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Abstract: In the face of advancing quantum computing capabilities posing significant threats to
current cryptographic protocols, the need for post-quantum cryptography has become increasingly
urgent. This paper presents a comprehensive analysis of the performance of various post-quantum
cryptographic algorithms specifically applied to digital signatures. It focuses on the implementation
and performance analysis of selected algorithms, including CRYSTALS-Dilithium, Falcon, and
SPHINCS+, using the liboqs library. Performance tests reveal insights into key pair generation, file
signing, and signature verification processes. Comparative tests with the well-known and popular
RSA algorithm highlight the trade-offs between security and time efficiency. The results can help to
select secure and efficient ciphers for specific 5G/6G services.

Keywords: post-quantum cryptography; digital signature; cipher; secure services; efficiency

1. Introduction

In an era of access to wireless networks and continuous flow of information, it is req-
uisite to ensure their security. For this purpose, numerous solutions have been developed
to ensure the confidentiality, integrity, and authenticity of data. However, sometimes, the
security they guarantee is conditional. In the case of currently used asymmetric cryptog-
raphy, this condition is the difficulty of solving a selected mathematical problem that is
achievable by quantum computers. Although, presently, they are not able to threaten the
security of our data transmitted on the Internet, it is necessary to stay ahead of potential
dangers by preparing solutions that are resistant to attacks involving quantum computers,
especially if we consider data protection in future 6G networks.

Data security that is traditionally reliant on cryptographic protocols supported by
such ciphers as RSA (Rivest–Shamir–Adleman) or ECC (Elliptic Curve Cryptography) faces
imminent threats from quantum computing advances. Quantum algorithms such as Shor’s
and Grover’s algorithms pose a major threat to current encryption methods. Quantum
computers potentially will be able to break RSA and ECC within a short time (e.g., minutes).
Such a task is unachievable by classical computers in a reasonable timeframe. Quantum
computing, while offering disruptive abilities regarding modern technology, introduces
new vulnerabilities in data security. This inherent paradox calls for the development of
post-quantum cryptography (PQC)—cryptographic algorithms that quantum computers
cannot break easily.

It is worth mentioning that the different characteristics of new cryptographic al-
gorithms and solutions are important to be evaluated, also taking into account a legal
dimension. Indeed, understanding the advantages and disadvantages of algorithms—as far
as security levels and real use possibilities are concerned (e.g., 5G/6G services)—is crucial
in the transition to post-quantum cryptography, since it can be helpful in the selection of
appropriate solutions for specific security contexts, taking into consideration the possible
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different legal requirements or the values and rights involved in the different contexts of
real use.

The motivation behind addressing the topic of this paper is that cybersecurity must
anticipate and stay ahead of imminent threats, and this is undoubtedly a reality thanks to
quantum computers and their computing capabilities. An additional aspect supporting
delving into the realm of post-quantum cryptography are European quantum initiatives
which support excellence in quantum research. A great example here is the PQ-REACT
project [1]—a component of the broader Horizon Europe program. This initiative is dedi-
cated to creating, evolving, and validating a framework designed to facilitate an efficient
and smooth transition from traditional cryptography to post-quantum cryptography.

In the current landscape, various post-quantum cryptographic algorithms are being
proposed and evaluated for their effectiveness and efficiency. The National Institute of
Standards and Technology (NIST) is playing a pivotal role in this transition, working
towards the standardization of post-quantum cryptographic algorithms. The exploration
and implementation of these algorithms, particularly in the context of digital signatures,
is the focus of this paper [2]. It is worth mentioning that hardware acceleration of post-
quantum cryptography can improve the performance; however, the speed factor strongly
depends on the family of the algorithm [3–6].

Through a comprehensive analysis of current cryptographic practices and an insightful
look at post-quantum solutions (resistant to attacks involving a quantum computer), this
study aims to shed light on the challenges and opportunities of protecting our digital future.
This paper has the objective to demonstrate that post-quantum algorithms can be used for
one of the services that maintains data security—digital signatures. To accomplish this,
it is necessary to implement a selected post-quantum cryptography algorithm to be used
for this mechanism. Such an approach can verify the potential of algorithms that face
the computing power of quantum computers, ensuring the proper functioning of widely
used solutions such as digital signature mechanisms or other services based on asymmetric
cryptography. Furthermore, it is particularly helpful to present a usage example and
provide results regarding the time efficiency of the tested solutions.

