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Abstract: Seven auxin-producing endophytic bacterial strains (Azospirillum spp., Methylobacterium
symbioticum, Bacillus spp.), and two different combinations of these strains were used to verify
their influence on tomato during germination and development in hydroponic conditions where,
as a novelty for Canestrino di Lucca cultivar, endophytic bacteria were inoculated. To emphasize
the presence of bacterial auxins in roots and stems of seedlings, both in situ staining qualitative
assessment and quantitative analysis were carried out. Moreover, hypogeal and epigeal growth of
the plantlets were measured, and correlation analyses were conducted to examine the relationship
between the amount of indolacetic acid (IAA) produced by the bacterial strains and root and stem
parameters. Plantlets treated with microbial inoculants showed a significant increase in the survival
rate compared to the control treatment. The best results as IAA producers were from Azospirillum
baldaniorum Sp245 and A. brasilense Cd, which also induced significant root growth. On the other
hand, Bacillus amyloliquefaciens and B. licheniformis induced the best rates in stem growth. These
findings highlight the potential for using endophytic bacterial strains in a hydroponic co-cultivation
system that enables inoculating plantlets, at an early stage of growth (5 days old).

Keywords: endophytic bacteria; Azospirillum spp.; Bacillus spp.; hydroponic; IAA; rhizobacteria; in
situ staining; PGPB; tomato; Canestrino di Lucca; inoculation method

Key Contribution: A novel inoculation method for the early stage of growth of hydroponic plantlets
is proposed. The effect on plant growth and the survival rate induced by seven different microbial
inoculants is carried out.

1. Introduction

Global warming, a decline in farming regions, water scarcity, and population expan-
sion are major issues affecting food production worldwide [1]. Plant growth suffers by soil
contamination for pathogens and toxicants, inadequate humus content, acidic or alkaline
soil pH, insufficient drainage, land deterioration and adverse weather conditions (i.e.,
drought and floods). Weather conditions affect crop yield, and droughts and floods can
cause a large portion of the harvest to be lost [2–4]. In alternative to conventional soil-based
agriculture, the hydroponic system, using mineral nutrient solutions as growth substrate
for plants, enables avoiding the above-mentioned drawbacks. This technique, occasionally
supported with natural or synthetic materials, is more economical and ecologically friendly,
producing healthier plants in comparison with traditional cultivations [5].

The majority of hydroponic systems (HS) have been utilized for commercial vegetable
and cut flower production and they are also frequently employed for gardening, education,
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and research [6]. Among vegetables, tomatoes make considerable use of HS [7]. Compared
to open-field cultivation, growing tomatoes in HS offers several advantages: increased crop
yield and plant density per square meter, improved water use efficiency, and a reduced
carbon footprint [8].

Growers can choose from a wide variety of HS options, but more innovations are re-
quired to improve crop yields and profitability. The cost of fertilizers has risen dramatically.
Since 2021, prices rose by 78.6% over the previous year [9]. Furthermore, nitrogen fertilizers,
which are widely used in HS (especially for tomatoes), result in higher N2O emissions
compared to traditional open-field cultivation [10–12]. Thus, finding solutions that will
enhance HS production and decrease its environmental and cost impact is a current topic.
Developing microbial inoculants containing plant growth-promoting bacteria (PGPB) that
are able to promote plant growth is considered an interesting solution [13].

In soil-based systems, PGPB provide substantial advantages to plants. This involves
facilitating the plant’s uptake of nutrients, boosting growth, mitigating stress, and pre-
venting infections. PGPB make it easier for plants to absorb vital nutrients from soil or
atmosphere (such as iron, phosphorus, potassium, and fixed nitrogen). In addition, certain
PGPB synthesize phytohormones such as auxins, cytokinins, and gibberellins, which have
a direct impact on plant growth [14].

