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1. INTRODUCTION

Maintaining a high-quality final product while ensuring 

compliance with increasingly stringent environmental 

constraints and cost sustainability is one of the most relevant

current challenges for the process and manufacturing industry. 

The role of foundries is crucial: they are the main source of 

castings and produce indispensable components for other 

industries. The presence of defects in final products has a 

negative impact on a foundry's profits. Production defects 

often result in reworking costs, additional energy 

consumption, or casting waste generation. Defects can also be 

discovered at later stages, such as machining, assembly or, 

even worse, during product use, with increased risks or 

rejection and complaints from customers and costs for

foundries (Pribulová, Bartošová and Baricová, 2013). 

In the past decades, several works were conducted to prevent 

defect generation. Defect identification, characterization and 

classification were explored in different papers. Sütőová and 
Grzinčič take an in-depth look at the casting defect 

classification and cataloguing system, a fundamental tool in 

the organization of a foundry. The authors propose an example 

of a catalogue, which classifies and describes the defects in an 

aluminum foundry and its advantages in supporting production 

and quality control operators. (Sütőová and Grzinčič, 2013) 
Juriani provides a detailed overview of critical casting defects 

and their causes, also focusing on technically feasible remedies 

to minimize various casting defects and improve casting 

quality (Juriani, 2015). The topic of defect identification and 

classification is explored also using Artificial Intelligence (AI) 

methodologies as reported in the work of Pastor-López et al.,

who propose a technique for the detection of surface defects 

by applying a segmentation method that flags potentially 

defective regions on the casting and then applies the machine 

learning (ML) technique BCLP (Best Crossing Line Profile) to 

classify the regions into correct or different types of defects 

(Pastor-López et al., 2015).

Defect detection in foundry and steel production routes is often 

performed through image-based inspection and automated 

methodologies (Riaz et al., 2017), effective only during the 

manufacturing process (Vannocci et al., 2019, Brandenburger 

J). However, this approach can only identify the defects on 

already manufactured pieces and cannot prevent their 

occurrence. Examples of this approach are reported in several 

works, where Deep Learning is exploited (Filip Nikolić, 
Štajduhar and Marko Čanađija, 2022). To detect surface 

casting defects from labelled images from a foundry, Pastor-

López et al. applied a new methodology, called BoDoC, 

developed to optimise the performance of machine learning 

algorithms using computer vision when a small training 

dataset is available (Pastor-López et al., 2021).

Another field of analysis is preventing the defect generation 

through forecasting techniques, as studied by BramahHazela 

et al., who applied a ML classifier and regression method and 

compare several techniques to identify the micro shrinkage 

and ultimate tensile strength (BramahHazela et al., 2022). 

Models based on supervised machine learning classification 

are applied by Uyan et al. to find the operating conditions that 

affect the defects in low-pressure die casting aluminum 

products (Uyan et al., 2023).
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Another interesting work focusing on preventing the defect 

occurrence exploits a Bayesian inference approach for 

determining the safe range of process parameters (Sata and 

Ravi, 2016).

In conclusion, avoiding the production of defective or parts not 

meeting customer requirements is mandatory: it saves the 

energy required to produce the same product several times, 

avoids the generation of waste and increases the productivity 

of the plant (Colla, 2022). AI techniques can help achieving

this objective by guiding and supporting industries in the 

transformations needed for more sustainable and competitive 

production processes (Colla et al. 2020). However, AI 

techniques often need massive datasets for the learning process 

and their accuracy is strictly dependent on the amount of data. 

Production defects are often a rare event, leading to very 

unbalanced data distribution between nominal and defect 

classes target of the classification task. In this sense, several 

works propose data augmentation techniques (Cateni, Colla 

and Vannucci, 2014) for overcoming overfitting problems in 

classification (Vannucci and Colla, 2016) and regression tasks. 

In this context, this work proposes a set of models for 

predicting in advance the occurrence of defects on foundry 

production, by considering chemical and thermal analyses of 

the cast iron before the molding process and the inoculant 

control strategy through AI models based on decision tree. In 

this work, the classification accuracy, and the generalization 

capability of the models in presence of very rare defect events 

are guaranteed through some state-of-the-art data 

augmentation methodologies. In particular, the models focus 

on two specific cast iron qualities, and in two different defects: 

the micro shrinkages and cementite formation. The proposed 

work has been carried out within the Alchimia project, which 

is funded by the European Union through the Horizon Europe 

framework.