This article consists of six sections. The motivation, objective, and scope of this
work are presented in Section 1. Section 2 introduces modern cryptography, including
the idea and application of asymmetric ciphers. Section 3 describes the risk of break-
ing currently used encryption algorithms by quantum computers and introduces the
concept of post-quantum cryptography. The testbed and some details regarding imple-
mentation are described in Section 4. Section 5 is dedicated to a performance analysis of
post-quantum cryptography. The results of the efficiency analysis are presented, including
the performance of key pair generation, file signing, and signature verification for various
post-quantum cryptographic algorithms. This article is summarized in Section 6.

2. Modern Cryptography

Cryptography has become an integral part of modern communication. It has signifi-
cantly evolved over the centuries, resulting in the development of two primary categories:
symmetric and asymmetric cryptography. Symmetric cryptography uses only one key,
with which both encryption and decryption are executed. It is a simple and remarkably
effective method, but it is not without its weaknesses. Among these, the biggest is the way
of exchanging or establishing the key between the parties. Fortunately, other methods can
be entrusted with this task. For example, asymmetric cryptography or quantum key distri-
bution can be used to transfer the key [7]. Under the condition of key confidentiality and
integrity, symmetric cryptography can offer reasonable speed of operations and security.

Asymmetric cryptography solves the biggest problem of symmetric cryptography,
namely secure key exchange or key establishment. For encryption and decryption, a key
pair, public and private, is used. The private key is obligatorily kept confidential, as only
with this key can the owner decrypt communications addressed to him. However, the pub-
lic key is shared to give senders the ability to encrypt messages. The security of asym-
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metric cryptography is fundamentally based on the difficulty of mathematical problems.
Among these, we can distinguish the factorisation of large prime numbers, which is the
basis of RSA, and systems based on elliptic curves, for example, ECC. Asymmetric cryptog-
raphy also underlies digital signatures.

Digital signatures are one of the fundamental applications of asymmetric cryptography.
Digital signatures ensure the non-repudiation of data and its integrity. In order to create a
signature, several elements are necessary: a private key, a signature algorithm, and usually,
a hash function. A scheme of digital signature is presented in Figure 1. Firstly, the hash
is computed (1) to sign a file—this process is not obligatory but supports efficiency of
signature process. Subsequently, the signature algorithm is used. Its inputs are the hash
of the file to be signed and the private key of the signer (2). The result of this action is a
signature that proves the undeniable authorship of the file. This collection—original data
and signature—is sent to the recipient (3).

Signer

Hashing Function

2Hash Signature Algorithm

2

Signer's Private Key

Data & Signature 3

Data
Verifier

Signature

6Hashing Function

Verification
Algorithm

4

Signer's Public Key

6
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4

5
1

Figure 1. Digital signature scheme.

The person verifying the signature, apart from the file and its signature, also needs to
have information on what hashing function was used and what signature algorithm was
applied. The verification process begins by applying the signature algorithm together with
the signer’s public key to the received signature (4). The result of this operation is the hash
of the original data. The next step is to separately calculate the hash of the signed file using
a known hash function (5). Then, these two hashes must be compared (6). If they are equal,
this confirms the non-repudiation and integrity of the signed data. Verification process is
also presented in Figure 1.

3. Post-Quantum Cryptography

Quantum computers represent a breakthrough in the computing domain. In con-
tradistinction to classical devices, they use the principles of quantum mechanics to process
information. The smallest data unit in conventional computers is called the bit; it can take
the value either 0 or 1. However, in quantum computers, this is replaced by qubits, which
can be in a superposition of states 0 and 1. This allows them to perform many operations
simultaneously, which leads to increased speed. The challenges faced by current prototypes
of quantum computers are their stability and scalability. In order to maintain the quantum
state, it is necessary to maintain extremely low temperatures as close as possible to the
absolute zero. Subsequent factors that negatively affect qubits are all kinds of vibrations
or magnetic fields [8]. Even though quantum computers still require a lot of research,
they pose a potential threat to current cryptography. Therefore, there is a reason for the
formation and development of post-quantum cryptography.
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3.1. Quantum Algorithms

One of the most well-known concepts in the field of quantum technology is the Shor’s
algorithm. This is a quantum algorithm introduced by Peter Shor in 1994 [9]. It was
designed for the purpose of integer factorisation. Currently, this problem is too demanding
for classical computers to perform the calculation in measurable time. The computational
complexity of classical algorithms is exponential, while the Shor’s algorithm offers polyno-
mial complexity, which results in significantly faster computations. This solution combines
conventional mathematical approaches and the principles of quantum mechanics [10].
The currently widely used RSA algorithm is based precisely on the complexity of the large
number factorisation problem.