The use of plant growth-promoting bacteria (PGPB) in hydroponic systems is con-
sidered a sustainable and efficient alternative to chemical fertilizers [15]. Unlike chemical
fertilizers, which can lead to nutrient runoff and environmental pollution, PGPB can estab-
lish a symbiotic relationship with plants, optimizing nutrient uptake and improving overall
plant health, providing protection against pathogens and abiotic stressors. In addition, the
utilization of PGPB within a controlled growth system (such as HS) can enhance PGPB
effectiveness and prolong microbial activity, since it lacks the intense competition often
found in the rhizosphere [13]. Although research on this topic is still limited, the existing
studies yield encouraging results. Gul [16] reported that in a hydroponic tomato system,
plants treated with PGPB produced a higher yield than the control treatment, as PGPB
supported plant growth and biological control efficacy. Furthermore, Aini [17] have verified
that tomato plants grown in HS treated with biological agents produced fruits that weighed
more than those that were not.

A HS containing N-fixing endophytic bacteria that can supply nitrogen through plant
tissues, can also decrease the need for inorganic nutrients [18]. Examples of these PGPB
include Azospirillum spp., and Methylobacterium sp., N2-fixing endophytic bacteria [19–21].

Inoculation in HS with Azospirillum spp. has been carried out on several crops. Mia
et al. (2010) found out that Azospirillum sp. and Bacillus sp. enhanced nitrogen yield in
bananas seedlings [22]. A consortium comprising several nitrogen fixers, such as Azotobacter
chroococcum, Azospirillum brasilense, Pseudomonas fluorescens, and Bacillus subtilis, developed
by Aini et al. (2019) [23], doubled the intake of nitrogen. Last but not least, a hybrid
culture of unknown nitrifiers and ammonifiers was able to use organic nitrogen in a tomato
crop, for hydroponic farmers to convert from conventional inorganic fertilizers to organic
ones [24].

Some PGPB have the capacity to produce indole acetic acid (IAA), which enables them
to increase root surface area and promote in plant development [14]. It has been often
proved that microbial inoculants producing IAA, such as Azospirillum sp., have increased
roots hair growth and roots biomass [13] in soil condition. In addition, inoculation of crops
grown in HS with IAA-producing PGPB has been a way to enhance yields, shortening the
acclimatation period and reducing abiotic stress [25]. Moghaddam [26] proved that radish
grown in HS could increase root number, dry weight, root length, and wet weight when
inoculated with IAA-producing Azospirillum sp. Furthermore, El-Kawas [27] registered
that Azospirillum sp., and Klebsiella sp., cell-free supernatant (containing IAA produced by
the microbial strains) increased root development in rice plants in HS.

Bacillus spp. are highly employed as PGPB as well, not only as biocontrol agent and
abiotic stress resistance inducer [28–30]. In HS, Bacillus subtilis is widely known for its
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capacity to reduce resistance to excessive salt concentrations in nutrient solutions, and
for promoting plant growth [31,32]. Bacillus amyloliquefaciens has been demonstrated to
improve tomato water use efficiency and quality in terms of a greater amount of vitamin
C [33]. Bacillus licheniformis has been shown to improve tomato and pepper weight and
diameter, as well as higher yields of each crop [34]. Even if Bacillus sp. are known to also
be IAA producers, no study has been carried out yet to investigate Bacillus sp. ability to
produce IAA in HS and its influence on tomato plants growth parameters.

In this research, the aim was to investigate the impact of seven IAA-producing bacterial
strains from the genera Azospirillum, Bacillus, and Methylobacterium on the early growth
stages of tomato (Solanum lycopersicum L.) plantlets in HS, developing a novel hydroponic
system specifically designed to facilitate the study of plant–microbial interactions.

2. Materials and Methods
2.1. Microbial Strains

Seven bacterial strains and two mixes were used as listed in Table 1. Polymicrobial
inoculants (MIX A and MIX B) were prepared accordingly to past preliminary results (pers.
comm.) of a dual-culture assay (Cross Streak Assay using Living Cells) [35]. Stock cultures
were stored at −80 ◦C in 20% glycerol and before being used, they were grown overnight
at 27 ◦C at 120 rpm in liquid Nutrient medium: Lab-Lemco powder 1.0 g/L; yeast extract
2.0 g/L; peptone 5.0 g/L; sodium chloride 5.0 g/L (Oxoid, Thermofisher, Milan, Italy).

