
Computer Networks 250 (2024) 110508

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

FTG-Net-E: A hierarchical ensemble graph neural network for DDoS attack
detection
Rana Abu Bakar a,∗, Lorenzo De Marinis a, Filippo Cugini b, Francesco Paolucci b

a Scuola Superiore Sant’Anna, PISA, 56124, Italy
b CNIT, PISA, 56124, Italy

A R T I C L E I N F O

Keywords:
DDoS
Network security
Cybersecurity
Deep learning
Ensemble learning
Attack detection
Graph neural networks

A B S T R A C T

Distributed Denial-of-Service (DDoS) attacks are a major threat to computer networks. These attacks can
be carried out by flooding a network with malicious traffic, overwhelming its resources, and/or making it
unavailable to legitimate users. Existing machine learning methods for DDoS attack detection typically use
statistical features of network traffic, such as packet sizes and inter-arrival times. However, these methods
often fail to capture the complex relationships between different traffic flows. This paper proposes a new
DDoS attack detection approach that uses Graph Neural Networks (GNN) ensemble learning. GNN ensemble
learning is a type of machine learning that combines multiple GNN models to improve the detection accuracy.
We evaluated our approach on the Canadian Institute for Cybersecurity Intrusion Detection Evaluation Dataset
(CICIDS2018) and CICIDS2017 datasets, a benchmark dataset for DDoS attack detection. Our work provides
two main contributions. First, we extend our DDoS attack detection approach using GNN ensemble learning.
Second, we explore the evaluation and fine-tuning of hyperparameter metrics through ensemble learning,
significantly enhancing accuracy compared to a single GNN model and achieving an average 3.2% higher F1-
score. Additionally, our approach effectively reduces overfitting by incorporating regularization techniques,
such as dropout and early stopping. Specifically, we use a hierarchical ensemble of GNN, where each GNN
learns the relationships between traffic flows at a different granularity level. We then use bagging and boosting
to combine the predictions of the individual GNN, further improving detection accuracy. Results show that our
system can achieve 99.67% accuracy, with a F1-score of 99.29%, which is better than state-of-the-art methods,
even using single traffic architecture.
1. Introduction

The surge in digital technologies has fueled a rise in cyber-attacks,
disrupting operations and causing significant economic, political, mil-
itary, and privacy-related damages. As per the Federal Bureau of In-
vestigation (FBI) Internet Crime Complaint Center (IC3) report [1], the
number of cybercrime complaints in 2021 reached 847,376, marking a
7% increase from 2020 and a staggering 181% jump from 2017. The
estimated financial losses due to these attacks exceeded $6.9 billion.
Among the most concerning cyber threats is DDoS attacks, which
exploit the capacity limits of network resources by orchestrating a
massive influx of requests from numerous devices, effectively clogging
access to the resource for legitimate users. A prominent example of a
DDoS attack driven by political motives was the one launched by the
ALtahrea Team against public websites in the UK and Israel during the
second quarter of 2022 [2].

DDoS attacks are a prevalent cyber threat characterized by a mali-
cious attempt to overwhelm a target’s online resources, rendering them
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unavailable to legitimate users. These attacks can be categorized into
three primary types, each with unique characteristics and implications.

1. Volumetric Attacks: Flooding the Network with Legitimate Traf-
fic - Volumetric DDoS attacks flood the target network with an
overwhelming volume of legitimate traffic, typically generated
by a botnet, a network of infected devices controlled by an
attacker. This massive influx of traffic saturates the network’s
bandwidth, choking it to a standstill. As a result, legitimate users
cannot access the target website, application, or service.

2. Protocol Attacks: Exploiting Layer 3 and 4 Vulnerabilities -
Protocol attacks target network protocols operating at Layer
3 (network layer) and 4 (transport layer). These attacks aim
to consume the resources of the target server or intermediate
communication equipment, such as firewalls and load balancers,
rendering them unable to handle legitimate traffic. Common
protocol attacks include SYN flood attacks, UDP flood attacks,
and ICMP flood attacks.
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3. Application Attacks: Exploiting Vulnerabilities at Layer 7 - Ap-
plication layer attacks target the application layer (Layer 7),
the highest layer of the network stack. These attacks utilize
legitimate requests to exploit vulnerabilities within the target
application, consuming computing resources, such as database
queries or read file. Unlike volumetric and protocol attacks,
application layer attacks may be more challenging to detect as
they often blend in with legitimate traffic.

A comprehensive detection system is essential to detect and mitigate
DDoS attacks effectively. This system should be able to analyze both
aggregated traffic patterns and specific traffic flows to identify anoma-
lies that may indicate an attack. Analyzing aggregated traffic provides
insights into overall network behavior while examining specific traf-
fic flows helps identify suspicious activity between two endpoints.
Combining these perspectives allows a flexible detection system to
distinguish between legitimate traffic and malicious attacks. The DDoS
detection system must reach a trade-off between (i) the delay due to
huge receiving traffic under analysis (to deliver an adequate overview
to monitor probable malicious patterns) and (ii) the reactivity to im-
plement appropriate mitigation and security rules before consequential
damages.

Moreover, DDoS mitigation strategies should also consider the over-
all network’s computational capabilities. Overburdening the network
with intensive processing tasks can lead to performance bottlenecks and
hinder the ability to respond to other network traffic.