Another example is the Grover’s algorithm. It was designed by Lov Grover in 1996,
and its purpose is to search in unordered databases [11]. Whereas this task with the classical
algorithm has a computational complexity of O(N) , the Grover algorithm achieves a com-
plexity of O(

√
N). The reason for this is the use of quantum superposition, which results

in the ability to check multiple potential solutions simultaneously [12]. Its practical applica-
tion may threaten cryptography algorithms, but the leap in speed is not that significant. It
is believed that the lengthening of the keys is sufficient to constitute resistance to attacks
involving it. Nevertheless, even if the Grover algorithm does not represent a major threat
as the Shor’s algorithm, it also has a notable role regarding the risk to current cybersecurity.

3.2. Post-Quantum Ciphers

Post-quantum cryptography is a proactive response to the threats brought on by
the emergence of Shore and Grover algorithms. Due to the potential ability to break
hitherto widely used algorithms like RSA or ECC, there have to be solutions supporting
asymmetrical data encryption but resistant to attacks by quantum computers. This is
precisely the purpose behind the development of post-quantum algorithms. They are
divided into four main categories.

• Lattice-Based Cryptography is one of the leading candidates of the post-quantum cryp-
tography. They are based on the complexity of problems such as the Shortest Vector
Problem (SVP), as well as Learning With Errors (LWE) [13]. The security of these solu-
tions comes from the difficulty of solving some lattice problems in multidimensional
spaces. The problem, for example, is finding the constants by which the basis vector
should be multiplied, which is not an easy task for quantum computers. Some of
the well-known algorithms belonging to this group are NTRU, CRYSTALS-Dilithium,
and Falcon.

• Hash-Based Cryptography is a group that bases its security on appropriate hash
functions and schemes such as the Merkle signature scheme [13]. Currently, no
efficient quantum algorithm is known to be able to break a cryptographic hash function;
however, the disadvantage of such a solution may be the limit of signatures generated
using a particular key pair. An example of an algorithm that belongs to this group
is SPHINCS+.

• Code-Based Cryptography is a group that bases its security on correction codes [14].
Examples of algorithms with such properties are McEliece and its variation Niederre-
iter. The difficulty of these solutions lies in decoding a general linear code.

• Isogeny-Based Cryptography is the last of the four main groups of the post-quantum
algorithms. The solutions within it are based on the properties of elliptic curves and
the Claw Finding problem. This involves the operation with elliptic curves that have
the property of isogeny [15].

Additionally, it is worth comparing well-known post-quantum algorithms, the ef-
fectiveness of which is analyzed by the authors in this paper. The CRYSTALS-Dilithium,
Falcon, and SPHINCS+ algorithms are briefly discussed, each representing a different
approach to post-quantum cryptography.
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• CRYSTALS-Dilithium is a lattice-based algorithm. It was designed for digital sig-
natures, and it was a major finalist in the NIST competition in this exact category,
which is its main advantage also in the context of this study. The security of this
algorithm lies in the difficulty level of lattice problems over modular lattices [16]. As a
lattice-based algorithm, it benefits from the complexity of the Shortest Vector Problem
and Learning With Errors problems, which are also considered unbreakable using
quantum computers.

• Falcon is an acronym for ’Fast-Fourier Lattice-based Compact Signatures over NTRU’.
It was also another candidate in the NIST competition. It uses the lattice structure
of NTRU and the Fast Fourier Transform (FFT) to improve performance. Its main
advantage is the small size of the generated signatures, which is especially important
in the context of high-volume data transmission [17].