Table 1. Microbial strains employed in this research.

Species Strain Reference/Source Isolated from

Azospirillum baldaniorum Sp245
Baldani et al., 1986 [36];
Dobbelaere et al., 1999 [37];
dos Santos Ferreira 2020 [38]

Triticum aestivum—Brazil

Azospirillum brasilense Sp7 DSMZ * Digitaria decumbens
roots—Brazil

Azospirillum brasilense Cd DSMZ Cynodon dactylon roots—USA
Bacillus amyloliquefaciens Fukumoto strain F DSMZ soil—unknown county
Bacillus licheniformis Gibson 46 DSMZ country of unknown origin

Bacillus subtilis 101BS Filippi et al., 1987 [39];
Citernesi et al., 1994 [40] carnation rhizosphere

Methylobacterium symbioticum SB0023/3T
Pascual et al., 2020 [21]
Symborg Inc. (Murcia, Spain) ** (EP
Application No. EP3747267A1)

spores of Glomus
iranicum—Spain

MIX A Azospirillum baldaniorum Sp245; Azospirillum brasilense Sp7;
Azospirillum brasilense Cd, Methylobacterium symbioticum SB0023/3T

MIX B Bacillus amyloliquefaciens Fukumoto strain F,
Bacillus licheniformis Gibson 46, Bacillus subtilis 101BS

* DSMZ—German Collection of Microorganisms and Cell Cultures (GmbH, Braunschweig, Germany). ** Symborg
Inc., Avenida Jesús Martínez Cortado, 51 30100-Espinardo, Murcia (Spain).

2.2. Preparation and Germination of Tomato Seeds

Tomato seeds (No 550) of variety ‘Canestrino di Lucca’, provided by Gargini Sementi
di Toscana s.n.c. (Lucca, Italy), were surface sterilized by immersion in 70% ethanol for
1 min, followed by treatment with 10% hypochlorite for 5 min, and subsequently rinsed
five times in sterile distilled water.

The described approach intends to provide a support to seedlings at very early stage
of growth using metal mesh structures, while simultaneously co-cultivating them alongside
bacteria: it is a modification of the work provided by Nathoo et al. [41].

First, metal mesh combs (MMC) were prepared. Strips of 2 cm × 12 cm × 1 mm were
cut with common scissors. Then, some strings from the long side were removed to shape
the mesh like a comb (Figure 1a). Once prepared, MMC were autoclaved at 121 ◦C for
20 min. Petri dishes (dia. 120 mm, N = 50) containing sterilized water-agar (10 g/L, Agar
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Technical—Biolife, Milan, Italy) were prepared. One single sterilized MMC was placed
on the solid agar of each Petri dish. Finally, 10 sterilized seeds per Petri dish were placed
on the MMC as shown in Figure 1b and closed with lids and Parafilm® tape. This step,
timepoint 0 (T0), was considered the beginning of the experiment. Thus, Petri dishes were
placed at 4 ◦C for 24 h in the dark. Afterwards, the seeds were left germinating at 22–24 ◦C
in the dark for 5 days (T5). At T5, the germination rate was recorded as percentage of
germinated seeds [42].
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Figure 1. (a) Metal mesh combs (MMC) were prepared by cutting strips of 2 cm × 12 cm × 1 mm
with common scissors, and some strings from the long side were removed to shape the mesh like a
comb; (b) one single sterilized MMC, containing 10 sterilized seeds, was placed on the water-agar in
Petri dish.

