
Engineering a textbook approach to index
massive string dictionaries

Paolo Ferragina[0000−0003−1353−360X], Mariagiovanna
Rotundo[0009−0001−1671−7407], and Giorgio Vinciguerra[0000−0003−0328−7791]

Department of Computer Science, University of Pisa, Pisa, Italy
{paolo.ferragina, giorgio.vinciguerra}@unipi.it

m.rotundo1@studenti.unipi.it

Abstract. We study the problem of engineering space-time efficient in-
dexes that support membership and lexicographic (rank) queries on very
large static dictionaries of strings.
Our solution is based on a very simple approach that consists of decou-
pling string storage and string indexing by means of a blockwise compres-
sion of the sorted dictionary strings (to be stored in external memory)
and a succinct implementation of a Patricia trie (to be stored in internal
memory) built on the first string of each block.
Our experimental evaluation on two new datasets, which are at least one
order of magnitude larger than the ones used in the literature, shows
that (i) the state-of-the-art compressed string dictionaries (such as FST,
PDT, CoCo-trie) do not provide significant benefits if used in an indexing
setting compared to Patricia tries, and (ii) our two-level approach enables
the indexing of 3.5 billion strings taking 273 GB in less than 200 MB of
internal memory, which is available on any commodity machine, while
still guaranteeing comparable or faster query performance than those
offered by array-based solutions used in modern storage systems, such
as RocksDB, thus possibly influencing their future designs.

Keywords: String dictionary problem · Trie data structure · String
compression · Algorithm engineering · Key-value store.

1 Introduction

The string dictionary problem is a classic one in the string-matching field. It is
defined on a set S of n strings of variable length, drawn from an alphabet Σ. The
goal is to build an indexing data structure on S that efficiently answers a mem-
bership query on any query string q ∈ Σ+, namely: “does q ∈ S ?” Sometimes,
the data structure is required to answer a more powerful query, which finds the
lexicographic position of q within the sorted set S (aka the rank of q in S). The
attention to this operation is motivated by the fact that the implementation of
several other operations on S—such as the prefix search, which finds all the
strings in S prefixed by q, and the range search, which finds all the strings in S
that fall in a given query range—boil down to solving it.

2 P. Ferragina et al.

In this paper, we assume that S is static, and thus it cannot be updated, but
its total length N and number n of strings is so large that it has to be stored in
slow storage, such as HDDs or SSDs. In fact, the recent explosion in the avail-
ability of massive string dictionaries in several applications—such as databases
[39,29], bioinformatic tools [10], search engines [25], code repositories [12], and
string embeddings (see e.g. [24,40]), just to name a few—has revitalised the
interest in solving the problem in efficient time and space by taking into account
the hierarchy of memory levels that are involved in their processing.

To solve the string dictionary problem, different approaches were proposed
over the years in the literature. A trivial one consists of using an array of string
pointers and deploying a binary search to answer queries, which causes random
memory accesses and possibly I/Os. The classic one is the trie [19], a multiway
tree that stores each string in S as a root-to-leaf path, and whose edges are
labelled with either one character from Σ (the so-called uncompacted trie) or
a substring from S’s strings (the so-called compacted trie). This historical solu-
tion has undergone over the years many significant developments that improved
its query or space efficiency (see also [5] and refs therein) such as compacting
subtries [5,36], using adaptive representations for its nodes [1,3,28], succinct rep-
resentations of its topology [22,39], and cache-aware or disk-based layouts [15,18].

Among the most recent and performing variants of tries, which are pertinent
to our discussion, we mention: ART [28], CART [38], Path Decomposed Trie
(PDT) [21], Fast Succinct Trie (FST) [39], ctrie++ [36], and CoCo-trie [5]. Ac-
cording to the experimental results published in [5], we know that ART, CART,
and ctrie++ are space inefficient and offer query times on par with the other
data structures, which is a strong limitation in the massive-dictionary context
we consider in this paper. The other three proposals—namely, FST, PDT, and
CoCo-trie— stand out as the most interesting ones because they offer the best
space-time trade-offs. Nevertheless, they incur three main “limitations”: they are
very complex to be implemented; their code is highly engineered, and thus dif-
ficult to be maintained or adapted to different scenarios (e.g., rank operations,
adding satellite information); and, finally, they are designed to compress and
index the string dictionary entirely in internal memory. In this paper, we ask
ourselves whether this “sophistication” is really needed in practice to achieve
efficient time and space performance on massive string dictionaries.

Inspired by the theoretical proposals of [11,14,16,18], our solution consists of
decoupling string indexing and string storage, via a two-level approach [13]. The
on-disk storage level compresses the sorted strings in S via rear coding [15] and
partitions them into blocks of fixed size. The indexing level exploits a succinctly-
encoded Patricia trie built on the first string of each block, so that it plays
the role of a router for determining the block that possibly contains the query
string q. Then, that block is fetched from the storage level and eventually scanned
to search for the (lexicographic position of the) string q. Now, as long as the
indexing level is small enough to fit in internal memory, we can solve the query
in at most two disk I/Os without resorting to more complicated solutions [14,18].
Additionally, as for LSM-trees [34,29], decoupling indexing from storage allows us

Engineering a textbook approach to index massive string dictionaries 3

to support some dictionary updates, thus making our proposed solution suitable
to manage datasets with high insertion rates too.

To perform our massive-scale experiments, we first notice that datasets from
previous evaluations [5,21,39] are inadequate because their size is at most about
7 GB and the number of strings is at most 114 million. We, therefore, increase
these sizes by at least an order of magnitude via two new datasets, one consist-
ing of URLs from various Web crawls (272 GB, 3.5 billion strings), the other
consisting of filenames of source code files from the Software Heritage initiative
(69 GB, 2 billion strings).

