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Abstract—Beyond fifth-generation (B5G) networks aim to sup-
port high data rates, low-latency applications, and massive ma-
chine communications. Artificial Intelligence (AI) and Machine
Learning (ML) can help to improve B5G network performance
and efficiency. However, dynamic service demands of B5G cause
AI/ML performance degradation, resulting in violations of Service
Level Agreements (SLA), over- or under-provisioning of resources,
etc. Retraining is essential to address the performance degra-
dation of the AI/ML models. Existing threshold and periodic
retraining approaches have potential disadvantages, such as SLA
violations and inefficient resource utilization for setting a threshold
parameter in a dynamic environment. This paper presents a
novel algorithm that predicts when to retrain AI/ML models
using the generative adversarial networks (GANs) architecture.
The proposed predictive approach is evaluated for a Quality of
Service (QoS) prediction use case on O-RAN Software Community
(OSC) platform and compared to the predictive approach based
on the classifier and the threshold approach. The results show that
the proposed predictive approach outperforms both the classifier-
based predictive and threshold approaches.

Index Terms—AI/ML Model, Beyond fifth-generation (B5G)
Networks, Retraining, Generative Adversarial Networks (GANs).

I. INTRODUCTION

Beyond fifth generation (B5G) networks are driving signif-
icant transformations in the networking industry by address-
ing diverse demands such as ultra-reliable low latency com-
munications (uRLLC), massive machine-type communications
(mMTC), and enhanced mobile broadband (eMBB). However,
network operators are increasingly recognizing the need for a
higher level of intelligence to effectively navigate the inherent
complexity of B5G networks and meet the growing service
demands. Artificial Intelligence/Machine Learning (AI/ML)
models offer a promising solution as they can effectively handle
complex network architectures and make intelligent decisions
(i.e., resource allocation based on the predicted user traffic) [1],
which makes them suitable for B5G networks.

Several ongoing projects, such as Operator Defined Open and
Intelligent Radio Access Networks (O-RAN), Telecom Infra
Project (TIP), and Open RAN Policy Coalition, are actively
working towards enabling the intelligence in B5G networks.
Among these, the O-RAN Alliance architecture enables intelli-
gence through two logical RAN Intelligent Controllers (RICs):
Non-real time RIC (Non-RT RIC) and Near-real time RIC
(Near-RT RIC) [2]. The Non-RT RIC operates use cases with

a granularity of at least 1 s, whereas the Near-RT RIC operates
use cases on a timescale between 10 ms and 1 s.

Utilizing the AI/ML models enhances the performance of
B5G networks along with some challenges to deal with [3].
Traditionally, the performance of an AI/ML model depends on
the data sets being used for training or observation. However,
the highly dynamic service demands of users in B5G networks
(i.e., changes in user traffic) can affect the AI/ML model
performance degradation, resulting in resource allocation and
utilization issues [4]. Over-provisioning of resources (e.g.,
bandwidth, computing) results in network congestion, and
increased operational expenditure (OPEX). On the other hand,
under-provisioning of resources results in reduced network
performance, poor QoS, longer response time, and network
outages.

The above factors profoundly influence the Service Level
Agreements (SLAs) between service providers and users. For
example, in an automated guided vehicle (AGV) use case
exploiting B5G, the SLA defines a constant throughput of
80 Mbps, with a response time of less than 100 ms. However,
when an AI/ML model performance degradation occurs, it can
lead to violations of pre-defined SLAs [5]. Therefore, it is
crucial to address the model performance degradation in B5G.

Retraining (or updating) the model with newly arrived user
data is an effective strategy to ensure the AI/ML model per-
formance. In [6], a threshold approach is proposed to trigger
model retraining. This approach continuously monitors key
performance metrics such as accuracy, precision, recall, or
the F1 score and initiates retraining when these metrics fall
below or exceed a predefined threshold. However, determining
the appropriate threshold value poses significant challenges, as
setting it too low may result in excessive computational costs
from frequent retraining, while setting it too high may lead to
a decline in the model performance and violate SLAs. Another
approach in [7] uses the periodic retraining, where the models
are updated at regular intervals regardless of fluctuations in the
user traffic or the performance of the deployed AI/ML model.

Our recent work in [8], presented a predictive approach, in
which the AI/ML model retraining is predicted by determining
the changes in user traffic through an unsupervised classifier
(i.e., local outlier factor (LOF)) over the incoming user data.