2.3. Acclimation

The seedlings needed to go through an acclimatization period that enabled the
seedlings to adapt to the hydroponic environment before inoculation with microorganisms.
Acclimation was performed by moving the seedlings into sterile clear plastic jars (100 mL)
and enabling the seedlings to grow for 3 days using only Hoagland solutions (Figure 2).
Two different Hoagland solutions were prepared, according to Kaur et al., 2016 [43]: HT
(Hoagland Total) was set up for the inoculation for Bacillus spp. and MIX B, and HN
(Hoagland for Nitrogen-fixers) solution was set up for the inoculation with the nitrogen-
fixing bacteria (Azospirillum spp., M. symbioticum and MIX A [44–46]). Hoagland Total (HT)
contained Ca(NO3)2·4H2O, KNO3, KH2PO4, MgSO4·7H2O, trace elements, FeEDTA—all
nutrients; Hoagland for nitrogen-fixers (HN) excluded nitrogen sources (Ca(NO3)2·4H2O
and KNO3). The decision to use two types of Hoagland solutions—one with all nutrients
(HT) and one identical but without nitrogen (HN)—is based on the different metabolic
needs of microorganisms and the response of plants to stress. When plants experience
nitrogen deficiency, they produce root exudates to attract beneficial microorganisms [47,48].
A lack of nitrogen triggers nitrogen fixation processes in bacterial strains and encourages
plants to form beneficial relationships with the bacteria [47]. According to Souza, Saijai, and
Kontopoulou [44–46], this approach is commonly used in such experimental setups. Both
solutions were prepared at half-strength and supplemented with 1.5 g/L of L-tryptophan,
to favor the production of auxins by the bacterial inoculants [49,50]. The jars were filled
with 80 mL of the respective Hoagland solution in a sterile flow hood. A total of 30 jars
were filled with HN solution, while 25 were filled with HT solution. The MMC enables
the roots of the seedlings to extend into the liquid solution. The jars were sealed with lids,
and the seedlings were incubated at 22–24 ◦C for 72 h (T8). Shaking at 50 rpm was used to
provide aeration.
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Figure 2. Hydroponic co-cultivation system: the metal mesh combs (MMC) enabled (a) collecting all
the plantlets at the same time with one single motion, and (b) extending into the liquid solution the
roots of seedlings.

2.4. Co-Inoculation

Microbial cell suspensions were prepared according to the method described by
Bartolini et al. [51]. The bacterial cells were then separated from the supernatant by
centrifugation at 4000 rpm for 7 min. The supernatant was carefully removed, and the
cells were resuspended in HN or HT solution to obtain a concentration of 1 × 108 CFU per
80 mL. Azospirillum baldaniorum Sp245, Azospirillum brasilense Sp7, Azospirillum brasilense
Cd, Methylobacterium symbioticum SB0023/3T and MIX-A were inoculated with the HN
solution, and Bacillus amyloliquefaciens (Fukumoto strain F), Bacillus licheniformis (Gibson 46),
Bacillus subtilis 101BS, MIX-B with the HT solution. The control groups were represented by
un-inoculated HN (for C(a)) and HT (for C(b)). Tomato seedlings in the HS were cultivated
for 10 days under natural light at 22–24 ◦C, shaking at 50 rpm to provide aeration.

The tomato seedlings were taken out of jars. The length of stems and roots was
measured at the beginning of the co-inoculation phase (T8) and at the end of the experiment
(T18), using a software for image processing (ImageJ-Version 1.54g-Rasband, W.S., U.S.
National Institutes of Health, Bethesda, MD, USA, https://imagej.net/ (accessed on 18
October 2023) 1997–2018). At T18, the survival rate of the seedlings has also been registered.
The temporal timeline of the experiment is schematically shown in Figure 3.
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2.5. Analysis of Indole-3-Acetic Acid (IAA) Production

At the conclusion of the co-cultivation phase, when the plantlets were removed
from the jars, both the plantlets and the remaining HT and HN solutions were tested
for the presence of auxin (IAA) produced by each bacterial strain and mixtures. In these
experiments a further control group containing IAA without the presence of bacteria was
omitted considering that, previous preliminary trials (pers. comm.), did not give effective
results on the survival rate and root architecture.

A colorimetric assay using the Salkowski reagent method, as described by Gang
et al. [50], with modifications. Salkowski’s reagent comprises a solution containing 35%
HClO4 and 10 mM FeCl3, which reacts with IAA (indole-3-acetic acid) to form a tris-(indole-
3-acetate) iron (III) complex, resulting in a pink coloration.