Our first experimental finding is that sophisticated compressed string dictio-
naries (i.e., FST, PDT, CoCo-trie) are too complex for the indexing level, and
they do not provide substantial space-time performance advantage compared to
our well-engineered succinct Patricia trie, which is also much faster to construct.

Then, we show that our overall two-level approach based on succinct Patricia
tries enables the indexing of the largest dataset with only at most 195 MB of
internal memory (at least ≈1400× smaller than the dataset size). This small in-
memory footprint allows dedicating much more memory to caching disk pages
and this, in turn, determines a query efficiency that is comparable to or faster
than the one offered by array-based solutions (which however take 5.2× more
internal memory).

For these reasons, our two-level approach is a robust candidate for indexing
massive string dictionaries, and it paves the way for further investigations and
engineering, as we elaborate upon in the conclusions.

2 Background

A Patricia trie (PT) [32] for a string set S is derived from the trie of S by
compacting each unary path into a single edge labelled with its first character,
and by storing at each node the length of the (uncompacted) root-to-node path.
Figure 1 shows an example of a PT built on a set of 8 strings.

Even if the PT strips out some information from the compacted trie, it is
still able to support the search for the lexicographic position of a pattern P [1, p]
among a sorted sequence of strings, with the significant advantage (discussed
below) that this search needs to access only one single string, and hence execute
typically 1 I/O instead of the p I/Os potentially incurred by the traversal of the
compacted trie due to accessing its (possibly long) edge labels. This algorithm is
called blind search in the literature [14,13]. It is a little bit more complicated than
prefix searching in classic tries, because of the presence of only one character per
edge label. Technically speaking, blind search consists of three stages.

Stage 1: Downward traversal. Trace a downward path in the PT to locate a
leaf l which points to one of the indexed strings sharing the longest common
prefix (LCP) with P (see [14] for the proof). The traversal compares the
characters of P with the single characters which label the traversed edges
until either a leaf is reached or no further branching is possible. In this last

4 P. Ferragina et al.

case, we can choose l as any descendant leaf from the last traversed node; in
our implementation, we will take the leftmost one.

Stage 2: LCP computation. Compare P against the string s pointed to by
leaf l, in order to determine their LCP ℓ ≥ 0.

Stage 3: Upward traversal. Traverse upward the PT from l to determine the
edge e = (u, v) where the mismatched character s[ℓ+ 1] lies. If s[ℓ+ 1] is a
branching character (and recall that s[ℓ+ 1] ̸= P [ℓ+ 1]), then we determine
the lexicographic position of P [ℓ+ 1] among the branching characters of u.
Say this is the ith child of u, the lexicographic position of P is therefore to
the immediate left of the subtree descending from this ith child. Otherwise,
the character s[ℓ + 1] lies within the edge e and after its first character,
so the lexicographic position of P is to the immediate right of the subtree
descending from edge e, if P [ℓ+1] > s[ℓ+1], otherwise it is to the immediate
left of that subtree.

The topology of the PT can be represented in several different ways, like, for
example, using pointers or succinct encodings. Since we aim for space savings,
we will use the latter and, in particular, the Level-Order Unary Degree Sequence
(LOUDS) [22] and the Depth-First Unary Degree Sequence (DFUDS) [4]. Both
encode the trie topology with a bitvector in which a node of degree d is repre-
sented by the binary string 1d0. The difference is the order in which the nodes
are visited and the corresponding binary strings are written in the bitvector: in
level-wise left-to-right for LOUDS, and in preorder for DFUDS. For our imple-
mentation of DFUDS, we follow [33] and prepend 110 to the representation. For
our implementation of LOUDS, we follow [39] and prepend no bits. See Figure 1
for an example of LOUDS and DFUDS representation.

Regarding compressing a lexicographically-sorted set of strings, two simple
techniques are front coding [13,15] and rear coding [15]. Front coding repre-
sents each string with two values: an integer denoting the length of the LCP
between the considered string and the previous one, and the remaining suffix of
the considered string obtained by removing that LCP. If the string has not a
predecessor, the LCP length is set to 0. In rear coding, the suffix is obtained in
the same way as in front coding, but the integer represents the number of char-
acters to remove from the previous string to obtain the longest common prefix.
Rear coding may be more efficient than front coding since it does not encode
the length of repeated prefixes [15,18].

3 Our two-level approach

As anticipated in the Introduction, our string dictionary consists of two levels: a
storage level (residing on disk), which consists of a sequence of fixed-size blocks
where strings are stored in lexicographic order and compressed; and an index-
ing level (residing in internal memory), which consists of a succinctly-encoded
Patricia trie (PT) that indexes the first strings of every block.

Engineering a textbook approach to index massive string dictionaries 5

3.1 Storage level

For the on-disk storage level, let us consider the sequence of lexicographically-
sorted strings, and disk blocks of size 4, 8, 16, and 32 KiB. The first string of
each block is stored explicitly (i.e., not compressed), whereas the subsequent
strings are compressed with rear coding until the block is (almost) full, that is,
it cannot host the subsequent rear-coded string s. In this case, the current block
is padded with zeroes, and a new block is started by setting its first string to s.
The lengths in rear coding are stored with a variable-byte encoder to keep byte
alignment, and thus speed up string decompression.

Since the blocks are of fixed size, the indexing level just needs to return the
rank of the block containing the query string, which is then multiplied by the
block size to get the byte offset of that block on disk.

To efficiently compute the rank of the query string q in S, we store for each
block b an integer indicating how many dictionary strings appear before it in
the lexicographic order, denoted with c(b). This way, let b̂ be the disk block
containing the lexicographic position of the query string q: the rank of q is then
computed by summing c(b̂) with the relative rank of q among the strings in b̂.