This approach minimizes SLA violations and optimizes the
resource utilization. However, it has certain limitations such
as: (i) fails to determine changes in user traffic whenever the
change is not continuous; (ii) may not be suitable for the in-
coming user traffic with high variance and can lead to frequent
retraining; and (iii) the method used to determine the number
of consecutive windows (or data chunks) to trigger model
retraining might vary depending on the specific application
being considered.

In order to overcome the limitations of statistical measures
in the threshold approach [6] and unsupervised classifiers in
the predictive approach [8] for retraining the AI/ML model,
we propose a novel predictive approach that leverages an
advanced AI/ML framework called Generative Adversarial Net-
works (GANs) due to their ability to capture the underlying
distribution of the user traffic and adaptability to the dynamic
environments [9]. The proposed approach reduces SLA viola-
tions and increases the efficiency of computational resources.

The main contributions of this paper are summarized as
follows:

• A novel approach to predict when to retrain an AI/ML
model using GANs.

• Evaluating the proposed approach by considering the
Quality of Service (QoS) prediction use case over the O-
RAN software community (OSC) platform [10].

• Performance of the proposed approach is compared with
state-of-the-art approaches such as the predictive approach
[LOF] and a threshold approach.

II. BACKGROUND

Generative adversarial networks (GANs) [9] are advanced
AI/ML framework designed to generate new user data that
closely resembles the observed (or train) data. As shown in
Figure 1, GANs employ two neural networks: the generator
and the discriminator, where the generator network generates
synthetic data, also known as ”fake data or generated data,” to
mimic the distribution of the observed data. On the other hand,
the discriminator network is responsible for distinguishing
between the observed and the generated data.

During training, the generator initially produces fake data,
and the discriminator quickly learns to differentiate between ob-
served and generated data. However, as the training progresses,
the generator improves its output to generate more realistic
data samples that can deceive the discriminator. Simultaneously,
the discriminator enhances its ability to distinguish between
the observed and the generated data samples. This adversarial
interplay between the generator and the discriminator leads to
the refinement of both networks.

The generator network attempts to model a noise vector z
to fit the input user data traffic used for training, whereas the
discriminator attempts to accurately classify the generated data
from the observed data. Loss convergence of the generator and
discriminator terminates the training period. Essentially, both
the generator and discriminator networks are jointly involved
in a 2 – player min-max game, as shown in Equation 1, until
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Figure 1: GAN architecture.

the discriminator fails to distinguish between the observed and
generated data [11].

min
G

max
D

Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[1− logD(G(z))] (1)

where x is the user input data, pdata is the observed data
distribution, pz(z) is the noise distribution, log(D(x)) is the
predicted output of the discriminator for x, and log(D(G(z))
is the output of the discriminator on the GAN generated data
G(z). The aim is to maximize the ability of the discriminator
to identify observed data from generated data (i.e., max

D
),

whereas the generator part of the equation tries to minimize
the discriminator’s ability to classify observed and generated
data correctly (i.e., min

G
).

The applications of GANs in the radio access network (RAN)
include the generation of synthetic data, resource optimization,
network planning, and QoS management [11]. However, we
leverage the GANs to determine when to retrain an AI/ML
model, which is detailed in the following sections.

III. SYSTEM MODEL AND PROPOSED APPROACH

This section describes the system model and the proposed
approach to predict when to retrain an AI/ML model.

A. System Model

Figure 2 shows the O-RAN architecture in which two RAN
intelligent controllers (RIC) are defined: the Near-Real Time
(Near-RT) and the Non-Real Time (Non-RT) [2] to employ
the intelligence. These RICs enable B5G network autonomous
optimization by operating at different timescales depending on
the position of the AI/ML model inference [12].

The O-RAN architecture provides various interfaces, includ-
ing O1, A1, and E2, to enable data collection and commu-
nication among the RAN components (i.e., central unit (O-
CU), distributed unit (O-DU), and radio unit (O-RU)). The
O1-interface obtains the input data from all the components
(O-CU, O-DU, and O-RU) and model deployment/termination
information from Non-RT to Near-RT RIC. The A1-interface
publishes policy-based guidance, AI/ML performance feed-
back, verification, and monitoring information between Non-
RT RIC and Near-RT RIC. The E2-interface is to control the
RAN functions through the E2 control messages.