Detection of DDoS attacks using traditional Machine Learning (ML)
and Deep Learning (DL) techniques involves utilizing traffic-level or
flow-level features that are statistical representations of the data as-
sociated with the transmitted packets within a certain flow or time
window. These features are significant in identifying potential attacks.
Those approaches perform well when trained on famous Intrusion
Detection System (IDS) datasets but lack adoption in real-time systems
due to their incapacity to generalize and be flexible to different traffic
profiles and networks [3]. To tackle this issue, one can shift from
statistical aggregation to delving into the structure of traffic flows.
This involves examining sequences of exchanged packets between two
endpoints and considering aggregated traffic, defined as the collection
of flows established among endpoints within a specific time window.
This augmented topological knowledge allows the detection of common
structural patterns in specific DDoS attack types. A recent breakthrough
has emerged with the application of Graph Neural Networks (GNN) to
the problem of Distributed Denial of Service (DDoS Detection System
(DDS)) [4]. This approach harnesses topological information to en-
hance both robustness and detection accuracy. However, analyzing the
intra- and inter-entity flow level connections is essential for capturing
all potential attack patterns.

This paper is the invited extended version of our previous work [5].
In our recent preliminary work [5], we introduced a hierarchical
graph structure known as Flow-to-Traffic Graph (FTG), incorporating
aggregated traffic-level and flow-level structures in a two-level rep-
resentation. Additionally, we proposed the FTG-Net model: a GNN
designed to process these FTG graphs and effectively classify flows as
either legitimate or malicious. This approach adeptly captures and em-
beds the intricate flow structures between hosts and servers, combining
this representation with the overall traffic structure. By doing so, it
accommodates various DDoS attacks within the recognized patterns.
Significantly, this solution relies solely on traffic topology, eliminat-
ing the need for computationally expensive stateful features in real-
time scenarios. This divergence avoids potential overfitting to specific
training dataset characteristics, as commonly encountered in models
incorporating all stateful features [6]. When deploying FTG-Net in real-
world scenarios, it is important to integrate specific stateful features
into the graph node. These features should be contingent upon the
network requirements and functionalities, as they can greatly enrich
2

the representation and ultimately improve the performance. While our
approach demonstrated impressive accuracy, we recognized that the
battle against DDoS attacks is an ever-evolving challenge. These attacks
continuously adapt, seeking to mimic legitimate traffic patterns and
evade detection mechanisms.

This paper completes and extends our work [5] by introducing
a novel way to detect DDoS attacks using ensemble learning with
GNN. Ensemble learning is a method that combines multiple machine
learning models to improve the system overall performance [7]. In our
case, we use a combination of GNNs to detect DDoS attacks. By learning
from the structure of the network traffic, GNNs can identify patterns
indicative of DDoS attacks. This is because each GNN model will learn
different patterns from the data, and by combining the predictions of
the different models, we can get a more accurate overall prediction. Our
approach employs a subsampling strategy to reduce the computational
complexity of training GNN models on large graphs. This involves
dividing the graph into smaller subgraphs and training separate GNN
models on each subgraph. This reduces the number of nodes and
edges that each GNN model needs to process, significantly improving
training efficiency. Instead of using computationally expensive models,
we utilize lightweight graph networks that have a simpler architecture
and fewer parameters. This further reduces the computational require-
ments of training and inference. For instance, we employed Graph
Convolutional Networks (GCN) with fewer convolutional layers. The
GCN can help to make a model from the network topology represented
as graphs. They enable the extraction of spatial features by learning
from the relationships between nodes and their neighbors. They can
extract temporal features, which allow over time to capture changes in
network [8]. This lightweight GNN architecture aggregates information
from neighboring nodes more efficiently. Ensemble learning involves
combining the predictions from multiple models to improve overall
accuracy. Our approach trains multiple GNN models on different sub-
graphs and aggregates their predictions to produce the final output.
This approach enhances accuracy and reduces the computational bur-
den compared to training a single large GNN model on the entire
graph.

We evaluated our approach using two well-known network traffic
datasets on CIC-IDS2017 and CICIDS2018 [9]. The results show that
our system can achieve enhanced accuracy and robustness compared
to other approaches. Our approach significantly improves the accuracy
performance compared to a single GNN model, achieving an average
of 3.2% higher F1-score. Additionally, our approach effectively reduces
overfitting by incorporating regularization techniques, such as dropout
and early stopping.

The contributions of this paper are as follows:

• We transform the traffic data into a new hierarchical graph
structure called FTG. It contains both flow and aggregate traffic
details.

• We propose an extended FTG-Net [10] with GNN models, which
can detect DDoS attacks exploiting the introduced FTG structures.

• We propose an ensemble GNN model, namely FTG-Net-E, to
detect DDoS attacks exploiting the introduced FTG structures.
It uses a hierarchical approach to capture fine-grained packet
interactions and coarse-grained flow relationships. It also uses
an ensemble learning approach for enhanced robustness with
bagging and boosting techniques.

• We perform experimentation on CIC-IDS2017 and CICIDS2018 [9]
to show that the information in the network traffic structure
is enough to achieve better results compared to state-of-the-art
methods.

The remainder of this paper is organized as follows. Section 2
describes related work. Section 3 describes background studies on
GNN, Message Passing Neural Network (MPNN), GCN, Graph Attention
Network (GAT), and ensemble learning. Section 4 provides details on

graph structures for communication networks. In Section 5 we describe
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our ensemble GNN model architecture, data preprocessing, training
procedure, and hyperparameter optimization. Section 6 presents the ex-
perimental setup and results, including the datasets, evaluation metrics,
implementation details, and experimental results. Finally, Section 7
concludes the paper and discusses future research directions.

2. Related work

Previous work to detect DDoS attacks through ML and DL have con-
centrated on balancing detection performance with introduced latency.
This is because these methods typically utilize complex models that
require significant computational resources to train and execute, lead-
ing to increased latency. Hence, these limitations must be addressed to
enable a real-time application of ML/DL based DDoS attack detection.
One promising approach is using GNNs, a neural network designed
to work with graph data. The graph represents relationships between
entities, such as the relationships between nodes in a network. GNNs
are effective for various graph data tasks, such as fraud detection and
social network analysis [11]. In this section, we evaluate some GNN-
based DDoS attack detection techniques, including ensemble-based
GNN approaches.