The latter value is obtained via a linear scan and decompression of the block b̂,
which takes advantage of rear coding and LCP length information to possibly
skip some characters, as detailed in [30, §6]. For simplicity, we store the integers
c(b) in an in-memory packed array that allocates a number of bits per element
sufficient to contain the largest one. It goes without saying that, since these
integers are increasing, one could save some further space by using a randomly-
accessible compressed integer dictionary (see e.g. [17,6] and references therein),
but this is deferred to subsequent studies.

Clearly, one can apply other compression techniques on top of or in place of
rear coding, such as entropy coding, grammar compression, and dictionary com-
pression. These techniques have been shown to be useful to reduce the space of
in-memory string dictionaries [2,27,30,9,8], but since we are dealing with strings
kept in (the much cheaper, but slower) secondary storage, we opt for the simplic-
ity of rear coding, which is shown next to be already very effective in our context.
In fact, even for datasets of billions of strings, the number of created blocks (and
thus “first strings” to be indexed in memory) is sufficiently small that the in-
dexing level (i.e., the succinct PT) fits in a few MBs (e.g., up to 195 MB for
a dictionary of 273 GB, see Section 4). We mention that we have also experi-
mented with gzipping the rear-coded strings but, although this further reduced
the on-disk space occupancy and thus the number of strings copied in memory,
the search time sensibly increased because of the slower block decompression
step. We finally mention that, compared to the approach of creating variable-
sized blocks with a fixed number of (front- or rear-coded) strings [30,27], our
use of fixed-size blocks allows for better compression because it may take more
advantage of runs of consecutive strings sharing long common prefixes, which
thus result highly compressible in one single block.

6 P. Ferragina et al.

23

11

0

t

l n h y

a m

b

xtoe

0,0,1110

1,1,1110
2,9,0

3,10,110

4,2,0 5,3,110 6,6,110
7,11,0 8,12,0

9,4,0 10,5,0 11,7,0 12,8,0

LOUDS DFUDS
Topology 1110 1110 0 110 0 110 110 0 0 0 0 0 0 110 1110 1110 0 110 0 0 110 0 0 0 110 0 0

Labels amt bln hy eo tx amt bln eo tx hy

Lengths 0 1 1 2 1 0 1 2 1 1

Leaves 5 0 6 7 1 2 3 4

Fig. 1. At the top, the Patricia Trie on the strings {abduct, algebra, algorithm, ant,
anxiety, machine, three, typo} corresponding to the leaves s0, . . . , s7. Outside each
node, we denote its position in the LOUDS order, in the DFUDS order, and its degree
in unary, respectively. At the bottom, the corresponding succinct representations.

The storage level is accessed by memory-mapping the corresponding file (via
the mmap system call), which compared to explicit reads of disk blocks allows a
simpler implementation and often faster performance [35].

3.2 Indexing level

We succinctly encode the Patricia Trie (PT), forming the indexing level, by
considering one of two succinct representations of its topology, i.e. LOUDS or
DFUDS, and using two additional sequences: one for the single characters la-
belling the edges of the PT, and the other for the root-to-node path lengths.
Both sequences are stored as packed arrays whose elements are ordered accord-
ing to the topology representation, thus in level-wise order for LOUDS and in
preorder for DFUDS. To reduce the number of bits needed to store the lengths,
we consider the length of the edge that leads to a node and not the one of the
whole root-to-node path, which can be easily recovered by summing the lengths
of the visited nodes during the downward traversal (see Section 2).

If LOUDS is used, we need one more sequence that maps each leaf in the
level-wise ordering to the lexicographic rank of the corresponding string, which
we need to jump to the corresponding block in the storage level. If DFUDS is
used, such a sequence is not needed since the leaves are ordered according to the
lexicographic rank of the corresponding strings. Figure 1 shows an example of
the sequences created for the encoding of a PT.

Engineering a textbook approach to index massive string dictionaries 7

Downward traversal with LOUDS. To downward traverse the PT encoded
with LOUDS, rank and select primitives are used: rank b(i) counts the number
of bits equal to b up to position i, while selectb(i) finds the position of the ith bit
equal to b. Assuming that the nodes, their children, and the bits of the binary
sequences are counted starting from 0, it is well known [22,33,39] that we can
traverse the trie downwards by computing the position of the kth child of the
node that starts at position p with the formula select0(rank1(p + k)) + 1. We
can prove that we do not need rank1, because its result can be computed with
proper arithmetic operations during the traversal. This fact (whose proof is in
Appendix A) allows in practice to save space, because we discard the auxiliary
data structure needed for constant-time rank1 operations, and to save time,
because several CPU cycles and possibly cache misses are needed for rank1.

Fact 1 The downward traversal of a Patricia trie encoded with LOUDS can be
executed with just select0 operations.

When a leaf is reached, we compute its rank in the leaf sequence by counting
how many leaves appear before its position x in the LOUDS representation of the
PT. This rank is given by rank0(x) − rank10(x), where the first value denotes
the number of nodes (internal and leaves) that appear in LOUDS before the
considered one, and the second value denotes the number of internal nodes (not
leaves) that appear before position x. Now we notice that the value rank0(x) =
x − rank1(x) + 1 can be computed by substituting rank1(x) with the value
returned by the arithmetic operations executed during the downward traversal,
as mentioned above and detailed in Appendix A.

Thus, we build overall just the select0 and rank10 data structures on the
LOUDS sequence (due to their time efficiency [26], we use the sux library [37]
for the former, and the sdsl library [20] for the latter).