• SPHINCS+ represents a different approach to the previous examples, as it is an
algorithm based on hash functions. Its advantage is the ability to be based on different
hash functions, e.g., SHA2 or SHAKE, allowing it to be adapted according to specific
security requirements. On the other hand, its disadvantage is the relatively large size
of the generated signatures [18].

Each of the mentioned algorithms represents a sufficient security level. These three
algorithms were selected by NIST during the standardization process of algorithms to
be intended for digital signatures. Considering the availability of all three algorithms
presented, they have been implemented to use for digital signature purposes and tested.

4. Implementation

The performance analysis of post-quantum cryptography algorithms is based on
implemented CLI application and liboqs library [19]. Liboqs provides cryptography-related
elements, and Click is responsible for creating the command line interface. All the elements
combine to form a development environment. These solutions not only provide a functional
interface but also facilitate efficient programming.

4.1. Liboqs Library

The liboqs library is a set of post-quantum algorithms prepared as a part of the Open
Quantum Safe project [20]. The library has been designed to function as a comprehensive
testing and evaluation toolkit for researchers and developers, providing them with the
opportunity to experiment with a range of cryptographic schemes that are believed to be
resistant to potential attacks from quantum computers.

The library is written in C, providing a performance-optimized foundation for crypto-
graphic operations. To ensure broader accessibility and integration into various software
stacks, liboqs provides language wrappers, including a Python wrapper. This wrapper
enables the use of post-quantum algorithms in Python applications and has been included
in the implementation. In order to use liboqs-python, it is first necessary to build and install
the liboqs library and, then, to properly configure the Python virtual environment.

4.2. Application

The implemented application can sign a selected file and verify digital signatures using
post-quantum algorithms. Its main functionality is based on the pq-sign command, which
can be used in the terminal. An example of the sign and verification process is presented
in Figure 2. An important function is generate-keypair, which generates a private key
used to sign documents and a public key, which can be used to verify signatures. The sign
command is a central feature of the application—it lets users digitally sign documents,
ensuring their authenticity and integrity. Verification of the digital signature is carried out
with the pq-sign verify command. Additionally, the pq-sign ls command has been
designed to provide a comprehensive list of all post-quantum cryptographic algorithms
currently supported by the application.
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Figure 2. Signature and correct verification.

Table 1 provides specifications of the available algorithms [19]. It details the algorithm
names along with their corresponding security strengths, represented by the NIST security
levels [21]. The security levels of cryptographic algorithms or systems are determined
based on a numerical value associated with the amount of work or operations required to
compromise them. These levels range from Level 1, offering the lowest level of security,
to Level 5, which provides the highest level of security [22]. The numbers at the end of
the Dilithium algorithm name correspond to NIST’s declared security level. The table
also provides the sizes of the public keys, secret keys, and signatures, all expressed in
bytes. And it is the size of the generated signature that is crucial regarding distinguishing
SPHINCS+ algorithms. It is important to note that comprehending the trade-offs between
the security level and resource requirements is imperative for users. This understanding
can assist in selecting an appropriate algorithm for a specific security context.

Table 1. Available algorithms specifications [19].

Algorithm Claimed
NIST Level

Public Key
Size (Bytes)

Secret Key
Size (Bytes)

Signature
Size (Bytes)

Dilithium2 2 1312 2528 2420
Dilithium3 3 1952 4000 3293
Dilithium5 5 2592 4864 4595
Falcon-512 1 897 1281 666
Falcon-1024 5 1793 2305 1280
SPHINCS+-SHA2-128f-simple 1 32 64 17,088
SPHINCS+-SHA2-128s-simple 1 32 64 7856
SPHINCS+-SHA2-192f-simple 3 48 96 35,664
SPHINCS+-SHA2-192s-simple 3 48 96 16,224
SPHINCS+-SHA2-256f-simple 5 64 128 49,856
SPHINCS+-SHA2-256s-simple 5 64 128 29,792
SPHINCS+-SHAKE-128f-simple 1 32 64 17,088
SPHINCS+-SHAKE-128s-simple 1 32 64 7856
SPHINCS+-SHAKE-192f-simple 3 48 96 35,664
SPHINCS+-SHAKE-192s-simple 3 48 96 16,224
SPHINCS+-SHAKE-256f-simple 5 64 128 49,856
SPHINCS+-SHAKE-256s-simple 5 64 128 29,792

4.3. Testbed

The project’s implementation was based on a WMWare virtual machine with Linux
Debian installed. The advantage of this solution is the ease of management of the isolated
environment and the ability to recreate the runtime environment. Virtual machines can be
saved, cloned, and shared, allowing the exact setup to be reproduced on any compatible
host machine. The detailed parameters of the used virtual machine are described in Table 2.