Within the Non-RT RIC, the AI/ML model management
block plays a crucial role in determining when to retrain the
model using the proposed predictive approach, which leverages
the GANs to predict retraining requirement in advance. The
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Figure 2: O-RAN architecture.

AI/ML model management block also communicates with the
AI/ML training block to initiate the retraining when necessary.

B. Proposed Approach

The proposed approach predicts when to retrain the AI/ML
model by exploiting GANs to generate data that is close to
the observed and then performs Kolmogorov-Smirnov test (KS
Test) [13] over both the generated and incoming user traffic
data to determine changes in the user traffic. The proposed
approach triggers retraining if there is any change in user
traffic. Algorithm 1 depicts the proposed predictive approach,
and Table I reports the definitions of the parameters/variables
used in it.

Table I: Description of variables used in Algorithm.

Acronym Referring to / Definition
ds Incoming data stream.
DMLP Discriminator built with multi-layer perceptron neu-

ral network to differentiate between the observed and
generated data.

G Generator built with the LSTM architecture to gen-
erate data close to the observed data.

Pkstest Value determined by Kolmogorov-Smirnov Test (KS
Test) [13] between the generated and observed data
during the training of GAN.

Dscore Range of discriminator score (i.e., between 0 and
1) obtained for the observed data during training of
GAN.

WS Window Size
Noise A source of variability or randomness injected into

the GAN model to generate diverse and realistic
data [9]. We used Gaussian noise throughout the
study.

Ypredict Stores the DMLP prediction output in a list.
Z Samples from the distribution considered in Noise.
gdata Generated (or new) data from Generator G.
G(z) Generator G, taking a vector z of size WS as an

input, which is sampled from Z.
KST KS Test, which quantifies the distance between two

distributions based on their empirical cumulative dis-
tribution functions (ECDF) and determines whether
the incoming user traffic is following the observed
data distribution or not [13].

Pvalue Value determined by KS Test for each window
of length WS by comparing both generated and
incoming user data.

Algorithm 1 takes ds, DMLP , G, Pkstest, Dscore, WS, and
a Noise as inputs and predicts whether to retrain an AI/ML

Algorithm 1 Predicting AI/ML Model Retraining Using GANs.

1: Input : ds,DMLP ,G, Pkstest,Dscore,WS,Noise
2: Output : Retrain the AI/ML model or not
3: while data available do
4: for i← 0 to ⌊ length(ds)WS ⌋ do
5: Ypredict ← DMLP ([i ∗WS to (i+ 1) ∗WS])
6: for j ← 0 to WS do
7: if Ypredict[j] is in Dscore then
8: Do Nothing
9: else

10: Warning Zone
11: end if
12: Z ← Noise
13: gdata ← G(z)
14: Pvalue ← KST [gdata, ds[i ∗WS to (i + 1) ∗

WS]]
15: if Pvalue < Pkstest then
16: Retrain the AI/ML model
17: end if
18: end for
19: end for
20: end while

model or not as an output. The incoming data stream ds divides
into consecutive chunks of data with a length of WS, and the
DMLP predicts whether the incoming user traffic belongs to the
observed or not over each data sample in the data chunk (see
lines 4-6). The DMLP assigns a score between 0 and 1 for each
data sample, and if the score lies in the range of Dscore, no
action will be taken (see lines 7-8). Otherwise, a warning zone
is triggered to indicate that changes in user data are introduced
in the incoming user traffic (see lines 9-10). We collect data for
model retraining from the point where the warning zone starts
and till the model retraining is triggered.

The generator (G) takes the Noise as input and generates
data (i.e., gdata) of length WS (see lines 12-13). The gdata
is compared with the data chunks from the incoming user
traffic using the KS Test to determine changes in the user
traffic. The KS Test computes the maximum distance between
the cumulative distribution functions (CDFs) of the two dis-
tributions (i.e., gdata and ds) and calculates a Pvalue, which
represents the probability that the ds and the gdata are from the



Figure 3: Experimental Setup.

observed data. A lower Pvalue indicates the arrival of significant
changes in the incoming user traffic. Whenever Pvalue is lower
than Pkstest, the proposed approach trigger AI/ML model
retraining, indicating that the incoming user traffic is different
from the underlying observed data (see lines 14-17). During
the retraining, the previously trained AI/ML model weights are
updated based on the newly available data and deployed as
a xApp (i.e., AI/ML model deployed at the Near-RT RIC) to
predict further.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup used to evalu-
ate the Quality of Service (QoS) prediction use case over the
OSC RIC platform, followed by a discussion of the results.