To achieve the in situ staining of the plantlets’ organs, the roots and stems of tomato
seedlings were stained dipping the plantlets in 500 µL of Salkowski reagent for 30 min, as
described by Gang et al. [50].

The quantification of auxins was conducted on the inoculated HN and HT solutions at
the conclusion of the experiment, following the method described by Gang et al. [50].

Quantification was performed using the Infinite® M Nano microplate reader (Tecan,
Männedorf, Switzerland) with a 96-well plate. Auxin levels expressed as mg/L were
determined by spectrophotometric assay at 530 nm. All determinations were performed in
triplicate, including control groups and the calibration curve.

2.6. Data Analysis

Statistical analyses have been performed using both R Statistical Software (v4.1.2; R
Core Team 2021) and the package GraphPad Prism 10 (GraphPad Software, Inc., version
10.0.0 for Mac OS X, Boston, MA, USA, www.graphpad.com). Prior to analyses, data
were log, square-root and square-transformed to satisfy normality and homoscedasticity
assumptions. The standard errors (±SE) of the means were calculated for each parameter
measured, considering p ≤ 0.05. Data were compared using analysis of variance (ANOVA)
and Tukey’s multiple range test was assessed to compare the differences among means.

3. Results
3.1. The Germination and Survival Rate of Tomato Seeds

The germination rate of Canestrino tomato seeds, maintained on MMC in a water-
agar substrate, was assessed after 5 days (T5). At this time, a germination average (Avg)
around 77% was recorded.

At the experimental ending (T18), the survival of the seedlings was recorded, and a
marked difference between bacterial co-inoculation treatments and controls was observed.
The mean survival rate of the treated seedlings was approximately 95%, whereas the control
plants had a significantly lower mean survival rates (66% for C(b) and 50% for C(a)). Among
the tested bacteria, A. baldaniorum Sp245 showed the highest rate, making 98.5% of plantlets
survive (Table 2).

Table 2. Mean survival rate (±SE) of Canestrino tomato seedlings at the end of the co-inoculation
treatments (T18) with different bacteria. Different letters indicate significant differences at p ≤ 0.05.

Treatment Survival (%)

Azospirillum baldaniorum Sp245 98.5 ± 0.5 a
Azospirillum brasilense Sp7 92.4 ± 1.2 a
Azospirillum brasilense Cd 95.2 ± 2.4 a

Methylobacterium symbioticum SB0023/3T 95.1 ± 1.5 a
MIX A 96.8 ± 1.7 a

Avg 95.6 ± 1.8
Control 50 ± 1.1 b

www.graphpad.com
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Table 2. Cont.

Treatment Survival (%)

Bacillus amyloliquefaciens 91.6 ± 0.4 a
Bacillus licheniformis 88.9 ± 1.0 a

Bacillus subtilis 101BS 89.2 ± 1.2 a
MIX B 90.1 ± 1.3 a

Avg 89.9 ± 1.1
Control 66.1 ± 2.2 b

3.2. Effect of the Bacterial Strains Inoculation on Roots and Stems

At the end of the experimental period (T18), in which tomato plantlets were subjected
to the bacterial co-inoculation treatments that lasted 10 days, plantlets were collected from
the hydroponic system, and the length of roots and stems were measured. In general,
all bacteria (alone and mixed) were significantly effective when compared to the control
groups (Figure 4a,b). The average increases in the total length of roots and stems ranged
from approximately 106% to 175% for HN, and from approximately 56% to 102% for HT.
Specifically, plantlets of the control groups showed average length values of 14.97 mm and
17.99 mm for roots, and 42.60 mm and 53.97 mm for stems in HN and HT, respectively.
Analyzing the proportional data between hypogeal and epigeal organs, most bacteria from
both Hoagland solutions, induced a major development of the stems. Within HN solution
(Figure 4a), A. baldaniorum Sp245, A. brasilense Cd and M. symbioticum SB0023 proved to be
the best, inducing roots growing of a mean length of 86.92 mm, 51.67 mm and 45.28 mm
and stems of a mean length of 77.08 mm, 77.50 mm and 80.50 mm, respectively. Within HT
solutions (Figure 4b) the finest were B. amyloliquefaciens and B. licheniformis, that induced,
respectively, a mean root growth of 39.99 mm and 29.99 mm, and a mean stem length of
89.02 mm and 80.55 mm, respectively. It is interesting to note that both MIX (A and B)
induced a more equilibrated root and stem growth, closely to 50% of the total. MIX A
induced a mean roots length of 70,55 mm and a mean stem length of 55.43 mm; MIX B
induced a mean root length of 46.38 mm and a mean stem length of 55.96 mm.