Table 2. Technical specification of the virtual machine.

Parameter Description

VMWare version VMWare Workstation 16
Operating system Ubuntu 22.04.1 LTS
Memory 12 GB
Processors 8 cores
Host processor Intel Core i7-9750H CPU @ 2.60 GHz
Disk space 30 GB SSD
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5. Performance Analysis

This section is dedicated to the analysis of efficiency, focusing specifically on time-
based metrics. The idea behind performance testing is to examine post-quantum algorithms
in the proposed implementation comprehensively. There are several reasons why time is a
key factor regarding cryptographic algorithms. The crucial ones are listed below.

• Scalability—algorithms with faster processing times are better suited for managing
large datasets or high-traffic scenarios. If the algorithm is time-efficient, the whole
system will be able to handle more operations.

• User Experience—cryptographic algorithms should be fast enough to ensure smooth
use of the applications. Latency drastically affects the experience of using a particular
service. Additionally, some applications need real-time operation which cannot be
supported by inefficient cryptography algorithms.

• Security—if the execution time of a particular algorithm is excessively long, this can
create an opportunity for an attacker to collect information about the time this service
needs. By measuring the time in different examples of input data, it is possible to
obtain information such as the length of used keys. To prevent this vulnerability, it is
necessary to ensure the used solutions are time-optimized and designed to ensure that
the execution time is constant, which means they are independent of the input data.

• System Performance—cryptographic operations are almost always part of larger
systems, and therefore, their time efficiency translates into the aggregate performance
of complex services.

Moreover, cryptography algorithms used in practice require balancing security strength
and time efficiency. The proper trade-off is crucial, taking into account the usability of
such solutions.

In order to test the performance of post-quantum algorithms in a digital signature
mechanism, it was necessary to have files that would be signed. It was assumed that entire
files are encrypted by the private keys of each tested algorithm. To obtain a representative
spectrum of results, three files of size 10 MB, 100 MB, and 1 GB were generated. This was
achieved using the native Linux command dd, which is used to copy and convert data.
Using this command, pseudo-random data from the /dev/urandom file were copied.

Every functionality was tested for each algorithm. Each measurement was repeated
101 times. The first measurement time for a given algorithm was noticeably longer and was
not included in the graphs and further analysis. This is due to the data being read from the
disk and loaded into cache memory. By omitting the first measurement in each series, it was
possible to exclude the disk read speed factor from the measurement component and obtain
the proper time needed to execute the tested algorithm. Therefore, the presented graphs
show the average execution time of the algorithm calculated from 100 iterations of a given
operation. Error bars showing the Standard Error of the Mean (SEM) are also included for
each algorithm. Before starting the measurements, it was necessary to prepare the various
components. For the file signing and signature verification processes, three files of 10 MB,
100 MB, and 1 GB were prepared. A corresponding key pair was also generated for each
algorithm. During the key pair generation evaluation, the files containing the key pairs
were deleted after each iteration. Regarding the file signing tests, each iteration was run on
the same file, and as with the key pair generation, the resulting file was deleted after each
iteration. Following the same procedure, the signature verification tests were performed on
the same file for each algorithm, in order to compare the results of the measurements.

5.1. Measurement Results

The performance of key pair generation for various post-quantum cryptographic
algorithms was tested firstly. Figure 3 presents the results of this scenario. It can be
observed that Dilithium algorithms had the best time performance. Algorithms from
the SPHINCS+ group with the suffix ’f’ also achieved a gratifying result, distinguishing
themselves from the second part of this group. However, it should be remembered that they
are optimized for speed, not size. Therefore, they generate a longer signature than those
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with the suffix ’s’, as shown in Table 1. Both of these groups obtained times an order of
magnitude larger than the Falcon and SPHINCS+ algorithms with the suffix ’s’. However,
it is thought-provoking that the SPHINCS + SHA-192s-simple and SPHINCS+SHAKE-
192s-simple algorithms exhibited longer execution times relative to their counterparts with
longer keys, namely SPHINCS + SHA-256s-simple and SPHINCS + SHAKE-256s-simple,
respectively. This performance trend was counter-intuitive and at odds with the behavior
observed from the other algorithms. For example, the SPHINCS+ algorithms with the
suffix ’f’ and the Falcon algorithms demonstrated a dependency that the larger the key size,
the longer the execution time. This unexpected behavior may be a direct consequence of
the way certain algorithms are implemented in the library.