A. Experimental Setup

The proposed approach is evaluated for QoS prediction
use case, which focuses on predicting the service quality
(i.e., throughput) provided by network operators to their cus-
tomers [14]. Figure 3 depicts the experimental setup used to
evaluate the QoS prediction use case, in which the proposed
approach is deployed on the Non-RT RIC platform and inte-
grated with the OSC RIC platform.

We deployed the OSC Near-RT RIC framework (F-release),
an E2 simulator, and various open interfaces [10]. The Near-RT
RIC framework is deployed as a Kubernetes pod, a collection
of containers running inside a node of a Kubernetes cluster.
The OSC Near-RT RIC components include an E2 manager, a
routing manager, a subscription manager, an app manager, and
a shared database (i.e., InfluxDB). Open interfaces such as A1,
E2, and O1 were also utilized, as shown in Figure 3. These
components are deployed as microservices within the Kuber-
netes cluster. The AI/ML models run at the Non-RT and Near-
RT RIC are referred to as rApps and xApps, respectively [2].
When a xApp is onboarded into the Near-RT RIC, it would
write its statistics into the common database (i.e., InfluxDB).

Within the Near-RT RIC, a key performance metric mon-
itoring (KPMMON) xApp is responsible for monitoring and
storing the statistics of each layer in the RAN to an InfluxDB
database. It periodically writes the statistics of the data units
used for each layer, and an API function inside the database
measures the cell throughput each time the data is updated.

Furthermore, the QoS prediction (QP) xApp is also onboarded
in the Near-RT RIC. The QP xApp predicts the QoS values
and writes them into the InfluxDB database, and it utilizes a
three-layer Long Short Term Memory (LSTM) model [15] with
100 hidden units in each layer, along with a rectified linear unit
(ReLU) activation function.

An OSC E2 simulator consists of 5G core, O-CU, O-DU,
and O-RU. These components establish communication with
the Near-RT RIC through the E2 control messages such as (1)
E2 setup request; (2) E2 setup subscription; and (3) E2 setup
indication as shown in Figure 3. Additionally, the E2 simulator
can be connected by multiple user equipment (UEs) with
varying data rates configured through a customized JavaScript
Object Notation (json) file.

Note that the current F-release of OSC does not include a
complete implementation of the SMO (Service Management
and Orchestration) and the Non-RT RIC frameworks. There-
fore, to evaluate the QoS prediction use case using the proposed
approach, the missing functionalities in the OSC platform
are implemented and deployed on a bare metal server, for
example, performing the off-line AI/ML models training and
onboard them in the Near-RT RIC as a microservice using the
dms cli tool. Additionally, the proposed predictive approach
is implemented as a REST API. It monitors changes in user
traffic by accessing real-time data (i.e., throughput) from the
InfluxDB database through a customized API.

The Near-RT RIC and E2 simulator are connected and
integrated with the proposed predictive approach — which used
a GAN architecture to determine changes in the incoming user
traffic and trigger retraining when necessary — deployed in
Non-RT RIC to provide AI/ML model management function-
alities such as data collection and preparation, AI/ML model
training, and it’s deployment.

We leverage the deployed experimental setup to evaluate the
performance of the proposed predictive approach [GAN] along
with two other approaches, the predictive approach [LOF] [8]
and the threshold approach [6] for determining the change in
the user traffic and to adapt with it.

Initially, the proposed predictive approach [GAN] is em-
ployed with WS set to 10 for evaluating the QoS prediction
usecase [5]. Whereas, the functionality of the other approaches
that are considered for comparison with the proposed predictive
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Figure 4: Evaluation of QP xApp using the proposed predictive approach along with the other approaches

approach [GAN] is as follows:
• Predictive Approach [LOF]: Predicts when to retrain the

AI/ML model by exploiting a LOF classifier that calculates
the local density deviation for each incoming user data
sample and determines whether it belongs to the observed
data or the new data. If the new data arrives over a certain
period of time, which can be calculated as a function of
both the time taken to transmit the considered data samples
from the data stream (i.e., Tds) and the end-to-end delay
of the application under consideration (i.e., Te2e), then
the predictive approach [LOF] triggers retraining. Tds and
Te2e are set to 20 ms and 5 ms, respectively to evaluate
this approach [8].