BioTech 2024, 5, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Mean length (±SE) of roots and stems of tomato plantlets treated with: (a) Azospirillum 
spp., M. symbioticum, MIX A in HN (Hoagland for N2 fixers) solution; (b) Bacillus spp., MIX B, in HT 
(Hoagland Total) solution. Controls: C(a) and C(b). Different letters among roots and stems indicate 
significant differences at p ≤ 0.05. 

3.3. Analysis of Indole-3-Acetic Acid (IAA) Production 
Results obtained from an IAA qualitative assessment by the Salkowski’s reagent test 

showed that each examined strain was able to metabolize L-tryptophan (TRP) into IAA or 
similar compounds (Figures 5 and 6). The visual evaluation of a pinkish-red hue on roots and 
stems of tomato plantlet enabled identifying the spatial distribution of a probable IAA synthe-
sis induced by the microbial strains. A difference in staining intensity was observed among 
the different treatments, in comparison with control plants that were lacking in pink appear-
ance after the Salkowski’s reagent application (Figure 5). In particular, Bacillus spp. exhibited 
less intense staining, while Azospirillum spp. showed the strongest intensity. 

 
Figure 5. In situ Salkowski reagent staining on tomato plantlet organs treated with microbial strains 
added to different Hoagland solutions: HN (Hoagland for N2 fixers) and HT (Hoagland Total for 
bacillus). The appearance of a pinkish-red hue on roots and stems shows the presence of auxin. In 
contrast, control plants (C(a) and C(b)) lack any pink coloration. 

Figure 4. Mean length (±SE) of roots and stems of tomato plantlets treated with: (a) Azospirillum
spp., M. symbioticum, MIX A in HN (Hoagland for N2 fixers) solution; (b) Bacillus spp., MIX B, in HT
(Hoagland Total) solution. Controls: C(a) and C(b). Different letters among roots and stems indicate
significant differences at p ≤ 0.05.

A fundamental difference was observed between the two sets of treatments: bacterial
strains from the HN set significantly affected the root length of the plantlets compared to
C(a), while the bacterial strains from the HT set did not significantly affect the root length
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of the plantlets compared to the control group C(b). On the contrary, the HT treatment set
was more effective on the stem length.

3.3. Analysis of Indole-3-Acetic Acid (IAA) Production

Results obtained from an IAA qualitative assessment by the Salkowski’s reagent test
showed that each examined strain was able to metabolize L-tryptophan (TRP) into IAA or
similar compounds (Figures 5 and 6). The visual evaluation of a pinkish-red hue on roots
and stems of tomato plantlet enabled identifying the spatial distribution of a probable IAA
synthesis induced by the microbial strains. A difference in staining intensity was observed
among the different treatments, in comparison with control plants that were lacking in pink
appearance after the Salkowski’s reagent application (Figure 5). In particular, Bacillus spp.
exhibited less intense staining, while Azospirillum spp. showed the strongest intensity.
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added to different Hoagland solutions: HN (Hoagland for N2 fixers) and HT (Hoagland Total for
bacillus). The appearance of a pinkish-red hue on roots and stems shows the presence of auxin. In
contrast, control plants (C(a) and C(b)) lack any pink coloration.
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The quantification of auxins production revealed that the presence of microbial strains
in hydroponic solutions, either alone or in combination, was responsible for the synthesis
of IAA compounds. Indeed, IAA was not detected in the control groups (C(a) and C(b)),
consisting of un-inoculated HN and HT), confirming results of the visual observations.