Downward traversal with DFUDS. To downward traverse the PT encoded
with DFUDS, we compute the position of the kth child of the node whose encod-
ing starts at position p with the formula close(succ0(p)− (k+1))+1 [33]. Here,
succ0(p) returns the position of the first 0 that follows p in the DFUDS sequence,
and it is implemented by using a linear scan starting from the position p until a
0 is found. Since DFUDS can be seen as a sequence of balanced parenthesis, we
have that if i is the position of an open parenthesis, close(i) returns the position
of the corresponding close one. For close we adopt the sdsl::bp support sada

implementation of balanced parenthesis.

When a leaf is reached, we compute its rank among the leaves with a rank1

and rank10 operation. By knowing the position where the leaf starts, the rank1

allows us to derive the number of nodes that appear in the sequence before it,
while the rank10, as for LOUDS above, allows us to compute how many of these
nodes are internal nodes, thus by exploiting the results of these operations we
get the rank of the leaf. Therefore, in our implementation of DFUDS, we exploit
data structures that allow us to execute in constant time operations of rank10,
close, and rank1 (these last two ones are included in sdsl::bp support sada).

8 P. Ferragina et al.

Upward traversal in LOUDS and DFUDS. For the upward traversal of a
PT (either encoded with LOUDS or DFUDS), we need to scan back the nodes
accessed during the downward traversal. But, instead of executing any of the
bit-operations above (as typically done for the upward traversal of trees [22]),
we adopt a much simpler and time-efficient approach that pushes in a stack the
LOUDS/DFUDS positions of the nodes visited during the downward traversal,
and then it pops them from the stack during the upward traversal.

4 Experiments

Experimental setting. We use a machine with a KIOXIA KPM61RUG960G SSD
and two NUMA nodes, each with a 1.80 GHz Intel Xeon E5-2650L v3 CPU and
30 GB local DDR4 RAM. The machine runs Ubuntu 20.04.4 LTS with Linux
5.4.0, and the compiler is GCC 9.4.0. We schedule experiments on a single node
via numactl. For the use mmap in the storage level, we tested both the MAP SHARED

and MAP PRIVATE flags and noticed no significant performance difference (indeed,
the storage level is read-only), so we choose the former. The MAP POPULATE flag
too did not impact the query performance, so we do not set it. We alternate
datasets given to mmap to try to prevent caching by the operating system.

Datasets. Table 1 in Appendix B shows the sizes of the datasets used in previous
experimental evaluations of state-of-the-art solutions (i.e., FST [39], PDT [21],
and CoCo-trie [5]). The known datasets are quite small, their size is indeed no
more than 0.5 GB and 25M strings for FST, 2.7 GB and 40.5M strings for the
CoCo-trie, and 7.1 GB and 114.3M strings for PDT.

Since we want to evaluate our solution on big datasets, we introduce two
new ones. The first, URLs, combines web page addresses from various crawls [7],
has a size of 272.7 GB, and contains 3.7 billion strings. The second, Filenames,
consists of the name of source code files collected by Software Heritage [12], has a
size of around 68.9 GB, and contains 2.3 billion strings. So our datasets are larger
than the ones used in previous evaluations by up to 32.0× in number of strings
and up to 38.4× in size. Also, we point out that our datasets are up to one order
of magnitude larger than the internal memory of our machine, described above.

About the features of the new datasets, we briefly report that URLs contains
long strings (avg. 73.6, max. 2083) with long LCPs among them (avg. 53.7), on
a medium-size alphabet (88 characters); whereas Filenames offers the opposite
features, namely shorter string (avg. 29.1, max. 16051) with even shorter LCPs
among them (15.4), on a large alphabet (241 characters).

Competitors. For the indexing level, we consider the set S′ of the first strings
of each block truncated at their minimum distinguishing prefix, use S′ to con-
struct an in-memory index, and then we discard S′. As the index, other than our
PT-LOUDS and PT-DFUDS implementations, we consider FST [39], PDT [21],
CoCo-trie [5], and a simple and commonly-used solution [31,30]— that we name
Array—which stores S′ contiguously in an array and binary searches on it via

Engineering a textbook approach to index massive string dictionaries 9

4 8 16 32
Block size (KiB)

0

50

100
C

on
st

ru
ct

io
n

tim
e

(s
)

URLs
Array
CoCo
FST
PDT
PT-DFUDS
PT-LOUDS

4 8 16 32
Block size (KiB)

0.0

2.5

5.0

7.5

C
on

st
ru

ct
io

n
tim

e
(s

)

Filenames
Array
FST
PDT
PT-DFUDS
PT-LOUDS

Fig. 2. Times needed to construct each data structure in the indexing level.

an auxiliary packed array of offsets to the beginning of the strings. Notice that,
for all solutions, the truncation of strings in S′ saves space in the resulting index
and still allows identifying the correct block in the storage level (actually, upon
accessing the first string of a block we might find that the sought string is in the
preceding block, which nonetheless is likely to be loaded quickly thanks to disk
prefetching). On the other hand, PT does not store the distinguishing prefixes
but only Θ(|S′|) characters/edges/nodes, thus occupying a space that is inde-
pendent of the string lengths. We also anticipate that all these implementations
of the indexing level allow us to fit it in the internal memory of our machine and
thus solve a query with at most two random I/Os to the storage level.

In what follows, we first evaluate in Section 4.1 the different data structures
for the indexing level in isolation, i.e. without considering the access to the
storage level that concludes the query. Then, in Section 4.2 we evaluate the
performance of the overall two-level approach.

4.1 Indexing level evaluation

Construction time. Figure 2 shows the time to construct the various data struc-
tures from the set S′ loaded in memory. CoCo-trie is constructed only on URLs
because the current implementation [5] supports only ASCII alphabets. More-
over, we point out that its construction time for blocks of 4 and 8 KiB is not
shown due to its high-memory consumption that required a machine with a much
larger internal memory and thus different performance (still, we constructed
these CoCo-tries because we test their search time in Figure 3).