• Threshold Approach: Triggers the model retraining
whenever the considered AI/ML model performance met-
ric exceeds the pre-defined threshold. The root mean
square error (RMSE) over each data chunk of size WS
is served as the performance metric for the threshold
approach, and it is set to 15 [8].

The performance metric considered to evaluate these ap-
proaches is how promptly they can determine the changes in
the incoming user traffic and adapt to it by triggering model
retraining [16].
B. Results

We considered a QoS dataset collected from the InfluxDB
database through an API inside the Non-RT RIC and used it to
train the LSTM models for each of the considered approaches.
The trained LSTM model of each approach is deployed as QP
xApp to predict the throughput as shown in Figure 4.

Figure 4 depicts the performance of the considered ap-
proaches in predicting the throughput. We configured multiple
UEs with different data rates to create changes in the incoming
user traffic (i.e., the bottom plot of Figure 4), which can
be observed from 140 ms onwards. The threshold approach

detected changes in the user traffic between 270 ms and
280 ms. It triggered retraining at 280 ms when its RMSE
exceeds the defined threshold, and the retrained LSTM model
is replaced at 395 ms to predict the further throughput values.
And the predictive approach [LOF] is employed over the same
user traffic and it triggered retraining at 180 ms after detecting
changes in user traffic over four consecutive data chunks
between 140 ms and 180 ms, and is replaced at 295 ms.
Whereas, the proposed predictive approach [GAN] triggers
retraining at 150 ms after determining changes in the user
traffic and is replaced with retrained LSTM model at 260 ms
to predict the throughput values accurately. Figure 5 presents
the model retraining trigger time, retraining duration, and its
replacement time for each approach considered in Figure 4.
From Figure 5, the early trigger for retraining, short duration
of model retraining with newly arrived data, and quick model
replacement by the proposed predictive approach [GAN] can
adapt to the user traffic changes effectively. It is important to
note that early detection of changes in the user traffic helps
to retrain and replace the model quickly to predict the QoS
accurately.

Furthermore, to evaluate the performance of the three ap-
proaches, we have analyzed the traffic rate over a duration
of 3600 seconds, in which the variations in user traffic are
introduced at 60 specific instances. Figure 6 presents a sampled
probability mass function (PMF) that depicts the correlation
between the time required to identify the occurrence of a change
in user traffic and the corresponding frequency of such occur-
rences. On the Y-axis of Figure 6, occurrences represent the
percentage of instances out of 60 in which each approach takes
a specific time (e.g., 10 ms, 20 ms, etc.) to trigger retraining
after the occurrence of an actual traffic change, whereas the X-
axis is a discrete variable as the model retrain trigger time will
be a factor of WS. The threshold approach exhibits a maximum



Figure 5: Performance comparison of the proposed predictive
approach with the other approaches.

of 25% occurrences at 60 ms, while the predictive approach
[LOF] shows approximately 85% occurrences at 40 ms. In
contrast, the proposed predictive approach [GAN] achieves
approximately 98% occurrences at 10 ms. Thus, experimental
evidence supports the effective determination of user traffic
changes by the proposed predictive approach [GAN].

Figure 6: Sampled PMF of model retraining trigger time.
A performance comparison reveals that the changes in user

traffic are effectively adapted by the proposed predictive ap-
proach [GAN] compared to the predictive approach [LOF] and
the threshold approach due to its ability to capture the underly-
ing user data distribution. Preparing an updated model before
the arrival of new data may cause minimal SLA violations
and resource provisioning issues while avoiding unnecessary
retraining to save significant resources. Although, training the
GANs can be challenging due to certain challenges, such as
model instability, where the generator fails to capture the full
knowledge of the observed data. Various techniques, such as
architectural modifications, hyperparameter adjustments, and
regularization methods can be used to address this challenge.

V. CONCLUSIONS AND FUTURE DIRECTIONS
This paper presented an approach to predict when to retrain

an AI/ML model which can prevent severe SLA violations
and facilitate efficient resource provisioning. The proposed

predictive approach leverages the GANs to predict when to
retrain an AI/ML model. We compared the proposed predictive
approach [GAN] with the QoS prediction use case using the
Open RAN Software Community (OSC) platform with the
existing predictive approach [LOF] and a threshold approach.
The future work will explore Reinforcement Learning (RL)
approaches to predict when to retrain an AI/ML model.
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