About bacteria added to HN solution (Figure 6a), IAA concentrations ranged between
3.56 mg/mL (M. symbioticum) and 29.23 mg/mL (A. baldaniorum Sp245). In addition to the
latter, other valuable IAA-producing strains were A. brasilense Cd (19.61 mg/L) and MIX A
(24.42 mg/L).

Bacillus spp. strains were less prone to produce IAA (Figure 6b): B. subtilis produced
4.03 mg/L, B. licheniformis 2.69 mg/L and B. amyloliquefaciens 2.63 mg/L. The mix of the
Bacillus spp. strains (MIX B) produced 3.56 mg/L.

Furthermore, a regression analysis (Figure 7) was carried out to examine the relation-
ship between IAA produced by the bacterial strains and the metric parameters of the plants.
Concerning roots, the results revealed a high positive correlation (R2 = 0.6965) between
IAA production and length of roots from the HN set (a).
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4. Discussion

The seed germination is a critical stage of the life cycle of a tomato plant. Thus, the
seed quality is crucial for a successful cultivation [52,53]. Tomato seeds of Canestrino
variety showed good germination performance in terms of time and germination rate
in accordance with what was declared on the label by the manufacturer. Although the
percentage shown on the label (90%) is referred to as the germination rate of seeds in the
soil, it is encouraging that the obtained rate was approximately 77%. A 77% germination
is not a high absolute rate, but it is consider encouraging since the seeds were not left
germinating in a condition that is considered standard as suggested by the producer (soil
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or a wet paper towel), but in a possible “hostile” situation (MMC + water-agar). This result
suggests that the methodology here proposed, based on a water-agar germination substrate,
with the MMC (metal mesh combs) structure, did not negatively impact seed germination.

The MMC, set up for the experimental trials, proved to be effective for easy collection
of plantlets after germination, and for the transfer from the germination culture to the
hydroponic co-cultivation system. This is an innovative arrangement inspired by the
work of Nathoo et al. (2017) [41]. This method enabled treating tomato plantlets in a
hydroponic system (HS) adding different bacterial strains to the nutrient solutions. In
relation to the different characteristics of bacteria, plants can increase the ability to engage
symbiotic relationships with microorganisms [54–56]. In particular, the lack of synthetic
nitrogen supply in HS can be successfully overcome by the presence of nitrogen-fixing
bacteria in the nutrient solution [46]. The significant improvements of the tomato plantlets’
growth metrics when placed in HN with A. baldaniorum Sp245 and A. brasilense Cd were
in agreement with Setiawati [57]. who attributed this finding to the ability of Azospirillum
spp. to fix atmospheric N2, in addition to synthesize phytohormones, such as indole-
3-acetic acid (IAA). IAA is a crucial phytohormone-like substance playing a significant
role in root-microbe interactions: it enhances the quality of root system architecture and
promotes the elongation of the tissues [49]. Coherent results were obtained on rice roots
by Moghaddam [26] although it was used cell-free supernatant from an IAA-producing
Azospirillum sp. Furthermore, Burdman also [58] proved that A. brasilense Cd inoculation
in HS Phaseolus vulgaris enhanced root hair formation. In this context, consistent results
were obtained for HN set as confirmed by the correlation analyses showing a significant
relationship between the root elongation of the tomato plantlets and the IAA amount found
in the nutrient solution.

Due to the ability of bacteria to produce different compounds, HT set for Bacillus spp.
inoculation showed a poorer growth of the roots’ length, but an improved growth of the
stems, in agreement with several authors [59,60]. In fact, Bacillus spp. are known to also
be producers of other phytohormones, such as gibberellic acid [60], which, among other
functions, is responsible for inducing stem growth in plants [61].