2.1. DDoS attack detection

There are numerous proposed methods and frameworks for detect-
ing DDoS attacks. This subsection emphasizes the ML and DL based
approaches. These techniques have proven effective in identifying var-
ious DDoS attack types, such as volumetric attacks, protocol attacks,
and application-layer attacks.

Previous work on DDoS attack detection has also explored hardware
acceleration techniques to improve detection performance and reduce
latency. Musumeci et al. [12] introduced a Software Defined Network-
ing (SDN) based DDoS detection system. In this system, the DDoS
attack detection module receives stateful traffic information based on a
sliding window from the system. They utilized Barefoot Tofino switches
enabled with P4, which offload a part of the detection process to
the data plane. Moreover, the recent work of De Marinis et al. [13]
demonstrated that it is possible to onboard the logic of a DNN inside
a programmable switch pipelines made of a cascade of flow tables.
The paper evaluated the mapping and the onboarding of a P4-based
DDoS detector DNN applied at the packet level [14], achieving a
F1-score above 92%. This approach, however, assumes the availabil-
ity of specialized programmable hardware in the network operator
ecosystem.

The LUCID technique, as proposed by Doriguzzi-Corin et al. [15]
is employed to detect DDoS attacks, offering lightweight execution
with minimal processing overhead and detection time. The distinctive
traffic preprocessing mechanism is designed to feed the CNN model
with network traffic for online DDoS attack detection. Their evalua-
tion compared LUCID with DeepDefense 3Long Short-Term Memory
(LSTM) across multiple datasets, including ISCX2012, CIC2017, CSE-
CIC2018, and UNB201X, yielding comparable results. Notably, LUCID
outperformed 3LSTM in terms of detection time. Additionally, LUCID
was compared with other contemporary methods, including DeepGFL,
Multilayer Perceptron (MLP), LSTM, 1D-Convolutional Neural Network
(CNN), and 1D-CNN LSTM, with validation on the CIC2017 dataset. The
evaluation results demonstrated that LUCID achieves good performance
from existing state-of-the-art techniques. The study verified that LUCID
effectively learns domain information by calculating kernel activations
for each feature. Remarkably, the training time of LUCID on a GPU de-
velopment board was 40 times faster than the authors’ implementation
of DeepDefense 3LSTM. However, LUCID has not investigated the case
of small flows (i.e., mouse flows with limited bytes exchanged between
endpoints) with padding mechanism, which may suffer from scalability
3

issues.
2.2. Graph neural networks based attacks detection

GNNs help to identify potential anomalies by analyzing the flow
of each feature in the dataset. [16]. The GNN looks promising in
different cyber security fields, such as threat intelligence, vulnerabil-
ity, and malware detection [17–20]. However, the detection of DDoS
needs to be correctly implemented to get the full benefit of GNN
nature using hierarchical traffic filtering and tackle adversarial attacks.
The previous solutions [19,20] for attack detection used measuring
each flow or multiple sketches for independent flows without hier-
archical traffic filtering. It is essential to detect elephant flows and
aggregate mice flow to improve detection and reduce computational
cost [21]. The ensemble-based intrusion detection enhances overall
robustness against adversarial attacks since combining GNN models
present different sensitivities to attacks [22].

Several recent studies have explored the use of self-supervised
Graph Neural Networks (GNNs) for various tasks, including Network In-
trusion Detection System (NIDS), Knowledge Tracing (KT), and graph-
based clustering. Pujol-Perich et al. [23] highlighted the importance of
constructing a graph representation of network flows to unveil mean-
ingful structural patterns for developing robust and accurate NIDS.
They articulate network flows and their interconnections within the
network using a graph structure. Subsequently, a message-passing func-
tion is introduced to effectively glean insights from host connection
graphs. The model’s efficacy is assessed using the CIC-IDS2017 dataset
and is benchmarked against various machine learning classifiers. The
evaluation involves artificially modifying flow features relevant to the
attack scenarios, such as packet size and inter-arrival times. The results
demonstrate that the proposed GNN model maintains baseline accuracy
compared to other models that exhibit degraded performance when
exposed to altered traffic flows.

The study conducted by Li et al. [24] introduced the GraphDDoS
model, designed to detect both low-rate and high-rate DDoS attacks by
considering the relationships among packets within a single flow and
between different flows. In pursuit of this goal, network packets with
the same source and destination IP addresses are grouped, forming the
basis for constructing an endpoint graph as the final representation.
Message-passing operations are then executed on these graphs using a
Graph Isomorphism Network (GIN), and a readout function computes
the resulting graph embeddings. The efficacy of the model is evaluated
on the CIC-IDS2017 and CIC-DoS2017 datasets.

Song et al. [25] proposed a self-supervised GNN model for KT called
Bi-CLKT. Bi-CLKT learns node and graph embeddings using positive
and negative pair graph training. The authors showed that Bi-CLKT
outperforms state-of-the-art KT models.

Guo et al. [26] introduced GLD-Net, a model adept at integrat-
ing topological structure and traffic features. The approach involves
segmenting traffic data into time slots and constructing a subgraph
for each slot. Topology information is incorporated as node features
in these subgraphs, while flow statistics serve as edge features. The
subgraphs undergo processing using a GAT, allowing simultaneous
analysis of both traffic and topological features. The resulting outputs
are then interpreted as a time series, inputting a LSTM network. Yang
et al. [27] proposed another self-supervised GNN model for graph-
based clustering called Variational Co- embedding Learning Model
for Attributed Network Clustering (VCLANC). This model uses node
embeddings and attributes to learn local and global mutual affinities be-
tween graph elements. The authors showed that VCLANC outperforms
other graph-based clustering methods.