Figure 3. Average key generation time.

Figures 4–6 refer to the file signing function. They show the average execution time
obtained by each algorithm when signing files of size 10 MB, 100 MB, and 1 GB, respec-
tively. It is a reasonable trend that the larger the size of the file to be signed, the longer this
operation takes. In all three cases, the Dilithium and Falcon algorithm groups achieved
the best time performance. Similar to Figure 3, showing the average key pair generation
times, a disparity between the SPHINCS+ algorithms with ’s’ and ’f’ suffixes was noticeable
in the advantage of the speed-optimized ones. This result is in accordance with expec-
tations. However, the difference decreased as the size of the signed file increased. As in
Figure 3, results that are counter-intuitive were also present, namely in the algorithms of the
SPHINCS+ group—examples of each file size were visible where the algorithm operating
with a shorter key achieved a worse time than its counterpart operating with a longer key.
As the performance of the algorithms in the two groups, Dilithium and Falcon, were very
similar, further analysis was carried out. The purpose of this additional research was to
gain a detailed insight into their performance. The results are presented in Figure 7. Based
on the analysis of the results, it can be concluded that the Dilithium algorithms achieve
better performance even for relatively small signed data sizes. In accordance with intuition
and measurements on larger files, the Falcon-1024 algorithm performed almost twice as
long as its Falcon-512 equivalent due to the twice-as-long key.

Figures 8–10 show the average verification time for signed files of 10 MB, 100 MB,
and 1 GB, respectively. Figure 8 referring to the case with the smallest file size presents
that the Dilithium algorithms performed the worst, which is completely different from
the previous results. In this case, the SPHINCS + SHA2-192 and SPHINCS + SHA2-256
algorithms achieved the best result. The SPHINCS + algorithm based on the SHAKE hash
function achieved comparable results regardless of the key size. In the operation involving
a 100 MB file as shown in Figure 9, the SPHINCS + SHAKE-256s-simple algorithm recorded
the longest duration. The trio of SPHINCS + SHA2 algorithms also showed slight variations.
However, apart from that, the results were relatively comparable. The results shown in
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Figure 10 (1 GB file) were the most consistent across all evaluated scenarios. The outlier
was a set of four algorithms from the SPHINCS+ group, specifically two variants each of
SPHINCS + SHA2-192 and SPHINCS + SHA2-256, which recorded significantly improved
results over the other tested examples. Nevertheless, the variance did not exceed 30%
compared to other algorithms. The precise values are presented in Table 3 (key generation
and signing) and Table 4 (verification of signatures).

Figure 4. Average file signing time—10 MB file size.

Figure 5. Average file signing time—100 MB file size.

The conclusion that can be drawn regarding the SPHINCS+ group algorithms is that for
signing large-sized files, algorithms with an ’s’ suffix would be a better choice. The reason
for this is that when handling large files, the disparity between algorithms optimized for
speed and those optimized for size decreases. However, algorithms with the suffix ’s’
retain the advantage of a significantly smaller size of the generated signature. Although
algorithms with the suffix ’f’ present significantly reduced key pair generation times, in the
usual use case, a once-generated key pair is used to sign multiple files. Additionally,
another distinctive feature of the SPHINCS+ group of algorithms is worth mentioning:
regardless of the file size, the disparity in verification time between speed-optimized and
size-optimized variants is not significant.
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Figure 6. Average file signing time—1 GB file size.

Figure 7. Average file signing time—10 KB file size.

Figure 8. Average file verification time—10 MB file size.
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Figure 9. Average file verification time—100 MB file size.

Figure 10. Average file verification time—1 GB file size.