A positive influence on root growth was also found for M. symbioticum, isolated
in 2020 [21] and characterized only as an N2 fixer, whose foliar application has been
successfully proved on strawberry, maize and lettuce [21,62,63]. Our investigations about
the employment of M. symbioticum, both alone and in combination with IAA-producing
PGPB, appeared promising and innovative. Among other things, its presence in HS
determined a good survival rate of the tomato plantlets, similar to the other bacteria. Thus,
M. symbioticum could have a potential role as bio-inoculant suitable to be employed at early-
stage growth of seedlings, particularly as part of a consortium of IAA-producing PGPB.

Recent researches have highlighted the benefits of polymicrobial inoculations in pro-
moting synergistic or complementarity interactions among different microbial strains,
leading to a more stable, resilient and functional growth-promoting effect on the crops [64].
Cerozi et al. (2016) using a commercial mixture of Bacillus spp., have found positive influ-
ences on ammonia, nitrite, and nitrate levels in a nutrient film technique (NFT) system with
Red Cherokee lettuce [65]. Furthermore, on a study involving Tiberius romaine lettuce, a
consortium of nitrogen-fixing bacteria, including Azotobacter chroococcum, A. brasilense, Pseu-
domonas fluorescens, and B. subtilis has been utilized which improved nitrogen fixation [23].
Also, two mutated strains of A. brasilense (Sp7 and Sp245) exhibited higher nitrogenase
activity when inoculated together on wheat plants in a HS [66] and a mix of A. brasilense
strains REC2 and REC3 proved to have fungicide activity on HS cultivated strawberry
against Colletotrichum acutatum [67]. Moreover, co-culturing tomato seedlings with both
wild-type and transformed A. brasilense Cd and Chlorella vulgaris positively affected the
stem length in high salinity HS [68].

The significant growth enhancement and a better root-to-stem balance of tomato
plantlets recorded after both polymicrobial addition (MIX A and MIX B) to our innovative
HS, suggests the occurrence of a synergistic effect among the microbial strains. This
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confirms the potential of polymicrobial inoculants to optimize plant growth and health
in HS.

This kind of system (MMC + PGPB) could be employed for many purposes: it could
be adapted for different crop plantlets in the early stage of growth in order to study plant–
microbial interaction. Additionally, in this system, microbial inoculants can be crafted and
scaled up for industrial HS, to meet the specific needs of different crops.

The primary challenge microbial inoculants face in HS is similar to the one they face
in soil applications: inoculants might overcome to more competitive strains or microbial
populations in the nutrient solution. This issue can be mitigated by developing synthetic
polymicrobial inoculants that include both PGPB strains and biocontrol strains. Such
combinations can promote plant growth while controlling the proliferation of undesirable
microorganisms.

With proper research, the possibilities are vast. Environmentally sustainable and
organic HS can become an accessible reality to horticultural sectors.

5. Conclusions

In the present work, seven auxin-producing endophytic PGPB strains (Azospirillum
spp., Methylobacterium symbioticum, Bacillus spp.) and two different combinations of these
strains were applied to tomato during germination and development in hydroponic con-
ditions. The hydroponic co-cultivation system described in this paper provides a solid
and easy-to-build system that enables inoculating plantlets, at an early stage of growth (5
days old), with microbial suspensions. Tomato plants were used as model plant, but the
system is very flexible and can be adjusted to work with many different kinds of plants.
PGPB strains that are known to produce IAA were used, but after an extensive review of
literature, it can be stated that no prior study has measured the amount of IAA produced
by these particular strains, nor has a study used them in a HS. Results obtained with the
MIXes are fundamental: polymicrobial inoculants have demonstrated their superior ability
to induce plant growth effectively. Identifying successful polymicrobial inoculants can
be beneficial for various applications, including soil-based systems. These inoculants use
synergistic interactions and functional complementarity, disrupting competition in the soil
and providing multiple benefits to plants. The promising results of this study suggest that
further exploration and characterization of polymicrobial inoculants can lead to signifi-
cant advancements in agricultural practices, although further studies and case-by-case
assessments are needed.

This novel model could be profitable employed and opportunely modified to fit the
experimental purposes and with the different plant morphologies. This system could be
employed to explore the broader applications and plant growth promotion properties of
bacterial strains.
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