Lo et al. [28], proposed E-GraphSAGE, a GNN-based IDS for the
Internet of Things (IoT). The authors argue that GNNs are well-suited
for IDS because they can learn the complex relationships between the
devices and nodes in an IoT network. The proposed E-GraphSAGE
model is based on the GraphSAGE algorithm [29], a GNN that can
learn node representations in a graph. E-GraphSAGE extends Graph-

SAGE by incorporating edge features and topological patterns into
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learning. This makes E-GraphSAGE more effective at detecting mali-
cious network flows in IoT networks. E-GraphSAGE has been tested on
four benchmark IoT NIDS datasets, outperforming other state-of-the-
art models on all four datasets. It is the first successful, practical, and
extensively evaluated approach to applying GNNs to the problem of
network intrusion detection for IoT using flow-based data. Their study
observed a significant enhancement in botnet detection performance
by utilizing their proposed model. This improvement was particularly
evident when comparing the outcomes achieved by logistic regression
and the pre-existing botnet detection tool, BotGrep [30]. Alshammari
et al. [31] proposed a parameter-free graph reduction method for
graph-based clustering. The authors showed their approach can achieve
competitive performance with parameter-based graph-based clustering
methods without dataset-specific parameter tuning.

Xiao et al. [32] proposed a traditional graph embedding approach
to perform network intrusion detection. The first step they took was
to convert the network flows into graphs based on the source and
destination IP and port pairings. After that, they used traditional graph
embedding techniques like DeepWalk (skip-gram) for network intrusion
detection. However, there is a significant drawback to this approach:
it utilizes conventional transductive graph embedding methods [33]
which are not capable of generalizing to unseen node embeddings, such
as IP addresses and port numbers that were not included during the
training phase. This means that the approach is not suitable for most
practical NIDS application scenarios, as it cannot rely on every IP ad-
dress and port pair appearing in the training data. This means that the
model cannot detect new attacks that use IP addresses or port numbers
that the model has never seen before. This is a major limitation, as
attackers constantly develop novel attacks and techniques.

In contrast, Anomal-E [34] is a self-supervised GNN model that does
not require labeled data to train and can be generalized to unseen node
embeddings. This makes Anomal-E a more promising approach to net-
work intrusion detection, as it can detect known and unknown attacks.
Anomal-E has been developed for network intrusion and anomaly de-
tection. It incorporates and leverages edge features to learn the complex
relationships between different devices and nodes in a network. This
allows Anomal-E to detect malicious network activity, even if it has
never seen that type of attack before. Anomal-E has outperformed base-
line methods on two benchmark NIDS datasets regarding accuracy and
generalization capability. This demonstrates the potential of Anomal-
E to improve the security of networks by more effectively detecting
known and unknown attacks. In addition to its performance, it offers
several other advantages over traditional NIDS approaches. First, it is
a self-supervised model, meaning it does not require labeled data to
train, a significant advantage in network intrusion detection, where
labeled data is scarce and expensive. Second, Anomal-E can leverages
edge features, providing additional information about the relationships
between different devices and nodes in a network. This information is
essential for detecting sophisticated attacks that exploit vulnerabilities
in the network topology.

2.3. Ensemble GNN Learning

GNN models are a powerful tool for learning from graph-structured
data. They are used in various applications, including social network
analysis, recommendation systems, and computer vision [35]. How-
ever, deep learning models can be complex and computationally ex-
pensive to train, and they can overfit the training data leading to poor
performance on unseen data. Despite these challenges, GNNs have the
potential to improve the performance of intrusion detection systems
significantly.

Hou et al. [36] proposed a novel approach to aspect-level sentiment
classification that leverages the power of GNNs and ensemble learning.
Aspect-level Sentiment Classification (ALSC) is a promising solution
that uses GNNs to construct multiple dependency trees for an input
4

sentence, each of which captures a different aspect of the sentence’s
syntactic structure. Some graph networks are then applied to each
dependency tree to learn representations of the words and phrases in
the sentence. These representations are combined using an ensemble
learning technique to predict the aspect-level sentiment. This approach
has been shown to outperform state-of-the-art methods on several
benchmark ALSC datasets. For example, in the SemEval 2014 Task 4
dataset, the graph ensemble learning approach achieved an F1-score of
88.45%, compared to 85.62% for the best baseline method.

Wei et al. [37] proposed a new GNN-Ensemble approach to address
the challenges of complexity, computational expense, and overfitting
in intrusion detection systems. This approach reduces the overall com-
plexity and computational cost of training while also improving the
robustness of the model to overfitting. It randomly constructs multiple
substructures from the input graph and trains a GNN on each substruc-
ture. The predictions of the individual models are then combined using
a weighted voting scheme. The authors evaluate GNN-Ensemble on
several benchmark datasets and show that it outperforms other GNN-
based methods in accuracy and generalization. While it is a promising
new approach, it has some limitations. First, implementing it is more
complex, as it resorts on multiple models. Second, ensemble GNNs
may require more training data than single ones as they need to train
multiple models, each of which is trained on a different subgraph of
the network traffic data. Additionally, ensemble models can be more
sensitive to the data quality, so it is vital to ensure that it is well-labeled
and representative of the real-world data on which the model will be
deployed [38]. Finally, it is still open to research how best to design
the substructures and voting scheme for different tasks.

