (2.886) (3.101)

Output 0.093 0.284*** 0.372*** 0.431*** 0.401* 0.482* 0.620** 0.959***
(0.058) (0.100) (0.127) (0.164) (0.220) (0.281) (0.309) (0.370)

The table reports the effects of aggregate renewable investments on regional employment and output, estimated according to
Equation 1. Employment is measured as number of jobs created while output is measured as real 𝑀𝑖𝑙𝑙𝑖𝑜𝑛 $ generated. Both
regressions include as controls variables four lagged terms of wages growth, capital formation growth and conventional energy
commissioning and decommissioning. The employment regression also includes the lagged terms of GDP growth, while the
output regression controls for the lagged terms of employment growth. All regressions include NUTS-3 region and country-by-
year fixed effects. Standard errors are clusterd at NUTS-3 region level.
p < 0.1, ** p < 0.05, *** p < 0.01

The table reports the effects of aggregate renewable investments on regional output, estimated according to

Equation 1. Output is measured as 1 Million $ real GDP generated. The control variables include four lagged

terms of GDP growth, renewable investments, wages growth, capital formation growth and conventional energy

commissioning and decommissioning. All regressions include NUTS-3 region and country-by-year fixed effects.

Standard errors are clusterd at NUTS-3 region level. The first stage F-statistic for each horizon is reported below

the coefficients and standard errors for both outcome variables.
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Table C.2: First Stage Estimates

Dependent Variable: New RE Capacity

Explanatory Variable: IV

(1) Renewable (2) Bioenergy (3) Hydro (4) Solar (5) Wind

ℎ = 0 Coef 0.542*** 0.623*** 0.609 0.517*** 0.655***
(0.071) (0.238) (0.381) (0.063) (0.106)

F-stat 57.54 6.82 2.55 66.47 37.96

ℎ = 1 Coef 0.552*** 0.514*** 0.609 0.516*** 0.702***
(0.069) (0.149) (0.384) (0.063) (0.109)

F-stat 63.37 11.84 2.52 66.36 41.38

ℎ = 2 Coef 0.565*** 0.597*** 0.608 0.517*** 0.756***
(0.064) (0.152) (0.385) (0.063) (0.118)

F-stat 76.96 15.43 2.50 66.82 40.98

ℎ = 3 Coef 0.587*** 0.595*** 0.612 0.541*** 0.777***
(0.068) (0.154) (0.395) (0.061) (0.132)

F-stat 75.08 14.93 2.39 79.52 34.77

ℎ = 4 Coef 0.655*** 0.586*** 0.613 0.620*** 0.790***
(0.063) (0.156) (0.396) (0.056) (0.127)

F-stat 107.24 14.00 2.41 120.36 38.89

ℎ = 5 Coef 0.706*** 0.812*** 0.616 0.647*** 0.774***
(0.061) (0.188) (0.396) (0.059) (0.141)

F-stat 132.92 18.55 2.42 119.63 30.25

ℎ = 6 Coef 0.709*** 0.816*** 0.618 0.647*** 0.711***
(0.058) (0.191) (0.396) (0.061) (0.137)

F-stat 149.16 18.30 2.43 114.18 26.75

ℎ = 7 Coef 0.685*** 0.787*** 0.626 0.564*** 0.835***
(0.059) (0.197) (0.399) (0.066) (0.139)

F-stat 135.17 15.93 2.46 72.63 36.26

The table reports the first stage coefficients and F-statistic for aggregate renewable investments (equation1)
and technology-specific investments equations (equation 3). The control variables include four lagged
terms of gdp growth, renewable investments, wages growth, capital formation growth and conventional
commissioning and decommissioning. The control variables include four lagged terms of GDP growth,
renewable investments, wage growth, capital formation growth, and conventional energy commissioning
and decommissioning. All regressions include NUTS-3 region and country-by-year fixed effects. Standard
errors are clustered at the NUTS-3 region level. Standard errors are in parentheses.
p < 0.1, ** p < 0.05, *** p < 0.01

Table C.2, reports the predictive strength of the instrument according to the endogenous variable.

While value of the first-stage F-statistic for bioenergy averaged across time horizons is only slightly smaller

compared to that computed for wind, the f-statistic for wind is always around 20 our higher, while that for

bioenergy is very small (7 and 11) for the first two time horizons. The correlation between predicted and

observed values is low for bioenergy and hydro and higher for solar and wind.
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Figure C.1: Impact of Technology - Speciőc Investments on Sectoral Employment
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Notes: The őgure plots the dynamic impact, estimated via LP-IV, of technology-speciőc investments 𝑘 on sector-speciőc regional
employment 𝑖, measured by the number of jobs created in each sector, combining the speciőcation in Equations (2) and (3).
The control variables include the investments in the remaining non-instrumented energy technologies, and four lagged terms
of GDP growth, renewable investments, wages growth, capital formation growth and conventional energy commissioning and
decommissioning. The regression includes NUTS-3 region and country-by-year őxed effects. Standard errors are clusterd at
the NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and 95% conődence level, respectively.
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Figure C.2: Impact of Aggregate Investments on Technology-Speciőc Employment in Rural and Non-
Rural Areas
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Notes: The őgure plots the dynamic effect, estimated via LP-IV, of aggregate renewable investment on sector-speciőc regional
employment in rural and non-rural areas. Employment is measured as the number of jobs created in each sector. The control
variables include four lagged terms of GDP growth, renewable investments, wages growth, capital formation growth and
conventional energy commissioning and decommissioning. The regression includes NUTS-3 region and country-by-year őxed
effects. Standard errors are clusterd at NUTS-3 region level. The darker and lighter shaded regions correspond to a 90% and
95% conődence level, respectively. The average F-statistic, computed over the different time horizons ℎ, is 99.64.
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