Table 3. Performance measurements of the post-quantum algorithms for keypair generation and file
signing.

Algorithm
Function Keypair Generation Signing 10 MB File Signing 100 MB File Signing 1 GB File

[s ×10−5] [s ×10−5] [s ×10−5] [s ×10−5]
Dilithium2 50 ± 2 2592 ± 6 33,273 ± 7 334,713 ± 49
Dilithium3 51 ± 2 2538 ± 1 32,852 ± 5 331,453 ± 44
Dilithium5 55 ± 1 2553 ± 1 32,892 ± 4 330,594 ± 28
Falcon-512 891 ± 23 2529 ± 1 32,931 ± 4 329,089 ± 25

Falcon-1024 2031 ± 51 2602 ± 1 32,776 ± 2 327,077 ± 14
SPHINCS + SHA2-128f-simple 70 ± 1 5223 ± 1 53,661 ± 6 538,160 ± 230
SPHINCS + SHA2-128s-simple 1975 ± 8 18,773 ± 2 68,634 ± 35 544,226 ± 40
SPHINCS + SHA2-192f-simple 87 ± 1 4338 ± 1 41,089 ± 21 390,097 ± 37
SPHINCS + SHA2-192s-simple 2924 ± 19 31,049 ± 10 66,722 ± 11 415,751 ± 28
SPHINCS + SHA2-256f-simple 162 ± 1 5594 ± 1 41,797 ± 7 390,028 ± 45
SPHINCS + SHA2-256s-simple 2009 ± 12 28,183 ± 5 64,288 ± 12 411,376 ± 21

SPHINCS + SHAKE-128f-simple 104 ± 1 6104 ± 1 57,144 ± 22 544,599 ± 24
SPHINCS + SHAKE-128s-simple 3900 ± 12 33,373 ± 4 84,141 ± 13 571,716 ± 30
SPHINCS + SHAKE-192f-simple 124 ± 1 6907 ± 1 57,464 ± 10 545,416 ± 31
SPHINCS + SHAKE-192s-simple 5639 ± 16 54,257 ± 6 105,115 ± 16 600,620 ± 110
SPHINCS + SHAKE-256f-simple 269 ± 1 9224 ± 2 59,994 ± 13 552,686 ± 39
SPHINCS + SHAKE-256s-simple 3709 ± 15 48,057 ± 8 98,623 ± 13 590,551 ± 61
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Table 4. Performance measurements of the post-quantum algorithms for verification of signatures.

Algorithm
Function Verifying 10 MB File Verifying 100 MB File Verifying 100 MB File

[s ×10−5] [s ×10−5] [s ×10−5]
Dilithium2 3784 ± 5 33,253 ± 4 331,713 ± 62
Dilithium3 3630 ± 2 33,162 ± 2 331,443 ± 38
Dilithium5 3585 ± 2 33,060 ± 2 331,443 ± 38
Falcon-512 3588 ± 2 33,046 ± 2 329,893 ± 45
Falcon-1024 3581 ± 2 33,177 ± 7 32,9181 ± 44

SPHINCS+SHA2-128f-simple 2709 ± 2 32,485 ± 4 320,258 ± 21
SPHINCS+SHA2-128s-simple 2667 ± 2 32,815 ± 12 319,706 ± 16
SPHINCS+SHA2-192f-simple 1942 ± 1 25,881 ± 11 250,359 ± 29
SPHINCS+SHA2-192s-simple 1969 ± 2 25,624 ± 10 249,951 ± 11
SPHINCS+SHA2-256f-simple 1921 ± 1 25,513 ± 7 249,642 ± 12
SPHINCS+SHA2-256s-simple 1924 ± 2 30,004 ± 54 250,094 ± 15

SPHINCS+SHAKE-128f-simple 2819 ± 3 39,087 ± 50 32,8476 ± 17
SPHINCS+SHAKE-128s-simple 2725 ± 2 35,776 ± 15 328,881 ± 17
SPHINCS+SHAKE-192f-simple 2905 ± 3 35,290 ± 5 328,593 ± 19
SPHINCS+SHAKE-192s-simple 2747 ± 2 35,067 ± 4 328,475 ± 17
SPHINCS+SHAKE-256f-simple 2879 ± 2 35,492 ± 9 328,934 ± 17
SPHINCS+SHAKE-256s-simple 2810 ± 2 44,699 ± 48 329,375 ± 37