The paper is organized as follows: Sec. 2 describes the 

Alchimia project; Sec. 3 describes the plant and process 

involved; Sec. 4 presents the design phase of the machine 

learning models; Sec. 5 presents the results of the modelling 

phase and finally Sec. 6 draws some conclusions.

2. THE ALCHIMIA PROJECT

The European project “Alchimia - Data and decentralized 

Artificial intelligence for a competitive and green European 

metallurgy industry” aims at finding the optimal input material 

mix to reduce the environmental footprint of the complete 

value chain of steelmaking and metallurgical processes. 

The project is organized in two practical case studies. The first 

one regards an important European steel company contributing

to the project with three industrial plants. The second one is 

related to Fonderia di Torbole (FdT), one of the leading 

foundries in the production of automotive components located 

in Italy. The present work focuses on this second case study.

The methodology is based on the development of a platform 

based on Federated Learning (FL) approach (Li et al., 2020) 

and Continual Learning (CL) (Hadsell et al., 2020) according 

to a human-centric design. This platform will act as a Decision 

Support System (DSS) supporting plant managers and process 

operators in decision-making for optimal material and energy 

management. The main components of such DSS are the 

models that reproduce the core part of the considered 

production processes.

The ambition of the project lies in the application of FL and 

CL: the models developed for each plant are trained in a 

decentralized way, avoiding the creation of centralized 

datasets, but each plant contributes to an optimized global 

model. The CL mechanism allows continuous improvement of 

ML model accuracy, ensuring the long-term adaptivity and 

upgrading of systems. Further Alchimia ambitions are: 

• the “human factor” analysis of new digital technology 

insertion within industrial processes;

• the replicability, scalability, and transferability of 

developed tools for different industrial sectors.

3. PLANT AND PROCESS DESCRIPTION

FdT is a component producer for the automotive sector: it 

produces and sells brake discs and drums, castings, and 

machined parts. The FdT foundry plant schematic is shown in

Fig. 1. 

Fig. 1. FdT foundry plant schematic.

The input material mix is mainly composed by pig iron, return, 

steel scrap and coke. It is melted in the cupola furnace (Unit 1)

and after the melting stage it is transferred into two induction 

furnaces named holders (Unit 2). Then the material is divided 

into paths: the majority goes to the pouring system (Unit 6) 

and feeds the moulding process (Unit 7); the remaining is 

devoted to production with higher requirements, therefore 

adjustment of the material chemistry is needed between 

holders’ outlet and pouring inlet and it occurs in two tandem 

crucible melting furnaces (Unit 4). Usually, the complete 

cooling of the products requires an average time of three hours 

and only at this time is possible to perform the final quality 

tests. When faster testing procedures are required (e.g., to 

provide feedback for process parameter settings and 

adjustments), one-hour accelerated cooling can be 

implemented for a single mould, which takes about 1 hour.

The overall goal of the research work is to forecast the final 

products characteristics, and to avoid producing parts that do 
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not meet customer’s requirements and losing time (typically at 

least 3 h) before adjusting process parameters, by saving

energy, raw materials and labor. The application of ML-based 

models can help achieving this objective by assisting in 

process monitoring and prediction of product quality 

parameters using cast iron analysis as input data. In particular, 

the available input dataset is composed by thermal and 

chemical analysis performed in two different positions, casting 

temperature and inoculant additions. The analysis points are 

selected according to product type and their correlation to

product quality. The output dataset regards the quality test 

parameters and presence of defects (cementite and porosity). 

In the present work data related to two different types of cast 

iron were used: high-carbon cast iron (GG15HC) and standard 

cast iron (GG25). For GG15HC thermal and chemical analyses 

are performed at points 4 and 6 and for GG25 at points 2 and 

6 (Fig. 1).