Wang et al. [39] proposed a novel GNN-based NIDS approach called
Spatio-Temporal Graph Attention Network (N-STGAT). It leverages a
graph attention mechanism to learn representations of network traffic
that incorporate the spatial and temporal features of the data. The
authors evaluate their approach on the latest flow-based dataset for
near-earth remote sensing systems. Their results show it outperforms
state-of-the-art GNN-based NIDS approaches by a significant margin.
The author’s work substantially contributes to the NIDS. Their approach
can improve computer network security by making NIDS more effective
against novel and zero-day attacks, especially in near-earth remote
sensing systems.

Qi et al. [40] proposed a novel Graph Ensemble Network (GENet)
for traffic prediction. GENet is a deep learning model that learns to
predict traffic flow by leveraging the power of GNNs. A graph-based
representation of the traffic network captures the relationships between
road segments and intersections. A multi-scale GNN architecture allows
GENet to learn representations of traffic at different levels of granular-
ity. In this work, a customized loss function is designed to improve the
performance of GENet on traffic prediction tasks.

The above papers introduce ensemble-based GNN use cases for
some real-world applications. In the following section, we will address
ensemble-based GNN techniques for the detection of network attacks.

2.4. Ensemble-based GNN techniques for attacks detection

Control Area Network (CAN)s are widely used in vehicles and other
embedded systems to communicate between components. However,
CANs are vulnerable to various attacks, including message injection,
suspension, and falsification. These attacks can have serious conse-
quences, such as disrupting vehicle operations or causing accidents.
Traditional anomaly detection mechanisms for CANs are either slow or
ineffective against some attacks. Additionally, these mechanisms often
require a lot of training data, which can take some effort to collect. Zhu
et al. [41] proposed a Federated Graph Neural Network (FGNN) for fast
anomaly detection in CANs. This novel approach leverages the power of
GNNs to learn representations of CAN traffic that can be used to detect
anomalies. This technique is federated, meaning it can be trained on
a distributed network without compromising privacy. Their approach

works by constructing a graph from the CAN traffic data. The nodes of
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the graph represent CAN messages, and the edges of the graph represent
the relationships between different notes. They trained their model to
learn representations of the nodes and, in turn, to detect anomalies in
the CAN traffic. The authors compared their model to several state-
of-the-art CAN anomaly detection methods, including Support Vector
Machine (SVMs), random forests, and other GNN-based methods. The
results showed that their approach outperformed all baseline methods
regarding accuracy and speed. Specifically, they achieved an accuracy
of 99.9% on the UNSW-NB15 dataset and an accuracy of 99.8% on
the Kvaser dataset. The F1-score of their model is 99.1% with binary
classification and but due to the unbalanced dataset, they achieved
a weighted F1-score is 90.7% with multi-classification of attacks. Ad-
ditionally, FGNN detected anomalies in CAN traffic in as little as
three milliseconds. However, more research is needed to evaluate the
performance of FGNN on large-scale real-world CAN systems and to
investigate how it can be used to detect other types of anomalies.

Esmaeili et al. [42] reported a novel GNN-based adversarial mal-
ware detection framework for IoT devices. The proposed framework
is designed to be more effective against IoT malware than traditional
malware detection methods, as it leverages the power of GNNs to learn
representations of IoT devices and their interactions. The proposed
framework works by constructing a graph where the nodes represent
IoT devices and the edges represent their interactions. The proposed
framework then uses a GNN to learn representations of the nodes and
edges of the graph and capture the complex relationships between the
devices and their interactions. These representations are then used to
detect malware on IoT devices. The results showed that the proposed
framework could detect malware with an accuracy of 99.18% but
they have not reported weighted F1-scores. Their detector achieved a
98.96% detection rate, 1.17% higher than the previous best method.
Additionally, their detector had a 5.95% lower False Positive Rate
(FPR) than the previous best method. Moreover, their detector achieved
an F1 score as good as of 0.9658. The proposed framework also has
a fast response time of 3 ms. However, this framework has not been
evaluated on a large-scale, real-world IoT system, nor how it can detect
other types of anomalies in IoT data, such as malicious node network
traffic behavior over the network, and how these malicious nodes are
used to conduct DDoS attacks.

Our proposed model, FTG-NET-E, is inspired by these recent studies.
However, FTG-NET-E is the first self-supervised GNN model specifically
designed for NIDS. Our model leverages edge features to learn the com-
plex relationships between different devices and nodes in a network.
This allows FTG-NET-E to detect malicious network activity, even if it
has never seen that type of attack before.

3. Background on graph neural networks

Several kind of objects are defined in terms of connections to other
things and are thus naturally expressed in a graph form. Molecules,
social networks, and citations are just some examples of structures that
are naturally described as graphs. While there is an obvious interest
in exploiting machine learning on this kind of data, standard neural
networks cannot be used to learn on graphs as they are made to work
on arrayed-structured data. For this reason, in 2008 Scarselli et al. [43]
introduced graph neural networks, a class of deep learning models
developed to operate on graph-structured data. GNNs have gained since
a rapid interest, and are now successfully applied in several areas
such as physics simulations, recommendation systems, antibacterial
discovery, and networking [44].

The field of GNNs is vast, and graph networks can differ consider-
ably. As a general consideration, we can define a GNN as a permutation
invariant optimizable transformation on graph attributes (nodes, edges,
and global parameters) [45]. The permutation invariant attribute refers
to the fact that GNNs preserve symmetries. The prediction problems
tackled by these networks can be divided in three categories: (i) graph
level tasks where predictions try to discover a property of the entire
5
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graph (e.g., molecule toxicity), (ii) edge level tasks where predictions
concerns the relations between nodes (e.g., recommendation systems),
and (iii) node level tasks where predictions try to find the identity or
role of each node of the graph.