Unsurprisingly, Array has the fastest construction because it involves just
strings and offsets storage. Our PT-LOUDS and PT-DFUDS implementations
have the second-fastest construction, which is based on scanning prefixes at
increasing lengths of (ranges) of strings, determining sub-ranges corresponding
to deeper levels of the PT, and handling these sub-ranges recursively in LOUDS
order or DFUDS order. Finally, we notice that FST, PDT, and CoCo-trie are
significantly slower to construct than our PT, up to 7×, 5×, 42×, respectively.

10 P. Ferragina et al.

2.5 5.0 7.5 10.0
Index query time (µs)

101

102

103
In

de
x

sp
ac

e
(M

B
)

4

8

16

32
4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

URLs (3.6 billion strings)
Array
CoCo
FST

PDT
PT-DFUDS
PT-LOUDS

2 4
Index query time (µs)

101

102
4

8

16

32 4

8

16

32

4

8

16

32

4

8

16

32

4

8

16

32

Filenames (2.3 billion strings)
Array
FST
PDT

PT-DFUDS
PT-LOUDS

Fig. 3. Space and average query time of different data structures for the indexing level.

Space-time performance. Figure 3 shows the performance of data structures
for the indexing level. The query time refers to the average time needed to
perform a membership query on a sample of 10% strings drawn from the set of
distinguishing prefixes S′, without any access to the storage level. In particular,
for PT, since such access is needed for Stage 2 of the blind search (cf. Section 2),
the time is evaluated by executing a downward and an upward traversal.

The results show that Array is the fastest but also the most space-hungry
solution. FST is competitive only for the Filenames dataset due to its shorter
strings. Our PT approaches, despite their simplicity, are very competitive and
on the Pareto space-time frontier of both experimented datasets. In particular,
PT-LOUDS is the second-fastest data structure with a space occupancy that
is competitive with that of the most sophisticated solutions such as CoCo and
PDT. We notice in fact that the difference in space with those data structures is
no more than 35 MB, which is not much significant given the size of the indexed
dictionaries. On the other hand, our PT-DFUDS is the most space efficient but
also it is the slowest solution due to the more complex bit-operations needed to
traverse the PT structure (hence, we leave as an open issue their engineering).

4.2 Two-level approach evaluation

Given the results of the previous section, we restrict our evaluation of the overall
solution (involving the indexing level in memory and the storage level on disk)
just to Array and PT-LOUDS, since the other data structures are either not
competitive or too much complex for this indexing setting (as detailed above),
or their current implementations do not return the rank of the query string
among the indexed ones, being this a crucial information to jump to the cor-
rect disk block. We mention here that returning the rank of the query string in
the LOUDS-based FST requires adding an integer for each leaf (as we did with
our PT-LOUDS, cf. Figure 1), thus increasing the space of FST, or it requires

Engineering a textbook approach to index massive string dictionaries 11

90 100
Overall query time (µs)

0

250

500

750

1000
In

de
x

sp
ac

e
(M

B
)

4

8

16

32
4

8
16 32

URLs (272.7 GB)
Array
PT-LOUDS

10 20 30
Overall query time (µs)

50

100

150

4

8

16

32

4

8
16

32

Filenames (68.9 GB)
Array
PT-LOUDS

Fig. 4. Space and average query time of our two-level approach.

switching to the much slower DFUDS representation, thus increasing the query
time. On the other hand, returning the rank of a query string in PDT requires
more complex trie traversals thus increasing the query time. So Figure 3 under-
estimates the space-time performance of FST or PDT when they are used in
the two-level setting, which justifies our choice of experimenting below just with
Array and PT-LOUDS (henceforth referred to simply as PT).

The following paragraphs discuss the experimental results reported in Fig-
ure 4. Note that, as stated in Section 3.1, we need to keep in memory the array
of integers c(b) to answer rank queries on the indexed strings (which is why the
index space in Figure 4 is larger than the one reported in Figure 3).

Storage level size. We begin by reporting that our storage level with blocks
of size 4–32 KiB compresses the URLs dataset to 80.5–82.2 GB, and the File-
names dataset to 35.9–36.1 GB (details in Table 2 in Appendix C). Therefore,
our approach to the blocked-compressed storage of dictionary strings achieves a
compression factor of up to 3.4× for ULRs, and up to 1.9× for Filenames, which
is an interesting achievement given the simplicity of rear coding.

Space-time performance. Figure 4 shows that the PT and Array configurations
with 8 KiB blocks are the fastest solutions overall. In particular, PT is faster on
URLs and Array on Filenames (although PT is very close), but PT takes 5.2×
less memory than Array on URLs, and 2.3× less on Filenames.

For increasing block sizes from 8 to 32 KiB, both solutions with PT and Array
get from 1.3× to 3.7× slower, because of the larger block to scan and decompress,
but more space efficient. Notably, as the block size halves, PT scales better in
memory consumption compared to Array, because its space does not depend on
the length of the strings but just on their number (as already observed above).

Interestingly enough, the PT and Array configurations with 4 KiB blocks are
dominated by the corresponding ones with 8 KiB blocks. This occurs because

12 P. Ferragina et al.

the indexing level takes more space and thus there is less memory available for
caching disk pages, hence making page faults more frequent, as we have verified
with the mincore system call. The more space available for caching explains also
why PT is not slowed down by the execution of one more random I/O compared
to Array because of Stage 2 of the blind search (c.f. Section 2).