5.2. Comparative Tests

This section presents a comparison of measured post-quantum algorithms with the
well-known RSA algorithm, the cornerstone of current cryptographic systems but en-
dangered by the vision of quantum computers. This comparison aims to evaluate the
performance and usability of post-quantum cryptographic solutions in the context of real-
world applications. It investigates how post-quantum algorithms compare to the popular
asymmetric cipher in modern applications. One of the main points of this analysis will be
an attempt to answer a pivotal question: is the time overhead of post-quantum algorithms
justified to achieve quantum resilience? This question is of paramount importance as
the transition to post-quantum cryptography might become necessary. To obtain results
relevant for comparison, an RSA implementation originating from the Python library ’cryp-
tography’ was used. The size of the used key was 2048 bytes, and the exponent was set at
65537. The measurements were performed in the same environment as the post-quantum
algorithm measurements.

Figures 11–13 present a comparison of the average file signing times of the post-
quantum and RSA algorithms. Due to the complexity of post-quantum algorithms, a time
overhead is expected compared to RSA. Examples with 100 MB and 1 GB file sizes meet
this hypothesis, while an example with a 10 MB file size shows that a post-quantum
algorithm can be even a bit faster than RSA. Looking at the full context of these three
scenarios, it can be observed that differences are not overwhelming. The question then
remains, is the significant security improvement worth the time overhead? Dilithium
algorithms, including the best one—labelled Dilithium5, appear to be suitable candidates
for replacing RSA. It has the NIST security level 5 declared by OpenQuantumSafe, while
the tested version of RSA is estimated to be level 1. In the conducted measurements on
the largest file (1 GB), Dilithium5 achieved an average result of 3.31 s, while RSA scored
2.56 s. This represents an overhead of approximately 27.7% in exchange for resistance to
quantum cryptanalysis.
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Figure 11. Comparison of average file signing time—10 MB file size.

Figure 12. Comparison of average file signing time—100 MB file size.

Figure 13. Comparison of average file signing time—1 GB file size.
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6. Conclusions

This paper emphasizes the fundamental role of post-quantum cryptography in enhanc-
ing digital signatures against the emerging threats associated with the potential of quantum
computers. Through the implementation and testing of selected algorithms, the ability
of post-quantum algorithms in application to digital signatures has been demonstrated.
They are undoubtedly an alternative to the cryptographic solutions currently in use and a
promising candidate for their replacement.

To conclude on the practical applications of post-quantum algorithms for digital
signatures, it is necessary to state that the implementations have been positively verified
in several usage scenarios. The results are consistent with the benchmarking of the liboqs
library [19]. In the analysis of time performance, the Dilithium algorithm (especially
Dilithium5) proved to be the best candidate for digital signatures. Although it performed
slightly behind some competitors during signature verification, it clearly dominated during
key pair generation and signing processes. An additional fact in its favour is the size of
the generated signatures. All three available variants of the Dilithium algorithm generate
a signature several times smaller than the SPHINCS+ group algorithms. But if the size
of the generated signature is the primary criterion, the Falcon algorithm appears to be
the favourite, achieving the smallest signatures. Representing a hash function approach,
the algorithms in the SPHINCS+ group show great diversity due to their ability to cooperate
with different hash functions. When deciding between implementations from this particular
group, algorithms optimized for signature size would be a better choice. This is because,
as the file size increases, the disparity between the two variants of the SPHINCS+ algorithm
decreases. In the final analysis, it can be concluded that there are algorithms that can replace
RSA with marginal overhead in time, while diametrically increasing security, whereas the
choice of a particular algorithm may be determined by the needs of a particular case.

Research on the evaluation and standardization of post-quantum algorithms is con-
stantly in progress, with NIST leading the way. Therefore, the optimization of post-quantum
solutions can be expected, as well as the emergence of new solutions. On 17 July 2023,
NIST announced additional candidates for digital signatures in the PQC standardization
process. The list can be found on the institution’s website, and more information can be
expected in 2024, when the fifth PQC standardization conference will be held [23]. As NIST
is continually engaged in standardization projects, future work may involve testing new
algorithms suggested by the institution.
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