4. METHODS

4.1  Decision Trees

Decision Tree (DT) is a powerful tool in data analysis and ML, 

offering intuitive representations of decision-making 

processes, as they are structured as decision graphs that 

sequentially solve a list of tests, comparing numerical values 

with a set of threshold values. DTs are applied in various fields 

for different tasks. Classification and regression analysis

(Pathak, Mishra and Swetapadma, 2018) are the most common 

applications, but they are also widely exploited for feature 

selection (Rao et al., 2019), anomaly detection (Barbariol et 

al., 2021), and cyber-attacks detection (Alqahtani et al., 2020). 

Interpretability is the main strength of the DT, as the decision 

mechanisms and related results are widely understandable by 

human operators. Additionally, DT can solve nonlinear 

modelling problems and are easy to implement. They are 

particularly suitable for Programmable Logic Controllers 

(PLCs) and embedded systems and are used in real-time in 

edge-computing applications. On the other hand, DT are 

sensitive to noise and outliers, and are prone to overfitting in

the training phase, thus they must be carefully tested.

This paper focused on developing interpretable and real-time 

models that can benefit a FL approach in the training phase. 

These models will be implemented within a DSS helping 

process operators in the decision-making process to minimize

raw materials and energy consumption and waste generation

by predicting production defects. To this aim, all the models

presented are based on DT Classifiers (DTC), designed 

through SkLearn library in Python environment. 

4.2  Data oversampling

Data quantity and quality play pivotal roles in the performance 

of ML methodologies, especially in the case of unbalanced 

datasets, where some classes (for classification tasks) or 

operation points (for regression tasks) are numerically not well 

represented in the dataset. Supervised learning using

unbalanced dataset often leads to bias and poor generalization 

capabilities, resulting in learning only the majority class 

instead of generalizing the data information content. In the last 

20 years, several methodologies were developed for data 

oversampling to mitigate the mentioned issues and enhance

model accuracy and reliability, through algorithms that 

augment the data of the minority classes. 

The Random OverSampling Examples (ROSE) algorithm

(Menardi and Torelli, 2012) and Synthetic Minority 

Oversampling Technique (SMOTE) algorithm (Chawla et al., 

2002) and its variations (e.g. ADASYN) are probably the most 

known among data augmentation techniques, due to the 

simplicity of the algorithm and their effectiveness. ROSE 

generates artificial data for the classes, exploiting a smoothed 

bootstrap approach, and undersampling for the majority 

classes. SMOTE creates synthetic data through interpolation 

for the minority classes, minimizing the risk of overfitting.

Interesting works that use respectively ROSE and SMOTE 

algorithms are presented by Zhang and Chen (2019) and by 

Sridhar and Sanagavarapu (2021).

This work exploits both ROSE and SMOTE algorithms for 

augmenting the datasets of production including samples of 

both nominal and defects, to balance the dataset and avoid 

modelling overfitting. The imbalance-learn library in Python 

environment is used for this purpose. 

5. DATASETS AND MODELS DESIGN

The modelling phase focuses on identifying defects in the 

production of subclasses of product based on two different 

cast-iron qualities (GG25 and GG15HC) characterized by 

different chemical and mechanical characteristics. Such

qualities show a different sensitivity to two main problems: 

cementite formation and micro-shrinks. The final mechanical 

properties of the products depend on cast iron chemical 

composition and on the presence of these defects.

The quality measurements are generally performed even 

several hours after casting, thus, defects detection does not 

enable timely intervention on the process, leading to potential 

production of a significant amount of scrap if the final quality 

does not meet the target one and connected waste of energy 

and other resources. In this context, the models focus on 

predicting cementite and micro-shrinks to anticipate

production stop or to suitably adjust the process.