5 Conclusions and future work

Our two-level approach based on a succinct Patricia Trie is a robust candidate for
indexing massive string dictionaries. As we proved above, it enables indexing up
to 272.7 GB with less than 195 MB of internal memory (a space at least 1396.3×
smaller than the dictionary’s size). This small in-memory footprint allows ded-
icating much more memory to caching disk pages and this, in turn, determines
a query efficiency that is comparable to or faster than the one offered by Array-
based solutions (which take 5.2× more memory). We believe these findings are
significant not only for static dictionaries but also for dynamic ones that occur
in the design of modern storage systems. As an example, RocksDB [31] is based
on (static) runs of strings with in-memory Array-based indexes.

As future work, other than investigating the impact of our findings on these
storage systems we suggest: for the indexing level, the integration in our PTs
of dynamic succinct tree representations [23] or proper compressors for node
fan-outs (à la FST and CoCO-trie); and for the storage level, the design of solu-
tions based on variable-size blocks that take into account the query distribution
(thereby reducing the average time for block decompression/scan), or that use
more sophisticated techniques on top of rear coding to improve block compres-
sion thus further reducing the internal-memory footprint of PTs.

Acknowledgements. We thank Antonio Boffa for executing some tests on the
CoCo-trie, and the Green Data Centre at the University of Pisa for machines
and technical support. We also thank Roberto Di Cosmo, Stefano Zacchiroli,
and the Software Heritage team for providing us with the Filenames dataset.

This work has been supported by the European Union – Horizon 2020 Pro-
gram under the scheme “INFRAIA-01-2018-2019 – Integrating Activities for
Advanced Communities”, Grant Agreement n. 871042, “SoBigData++: Euro-
pean Integrated Infrastructure for Social Mining and Big Data Analytics” http:
//www.sobigdata.eu, by the NextGenerationEU – National Recovery and Re-
silience Plan (Piano Nazionale di Ripresa e Resilienza, PNRR) – Project: “SoBig-
Data.it - Strengthening the Italian RI for Social Mining and Big Data Analytics”
– Prot. IR0000013 – Avviso n. 3264 del 28/12/2021, by the spoke “FutureHPC
& BigData” of the ICSC – Centro Nazionale di Ricerca in High-Performance
Computing, Big Data and Quantum Computing funded by European Union –
NextGenerationEU – PNRR, by the Italian Ministry of University and Research
“Progetti di Rilevante Interesse Nazionale” project: “Multicriteria data struc-
tures and algorithms” (grant n. 2017WR7SHH).

http://www.sobigdata.eu
http://www.sobigdata.eu

Engineering a textbook approach to index massive string dictionaries 13

References

1. Acharya, A., Zhu, H., Shen, K.: Adaptive algorithms for cache-efficient trie search.
In: Proc. International Workshop on Algorithm Engineering and Experimentation
(ALENEX). pp. 300–315 (1999). https://doi.org/10.1007/3-540-48518-X 18

2. Arz, J., Fischer, J.: LZ-compressed string dictionaries. In: Proc.
24th Data Compression Conference (DCC). pp. 322–331 (2014).
https://doi.org/10.1109/DCC.2014.36

3. Baskins, D.: A 10-minute description of how Judy arrays work and why they are
so fast (2002), http://judy.sourceforge.net/doc/10minutes.htm

4. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.:
Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005).
https://doi.org/10.1007/s00453-004-1146-6

5. Boffa, A., Ferragina, P., Tosoni, F., Vinciguerra, G.: Compressed string dic-
tionaries via data-aware subtrie compaction. In: Proc. 29th International Sym-
posium on String Processing and Information Retrieval (SPIRE). pp. 233–249
(2022). https://doi.org/10.1007/978-3-031-20643-6 17, implementation available at
https://github.com/aboffa/CoCo-trie

6. Boffa, A., Ferragina, P., Vinciguerra, G.: A learned approach to design com-
pressed rank/select data structures. ACM Trans. Algorithms 18(3) (oct 2022).
https://doi.org/10.1145/3524060

7. Boldi, P., Marino, A., Santini, M., Vigna, S.: BUbiNG: massive
crawling for the masses. ACM Trans. Web 12(2), 12:1–12:26 (2018).
https://doi.org/10.1145/3160017, datasets of URLs available at https:
//law.di.unimi.it/datasets.php

8. Boncz, P., Neumann, T., Leis, V.: FSST: fast random access string compression.
PVLDB 13(12), 2649–2661 (jul 2020). https://doi.org/10.14778/3407790.3407851

9. Brisaboa, N.R., Cerdeira-Pena, A., de Bernardo, G., Navarro, G.: Improved
compressed string dictionaries. In: Proc. 28th ACM International Confer-
ence on Information and Knowledge Management (CIKM). pp. 29–38 (2019).
https://doi.org/10.1145/3357384.3357972

10. Chikhi, R., Holub, J., Medvedev, P.: Data structures to represent a
set of k-long DNA sequences. ACM Comput. Surv. 54(1) (mar 2021).
https://doi.org/10.1145/3445967

11. Clark, J.L.: PATRICIA-II. two-level overlaid indexes for large libraries. Int. J.
Parallel Program. 2(4), 269–292 (1973). https://doi.org/10.1007/BF00985662

12. Di Cosmo, R.: Should we preserve the world’s software history, and can we?
In: Proc. 26th International Conference on Theory and Practice of Digital Li-
braries (TPDL). pp. 3–7 (2022). https://doi.org/10.1007/978-3-031-16802-4 1,
https://www.softwareheritage.org

13. Ferragina, P.: Pearls of Algorithm Engineering. Cambridge University Press (2023)
14. Ferragina, P., Grossi, R.: The String B-tree: A new data structure for string search

in external memory and its applications. J. ACM 46(2), 236–280 (mar 1999).
https://doi.org/10.1145/301970.301973