3.0.1. Message passing neural networks
The first kind of GNN is the MPNN. Let 𝐺 = (𝑉 ,𝐸,𝑈 ) be a graph,

where 𝑉 is the set of vertices (nodes), 𝐸 is the set of edges, and
𝑈 is the global features. Consider now a simple problem of node
representation learning, where each vertex 𝑣 ∈ 𝑉 has a set of features
𝑥𝑣, represented by a vector of dimension 𝑛, namely the hidden state ℎ0𝑣.
In each iteration 𝑡 of the process, a message-passing operation occurs,
where the hidden states of the nodes are combined with the hidden
state of their neighbors (e.g., through addition). This message-passing
operation involves two functions: an aggregation function 𝑎(⋅) that
consolidates the received hidden states (e.g., through addition), and an
update function 𝑢(⋅) that merges the current hidden state of the node
with the result of the aggregation (usually employing a differentiable
model such as a multilayer perceptron).

At iteration 𝑡, the message-passing operation is defined formally as
follows:

𝑚𝑣,𝑤 = 𝑚(ℎ𝑡𝑣, ℎ
𝑡
𝑤, 𝑒𝑣,𝑤) (1)

𝑀 𝑡+1
𝑣 = 𝑎({𝑚𝑣,𝑤|𝑤 ∈ 𝑁(𝑣)}) (2)

𝑡+1
𝑣 = 𝑢(ℎ𝑡𝑣,𝑀

𝑡+1
𝑣 ) (3)

here hidden state of node 𝑣 at iteration 𝑡 is denoted by ℎ𝑡𝑣. 𝑒𝑣,𝑤 is the
edge which connects nodes 𝑣 and 𝑤. The message sent from 𝑤 to 𝑣 is
represented by 𝑚𝑣,𝑤, whereas the aggregated message received by 𝑣 is
denoted by 𝑀 𝑡

𝑣. The neighborhood of 𝑣 (which comprises all vertices
adjacent to 𝑣) is represented by 𝑁(𝑣).

It is feasible to depict the complete graph as a single vector follow-
ing the execution of 𝑇 iterations. This can be accomplished by utilizing
a permutation invariant function that operates on all the concealed
states of the nodes during a readout phase.

𝑦 = 𝑟(ℎ𝑇𝑣 |𝑣 ∈ 𝑉 ) (4)

where 𝑦 is the final representation vector; 𝑟 is the permutation invariant
function. Finally, 𝑦 is used to make the final prediction.

3.0.2. Graph convolutional networks
First proposed in 2017 by Kipf and Welling [46], GCN models are

graph networks that rely on graph convolutions to support scalability
and fast semi-supervised classification of nodes. GCNs propagate in-
formation across the graph through a message-passing mechanism and
updates the node features based on the information on its neighborhood
only. This process is repeated for several layers, allowing the net-
work to capture increasingly complex relationships between nodes. The
message-passing mechanism in GCNs closely resembles the convolution
operation in CNNs, and hence the name. In CNNs, the convolution
operation updates an element according to the patterns from its neigh-
bors in an arrayed structures. Similarly, in GCNs the message-passing
mechanism aggregates information from a node neighbors, effectively
capturing local patterns within the graph structure.

The following equations describe the GCN layer update rule:

𝐻 (𝑙+1) = 𝜎(�̃�− 1
2 �̃��̃�− 1

2 𝐻 (𝑙)𝑊 (𝑙)) (5)

Where 𝐻 (𝑙) and 𝐻 (𝑙+1) are the input and output feature matrices of the
CN layer, respectively; �̃� represents the degree matrix of the graph,
hich is a diagonal matrix where the entries correspond to the number
f neighbors for each node; �̃� denotes the normalized adjacency matrix
f the graph, which is obtained by adding self-connections to the
djacency matrix 𝐴 and normalizing it using the square root of the
egree matrix �̃�; 𝑊 (𝑙) is the trainable weight matrix of the GCN layer; 𝜎
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is a non-linear activation function, such as a sigmoid or Rectified Linear
Unit (ReLU). The update rule can be interpreted as a weighted average
of the node and of its neighbors.

The node-wise perspective of the GCN update rule is described by
the following:

ℎ(𝑙+1)𝑖 = 𝜎

(

∑

𝑗∈𝑁(𝑖)
𝑐𝑖𝑗𝑊

(𝑙)ℎ(𝑙)𝑗

)

(6)

here ℎ(𝑙)𝑖 and ℎ(𝑙+1)𝑖 are the input and output representations of node
or 𝑖 + 1 at layer 𝑙. 𝑁(𝑖) is the set of neighbors of node 𝑖. 𝑐𝑖𝑗 is

a normalization factor defined as 𝑐𝑖𝑗 = 1
√

|𝑁(𝑖)|
√

|𝑁(𝑗)|
. The node-wise

update rule can be interpreted as a weighted average of the node’s
representation and the representations of its neighbors, where the
weights are determined by the normalization factor 𝑐𝑖𝑗 .

3.1. Graph attention network

GATs are a type of GNN that uses an attention mechanism to learn
the importance of different neighbors for each node in the graph. GATs
were first proposed by Velickovic et al. in 2017 [47], and have since
become one of the most popular GNN architectures. These attention
networks work by first computing an attention weight for each pair
of nodes using a learnable function that takes the node features (and
edge features if available) as input. The attention weights are then
normalized to sum to 1 for each node, and used to update the node
features. As a result, the updated node features are a sum of the features
of the node neighborhood, weighted by the attention weights. The
following equation describe the GAT layer update rule:

𝐡(𝑙)𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑗∈𝑖

𝛼𝑖𝑗𝐖(𝑙)𝐡(𝑙)𝑗
⎞

⎟

⎟

⎠

(7)

here 𝐡(𝑙)𝑖 is the feature vector of node 𝑖 at layer 𝑙; 𝜎 is a non-linear
ctivation function, such as ReLU; 𝑖 is the set of neighbors of node
; 𝛼𝑖𝑗 is the attention weight between nodes 𝑖 and 𝑗; 𝐖(𝑙) is the weight
atrix at layer 𝑙.