The data acquisition campaign focused on identifying the most 

correlated measurements with the defects forecasting. For 

GG25 and GG15HC the data collection resulted in two 

different datasets that are characterized by the same 

measurement points: (i) the chemical and thermal analysis of 

cast iron at the refinement furnace (Unit 6, Fig. 1), the casting 

temperature and the inoculant quantity; (ii) the quality 

measurements of the final products in terms of cementite 

measurements and micro-shrinks assessed via X-ray. More in 

details, the chemical analysis includes the percentual content 

of carbon, silicon, manganese, phosphorus, sulfur, chromium,

copper, molybdenum, tin, titanium, aluminum, lead, tungsten, 

nickel, vanadium and niobium. The thermal analysis focus on 

the cooling curve of the sample, including also the 

characteristics of the first derivative of the curve. In particular, 

the main features extracted from the curves are the liquidus 

temperature, the eutectic temperatures (minimum, maximum
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and of the transformation), solidus temperature, and the 

recalescence (the difference between the maximum and 

minimum eutectic temperature). For each feature but 

recalescence, also the related cooling time are used. From the 

first derivative curve are extracted the index of the efficiency 

of the precipitation of eutectic austenite, and the speed of 

transition from semi-solid to fully solid state.

The raw datasets collected for the GG25 cast-iron quality is 

composed of 534 real samples, referring to a short period of 

production of specific target products. The dataset is composed 

of 3 different quality classes: (i) “nominal”, i.e. products 

meeting quality targets; (ii) products with micro-shrinks; (iii) 

products with cementite defects. The dataset is highly 

unbalanced, as the number of defects is low. The classes are 

shown in Table 1. The number of samples and percentage over

the total number of samples are given for each class. Finally, 

the problem is defined as a binary classifier for each defect and 

not as a single multi-class classifier because the two defects of 

cementite and micro-shrinkage are not self-excluding, i.e.: the 

two defects may in principle occur simultaneously.

Table 1. Dataset for the cast-iron GG25

Final product quality Number of 

occurrences 

Percentage

Nominal 521 97.57 %

Micro-shrink defects 3 0.57 %

Cementite defects 10 1.87 %

Model 1 focuses on predicting the presence of micro-shrink 

defects for products in cast-iron GG25. The model classifies 

each sample 𝑘𝑘 of the input data 𝑰𝑰GG25xray
in two classes:

𝑐𝑐𝑰𝑰GG25xray
(𝑘𝑘) ∈ {nominal = 0, defect = 1}

The dataset for training such model is extremely unbalanced, 

as only 3 samples are available, that are insufficient to train a 

reliable model. Therefore, the ROSE algorithm with smoothed 

bootstrap was used to synthetically augment the defects 

dataset, resulting in 523 examples for each class (normal / 

defect). A DTC model was trained with the augmented dataset. 

The maximum depth of the tree is selected through grid search 

for maximizing the generalization of the model.

Model 2 focuses on predicting the presence of cementite

defect for products in cast-iron GG25. The model classifies 

each sample 𝑘𝑘 of the input data 𝑰𝑰GG25cem
in two classes:

𝑐𝑐𝑰𝑰GG25cem
(𝑘𝑘) ∈ {nominal = 0, defect = 1}

The dataset for training such model is very unbalanced, as only 

10 samples are available for the defect class, that are 

insufficient to train a reliable model. Also in this case, ROSE 

was used to augment the defect dataset, by obtaining 416 

examples for the defective class and 409 for the nominal one. 

A DTC model was trained with the augmented dataset and then 

tested with real test data. The maximum depth of the tree is 

selected through grid search for maximizing the generalization 

of the model.

The raw datasets collected for the GG15HC cast-iron quality 

is composed of the same measurement point of the GG25. In 

this specific case, the number of samples is 409, referring to a 

short period of production of specific target products. Also this 

dataset is composed of the 3 previously listed classes, that are 

shown in Table 2. Also in this case the dataset is highly 

unbalanced as expected. In particular, for this specific cast-

iron quality the number of samples showing micro-shrink

defects are sufficient, while cementite was not detected.

Table 2. Dataset for the cast-iron GG15HC

Final product quality Number of 

occurrences 

Percentage

Nominal 375 91.69 %

Micro-shrink defects 34 8.31 %

Cementite defects 0 0 %

For this specific cast iron quality, a model (Model 3) has been 

designed for predicting the micro-shrink defects on the X-ray 

measurements. The model classifies each sample 𝑘𝑘 of the input 

data 𝑰𝑰GG15HCxray
in two classes:

𝑐𝑐𝑰𝑰GG15HCxray
(𝑘𝑘) ∈ {nominal = 0, defect = 1}

To overcome the issue of unbalanced dataset, SMOTE was

used to augment the dataset related to the minority class. 