15. Ferragina, P., Grossi, R., Gupta, A., Shah, R., Vitter, J.S.: On search-
ing compressed string collections cache-obliviously. In: Proc. 27th ACM Sym-
posium on Principles of Database Systems (PODS). pp. 181–190 (2008).
https://doi.org/10.1145/1376916.1376943

16. Ferragina, P., Luccio, F.: String search in coarse-grained parallel computers. Algo-
rithmica 24(3-4), 177–194 (1999). https://doi.org/10.1007/PL00008259

https://doi.org/10.1007/3-540-48518-X_18
https://doi.org/10.1109/DCC.2014.36
http://judy.sourceforge.net/doc/10minutes.htm
https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1007/978-3-031-20643-6_17
https://github.com/aboffa/CoCo-trie
https://doi.org/10.1145/3524060
https://doi.org/10.1145/3160017
https://law.di.unimi.it/datasets.php
https://law.di.unimi.it/datasets.php
https://doi.org/10.14778/3407790.3407851
https://doi.org/10.1145/3357384.3357972
https://doi.org/10.1145/3445967
https://doi.org/10.1007/BF00985662
https://doi.org/10.1007/978-3-031-16802-4_1
https://www.softwareheritage.org
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/1376916.1376943
https://doi.org/10.1007/PL00008259

14 P. Ferragina et al.

17. Ferragina, P., Manzini, G., Vinciguerra, G.: Compressing and querying integer dic-
tionaries under linearities and repetitions. IEEE Access 10, 118831–118848 (2022).
https://doi.org/10.1109/ACCESS.2022.3221520

18. Ferragina, P., Venturini, R.: Compressed cache-oblivious string B-tree. ACM Trans.
Algorithms 12(4), 52:1–52:17 (2016). https://doi.org/10.1145/2903141

19. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (Sep 1960).
https://doi.org/10.1145/367390.367400

20. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play
with succinct data structures. In: Proc. 13th International Symposium on Experi-
mental Algorithms (SEA). pp. 326–337 (2014). https://doi.org/10.1007/978-3-319-
07959-2 28

21. Grossi, R., Ottaviano, G.: Fast compressed tries through path decompositions.
ACM J. Exp. Algorithmics 19 (jan 2015). https://doi.org/10.1145/2656332, im-
plementation available at https://github.com/ot/path decomposed tries

22. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th IEEE Sym-
posium on Foundations of Computer Science (FOCS). pp. 549–554 (1989).
https://doi.org/10.1109/SFCS.1989.63533

23. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Proc. 11th
International Symposium Experimental Algorithms (SEA). pp. 224–235 (2012).
https://doi.org/10.1007/978-3-642-30850-5 20

24. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text.zip: Compressing text classification models. CoRR abs/1612.03651 (2016),
http://arxiv.org/abs/1612.03651

25. Krishnan, U., Moffat, A., Zobel, J.: A taxonomy of query auto completion modes.
In: Proc. 22nd Australasian Document Computing Symposium (ADCS) (2017).
https://doi.org/10.1145/3166072.3166081

26. Kurpicz, F.: Engineering compact data structures for rank and select queries on
bit vectors. In: Proc. 29th International Symposium on String Processing and In-
formation Retrieval (SPIRE). pp. 257–272 (2022). https://doi.org/10.1007/978-3-
031-20643-6 19

27. Lasch, R., Oukid, I., Dementiev, R., May, N., Demirsoy, S.S., Sattler, K.: Fast
& strong: The case of compressed string dictionaries on modern CPUs. In: Proc.
15th International Workshop on Data Management on New Hardware (DaMoN).
pp. 4:1–4:10 (2019). https://doi.org/10.1145/3329785.3329924

28. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ART-
ful indexing for main-memory databases. In: Proc. 29th IEEE Inter-
national Conference on Data Engineering (ICDE). pp. 38–49 (2013).
https://doi.org/10.1109/ICDE.2013.6544812

29. Luo, C., Carey, M.J.: LSM-based storage techniques: a survey. VLDB J. 29(1),
393–418 (2020). https://doi.org/10.1007/s00778-019-00555-y

30. Mart́ınez-Prieto, M.A., Brisaboa, N.R., Cánovas, R., Claude, F., Navarro,
G.: Practical compressed string dictionaries. Inf. Syst. 56, 73–108 (2016).
https://doi.org/10.1016/j.is.2015.08.008

31. Meta Platforms, Inc.: RocksDB, https://rocksdb.org/

32. Morrison, D.R.: PATRICIA—practical algorithm to retrieve informa-
tion coded in alphanumeric. J. ACM 15(4), 514–534 (Oct 1968).
https://doi.org/10.1145/321479.321481

33. Navarro, G.: Compact Data Structures: A Practical Approach. Cambridge Univer-
sity Press (2016). https://doi.org/10.1017/CBO9781316588284

https://doi.org/10.1109/ACCESS.2022.3221520
https://doi.org/10.1145/2903141
https://doi.org/10.1145/367390.367400
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1145/2656332
https://github.com/ot/path_decomposed_tries
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1007/978-3-642-30850-5_20
http://arxiv.org/abs/1612.03651
https://doi.org/10.1145/3166072.3166081
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1007/978-3-031-20643-6_19
https://doi.org/10.1145/3329785.3329924
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1016/j.is.2015.08.008
https://rocksdb.org/
https://doi.org/10.1145/321479.321481
https://doi.org/10.1017/CBO9781316588284

Engineering a textbook approach to index massive string dictionaries 15

34. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured
merge-tree (LSM-tree). Acta Informatica 33(4), 351–385 (1996).
https://doi.org/10.1007/s002360050048

35. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley, 10
edn. (2018)

36. Tsuruta, K., Köppl, D., Kanda, S., Nakashima, Y., Inenaga, S., Bannai, H., Takeda,
M.: c-trie++: a dynamic trie tailored for fast prefix searches. Information and
Computation 285, 104794 (2022). https://doi.org/10.1016/j.ic.2021.104794

37. Vigna, S.: Broadword implementation of rank/select queries. In: Proc. 7th In-
ternational Workshop on Experimental Algorithms (WEA). pp. 154–168 (2008).
https://doi.org/10.1007/978-3-540-68552-4 12

38. Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L., Shen, R.: Reducing
the storage overhead of main-memory OLTP databases with hybrid indexes. In:
Proc. ACM International Conference on Management of Data (SIGMOD). pp.
1567–1581 (2016). https://doi.org/10.1145/2882903.2915222

39. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky, M., Keeton, K.,
Pavlo, A.: Succinct range filters. ACM Trans. Database Syst. 45(2) (jun 2020).
https://doi.org/10.1145/3375660, fork of the implementation available at https:
//github.com/kampersanda/fast succinct trie

40. Zhang, W., Hou, L., Yin, Y., Shang, L., Chen, X., Jiang, X., Liu, Q.: Ternary-
BERT: distillation-aware ultra-low bit BERT. In: Proc. 2020 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP). pp. 509–521 (2020).
https://doi.org/10.18653/v1/2020.emnlp-main.37

A Proof of Fact 1

Proof. We start by recalling two basic identities of rank and select primitives

rank1(x) = x− rank0(x) + 1 and rank0(select0(x)) = x.

From the above two identities, it also holds

rank1(select0(y)) = select0(y)− rank0(select0(y)) + 1

= select0(y)− y + 1.
(1)

Let p be the position of the currently visited internal node in the LOUDS
bitvectorB, i.e. the degree d ≥ 1 of the current node is represented inB[p, p+ d] =
1d0. We now show that the well-known formula [22,39] select0(rank1(p+ k))+ 1
that allows going from the current node to its kth child (0 ≤ k < d), can be
computed with just select0 and arithmetic operations. Clearly, it is enough to
focus on the rank1(p+ k) part of the formula. We distinguish two cases.

If the currently visited node is the root, i.e. p = 0, it is easy to see that

rank1(p+ k) = rank1(k) = k + 1, (2)

because B[p, p+ d] = B[0, d] = 1d0.
Otherwise, if the current visited node is an internal node different from the

root, then p has been computed with the known formula as p = select0(rank1(p
′+

k′)) + 1, where p′ is the starting position of the parent of the current node,

https://doi.org/10.1007/s002360050048
https://doi.org/10.1016/j.ic.2021.104794
https://doi.org/10.1007/978-3-540-68552-4_12
https://doi.org/10.1145/2882903.2915222
https://doi.org/10.1145/3375660
https://github.com/kampersanda/fast_succinct_trie
https://github.com/kampersanda/fast_succinct_trie
https://doi.org/10.18653/v1/2020.emnlp-main.37

16 P. Ferragina et al.

and k′ is the position of the current node among its siblings. Let us call y =
rank1(p

′ + k′), and thus p = select0(y) + 1. Then, it holds

rank1(p+ k) = rank1(p) + k (since B[p, p+ k] is all 1s)

= rank1(select0(y) + 1) + k (by substitution of p)

= rank1(select0(y)) + k + 1 (since B[select0(y) + 1] = B[p] = 1)

= select0(y)− y + k + 2 (by Equation (1))

So, during the downward traversal, all the operations of the form rank1(p + k)
can be replaced with arithmetic and select0 operations on y = rank1(p

′ + k′),
whose value was computed at the parent of the current node (up from the root,
where y is trivially given by Equation (2)). ⊓⊔

B Datasets used in previous evaluations

Dataset # strings (M) Size (GB) Reference

xml 2.9 0.1 CoCo-trie [5]
protein 2.9 0.1 CoCo-trie [5]
enwiki-titles 8.5 0.1 PDT [21]
dna 13.7 0.1 CoCo-trie [5]
aol-queries 10.2 0.2 PDT [21]
Integer keys 50.0 0.4 FST [39]
tpcds-id 30.0 0.4 CoCo-trie [5]
Emails addresses 25.0 0.5 FST [39]
uk-2002 18.5 1.4 PDT [21]
synthetic 2.5 1.5 PDT [21]
url 40.5 2.7 CoCo-trie [5]
webbase-2001 114.3 7.1 PDT [21]

Filenames 2294.3 68.9 this paper
URLs 3654.1 272.7 this paper

Table 1. Datasets used in previous papers, ordered by their sizes in GBs, compared
to the two datasets introduced in this paper, which are up to about 40× larger. The
size of “Emails addresses” is not explicitly indicated in [39], but we derive it from the
number and average length of email addresses indicated in that paper.

Engineering a textbook approach to index massive string dictionaries 17

C Index and storage space of the two-level solution

Blocks Solution
URLs Filenames

Index (MB) Storage (GB) Index (MB) Storage (GB)

4K
Array 1075.3

82.2
190.7

36.1
PT 195.2 80.9

8K
Array 492.5

81.2
91.3

36.0
PT 95.0 39.0

16K
Array 226.5

80.7
44.1

35.9
PT 46.4 19.2

32K
Array 104.3

80.5
21.3

35.9
PT 22.8 9.5

Table 2. Space used by the storage level, where blocks of strings are compressed
with rear coding, and by the indexing level built on the first string of each block by
considering different block sizes.

	Engineering a textbook approach to index massive string dictionaries