.2. Ensemble learning

Ensemble learning is a machine learning technique that combines
ultiple models outputs to improve the overall prediction accuracy. It
as emerged as a powerful tool for DDoS detection, where attackers are
onstantly developing new and sophisticated methods. One of the key
dvantages of ensemble learning is that it can leverage the strengths of
ifferent models to capture diverse patterns in the data. This is akin to
ssembling a team of experts with different backgrounds and perspec-
ives to solve a problem. Just as a team of experts is likely to outperform
ny individual expert, an ensemble of models will likely outperform
ny individual model. Another advantage of ensemble learning is that
t reduces the risk of overfitting: ensembles are less prone to over-learn
he specific features of the training data and better generalize [48].

GNNs based ensemble learning combines the predictions of multiple
raph networks to produce a more robust and accurate prediction. This
s done by training multiple GNNs on different subsets of the data, and
hen averaging the predictions of the individual models.

Among the various ways to ensemble neural networks, a com-
on approach is to use a weighted average of the predictions of the

ndividual models [49]. The weights can be assigned based on the
erformance of the individual network on the training data, or they can
e learned using a hyperparameter tuning algorithm. Another approach
o ensemble GNNs is to use a stacking technique, where the individual
odel predictions are used as input to a meta-learner. The meta-learner

ombines the predictions of multiple models instead of only weighted
6

verages. The meta-learner is then trained to predict the final output.
The following equations describe the ensemble method for a GNN
ith equal-weights:

�̂�𝑖 =
1
𝑀

𝑀
∑

𝑚=1
𝑔𝑚(𝐡

(𝑙)
𝑖 ) (8)

Where �̂�𝑖 is the predicted output for node 𝑖; 𝑀 is the number of GNNs
n the ensemble; 𝑔𝑚 is the 𝑚th GNN in the ensemble; 𝐡(𝑙)𝑖 is the feature
ector of node 𝑖 at layer 𝑙.

. FTG-Net-E graph structures and GNN models

Network traffic resembles almost naturally message passing be-
ween nodes in an undirected graph. It can be modeled as a hierarchy
f flow entries, both with fine-grained (pachets) and coarse-grained
endpoint communications). Our proposed basic structure, FTG, is con-
tructed from traffic data divided into time slots of size 𝑡𝑠. The structure
s composed of a high-level Traffic graph related to each time slot, with
ach node corresponding to a low-level Flow Graph. Every level has a
NN model that is processed in FTG-Net-E. The following subsections
escribe how the graphs are constructed, how the traffic is converted
nd how the architecture of th traffic and flow GNNs.

.1. Flow graph

Flow Graphs draw inspiration from the graph structure introduced
n GraphDDoS [24], but with a modification: the 𝑁 nodes limit is
eplaced by the incorporation of time slots. These graphs are crafted
y grouping all packets exchanged between two endpoints within a
iven time slot, even if they pertain to distinct networking flows.
ithin each group, packets are arranged in ascending order of time

nd transformed into nodes, featuring only the packet length as a
haracteristic. We chose the packet length as a key feature as it aids
etecting malicious patterns in network traffic, such as large packet
izes used for DDoS attacks and small packets for port scanning attacks.
oreover, this feature is easily available from network traffic data,

llowing for efficient real-time processing and model interpretability.
Assigning positive directional flow, whether upstream (client to

erver) or downstream (server to client), distinguishes positive values
o upstream and negative values to downstream lengths.

Consecutive packets sent by one endpoint constitute a mini-group,
ith edges linking adjacent nodes representing packets from the same
ini-group. Connections are established between the first packet of a
ini-group and the first packets of the preceding and succeeding mini-

roups, similar to the linkage between the last packets of mini-groups.
ig. 1 shows an example of a Flow Graph.

Given this graph representation of a computer network, A GNNs can
e used to classify nodes in the following way:

1. The GNN is initialized with random representations for each
node in the network.

2. A message-passing function is applied for multiple time slots 𝑡𝑠:
each node sends a message to its neighbors in each slot based
on its current representation. The messages are then aggregated
at each node, and the node’s representation is updated using
a function that combines its current representation with the
aggregated messages from its neighbors.

3. The final representation of each node is used as the input to a
classifier, which predicts the node class.

The Flow Graph structure allows us to observe packet relation-
hips within a single flow, which can be different from legitimate
raffic in certain DDoS attacks, and relationships between multiple
lows between the same endpoints, which can be used to detect burst
nformation and periodic information.

Burst information corresponds to the scenario in which the attacker
ends many packets to establish connections with its target on several
orts. Periodic information corresponds to low-peace attacks in which
he attacker periodically mimics a normal client to occupy the victim’s
esources as long as possible.
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Fig. 1. Flow Graph example: upstream packets are denoted by positive values, while
downstream packets are represented by negative values. The sequence of mini-groups
is organized from left to right.