SMOTE generates synthetic samples for the minority class, 

resulting in 365 synthetic sample for the defective class over 

730 samples. The DTC was trained on the augmented dataset.

6.  RESULTS

As stated above, for each specific model, the training 

procedure starts with the dataset augmentation. Each model 

was trained by exploiting the augmented dataset and then 

tested by exploiting the test datasets. In this section, the testing 

results are described, by reporting the standard performance 

indices calculated for classification tasks: (i) precision, (ii) 

recall, (iii) accuracy and (iv) F1 score, computed as follows:

Accuracy =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
(1)

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(2)

Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
(3)

F1 =
2 𝑇𝑇𝑇𝑇

2 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇
(4)

where 𝐹𝐹𝑇𝑇 and 𝑇𝑇𝑇𝑇 are, False and True Negatives, 𝐹𝐹𝑇𝑇 and 𝑇𝑇𝑇𝑇

are False and True Positives. The classification results 

evaluated in the test dataset are reported in Table 3. The 

confusion matrices, evaluated for the test dataset, for each 

model are shown, respectively, in Fig. 2, 3 and 4. In particular, 

left figures show the confusion matrix reporting the results in 

absolute terms (the number of samples classified in the specific

class), while right figures show the percentage results. 
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Table 3.  Model performances on test dataset

Model Accuracy Precision Recall F1 Score

1 0.998 0.875 0.999 0.928

2 0.991 0.9 0.995 0.942

3 1.0 1.0 1.0 1.0

(a) (b)

Fig. 2. Confusion matrix for model 1, test results in absolute 

values (a) and percentual with respect its class (b).

(a) (b)

Fig. 3. Confusion matrix for model 2, test results in absolute 

values (a) and percentual with respect its class (b).

(a) (b)

Fig. 4. Confusion matrix for model 3, test results in absolute 

values (a) and percentual with respect its class (b).

To sum up, Model 1 is a DTC trained to forecast the presence 

of micro-shrink defects for GG25 cast iron quality. Data 

augmentation technique based on ROSE algorithm allowed to 

artificially augment the defects samples. The final depth of the 

tree, selected through grid search, was 10. The testing results 

on dataset composed of real data are very promising. Model 2

is a DTC trained to forecast cementite presence in the final 

product for the GG25 cast iron quality. Also in this case, the 

ROSE algorithm allowed efficient augmentation of the dataset 

for the defective class. The final depth of the tree, selected 

through grid search, was 15. The DTC model trained with the 

augmented dataset was tested on real test data, showing very 

promising results.

Model 3, forecasts the presence of micro-shrink defects on 

GG15HC cast iron quality-based products, was trained on a 

dataset augmented via SMOTE, and was tested on real data of 

the test dataset, with promising results. The final depth of the 

decision tree, selected through grid search, was 12. In 

particular, this model shows a perfect classification 

performance. 

7. CONCLUSIONS

The paper presents a set of models forecasting defects 

formation in a foundry production line, focusing on micro-

shrink and cementite defects for two specific cast iron 

qualities. The models, designed through dataset augmentation 

techniques (ROSE and SMOTE) and DTC, allows forecasting

defects occurrence starting from early measurements of the 

process in terms of chemical and thermal analysis of the 

molten cast iron. The models are designed to be used within a 

DSS supporting process operators in decision-making process

allowing anticipation of the suitable countermeasures and 

process control actions or of production interruption to avoid 

further waste of raw materials, energy and resources.

Although the original industrial datasets were rather 

unbalanced, as few samples belong to the defective classes, the 

results on the test datasets are rather encouraging. Such results 

demonstrate that a reliable forecasting of defects occurrence is 

possible starting from the main process data. Further tests are 

planned to increase the datasets for both training and testing, 

to verify the models on numerically more significant datasets. 

Since the augmentation of the dataset introduces synthetic 

data, the reliability of the models should be further assessed 

through additional data of defective products. Additional tests

will be performed in the future exploiting data gathered in an

additional acquisition campaign to make the analysis more 

robust and enhance the generalization ability of the models.
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