4.2. Traffic graph

A Traffic Graph is a graphical representation of traffic flow over
time. This graph is constructed for each time slot, which is typically
a discrete interval of time, such as a minute, an hour, or a day. The
Traffic Graph shows the amount of data that is transmitted across a
network during each time slot, providing valuable insights into network
performance, usage patterns, and potential issues that need to be
addressed. For each time slot, any pair of endpoints that appears in at
least one packet from the traffic data is transformed into a graph node.
The features of this node are determined by the output vector of the
Flow GNN, which includes a Flow Graph at a relatively low-level. If two
nodes share the same source or destination IP address, an edge is added
in between. According to the real-world implementation requirements
and capabilities, the set of features describing the communications
between two endpoints can be modified and enriched by concatenating
the available statistics.

We have developed a Traffic Graph that incorporates the interac-
tions between different flows, displaying the distribution of devices that
send requests to servers and flow-specific behaviors that may contain
malicious patterns. The encoding of these flow-level patterns is closely
linked to the traffic-level topology since the Flow GNN and the Traffic
GNN weights are both optimized using the same gradients during the
training phase.

4.3. Traffic converting stage

The traffic data is separated into time slots in this stage. For each
time slot, the extraction process produces a Traffic Graph 𝐺𝑡 and a
set of Flow Graphs 𝐹 = 𝐺𝑓1 , 𝐺𝑓2 ,… , 𝐺𝑓𝑁 , where the node indexes of
low Graphs align with those of the Traffic Graph. The number of Flow
raphs, denoted by 𝑁 , depends on the time slot. During the supervised

earning phase, each time slot data is associated with a corresponding
ist of labels 𝑌 = 𝑦1, 𝑦2,… , 𝑦𝑁 consisting of one Flow Graph and one
abel.

The traffic data is analyzed sequentially in ascending order based
n time to extract the graph. An empty Traffic Graph is initialized at
he start of each time slot, and an empty sorted list of encountered
airs of endpoints is created. When a new endpoint combination is
etected, a new node is added to the Traffic Graph, and a separate Flow
raph is created for the current packet. During this process, the packet
irection is preserved as it will be instrumental in categorizing packets
nto mini-groups. If the combination of endpoints is already present in
he list, any new packet that arrives is used to update the corresponding
low Graph. If the direction of the packet differs from the previously
dded packet, the mini-group is concluded and interconnected through
dges as explained in Section 4.1. As the time slot concludes, edges
n the Traffic Graph are added following the guidelines outlined in
7

ection 4.2. d
.4. Flow GNN

The Flow GNN plays a pivotal role in handling flow graphs and con-
tructing embeddings, which will subsequently serve as node features
n the traffic graph.

Initially, three GCN Layers are employed on the Flow Graph. These
ayers disseminate node information throughout of each node with the
hree-hop neighborhood. Following each GCN Layer, a ReLU activation
unction is applied.

First, a readout function is utilized to transform the graph into a
ingular vector. The selected readout function is global mean pooling,
hich calculates the average of node features across the dimension of
node. The definition of global mean pooling is as follows:

𝐺 = 1
𝑁

𝑁
∑

𝑛=1
ℎ(3)𝑛 (9)

where in Flow Graph, the number of nodes is represented as 𝑁 and
the feature vector of the 𝑛th node after three iterations of GCN is
represented by ℎ(3)𝑛 . The output vector is obtained from readout and
assed to a fully connected layer, producing the final output.

.5. Traffic GNN

The traffic GNN takes a traffic graph as input and generates a pre-
iction for each node, indicating whether it corresponds to legitimate
r malicious traffic. The model consists of three GCN layers followed by
fully connected layer that has a dropout rate of 50%. The dropout is

pplied to the features of each node individually. The model produces
ingle outputs that are passed through a sigmoid activation function,
hich provides the final scores ranging from 0 to 1.

.6. Graph features engineering

Feature engineering is a critical process that helps extract relevant
nformation from raw data. In the context of network traffic analy-
is, the construction of traffic graphs is a structured representation
f network traffic patterns that enables graph-based analysis. In our
pproach, we extracted critical attributes from network traffic data that
erve as the basis for constructing the traffic graph. These attributes
nclude: the URG Flag Count, SYN Flag Count, RST Flag Count, PSH
lag Count, Packet Size Average, Flow Packets Per Second, FIN Flag
ount, ECE Flag Count, ACK Flag Count, Destination Port, and proto-
ol information (IPv6 Hop-by-Hop 0, TCP 6, UDP 17) obtained from
acket headers and traffic statistics. The selection of these features was
ot only made by relevance to intrusion detection, distinguishing be-
ween normal and malicious traffic, and their ability to capture diverse
etwork behaviors; we have also experimented with different combi-
ations of features to evaluate their impact on model performance.
e used feature selection and ablation studies to identify the most

elevant features and assess their individual contribution. We scaled
he features to ensure they had a consistent range and distribution,
hich helped prevent features with larger magnitudes from dominating

he learning process. We also addressed missing values in the dataset
y employing imputation techniques to replace them with appropriate
alues, ensuring the dataset was complete and ready for analysis.

. FTG-Net-E architecture and dataset

The architecture of FTG-Net-E is based on FTG-Net, which is a hier-
rchical GNN designed to process the multi-level graph representation
TG. FTG-Net works in three main steps, as shown in Fig. 2, which are

escribed as follows:
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Fig. 2. FTG-Net-E architecture. (1) ‘‘Traffic Data Preprocessing’’: Training on traffic data converted into flow graphs. (2) ‘‘Flow GNN’’ and ‘‘Traffic GNN’’: Learning representations
f individual flow graphs and entire traffic graphs, respectively. (3) ‘‘Fully Connected Layer’’, gives the final predictions based on the Traffic graph network outputs as Benign and
DoS.
1. FTG construction: The first step is to convert the traffic data
into FTG structures. This is accomplished by grouping all packets
exchanged between two endpoints within a time slot to create a
flow graph. The Flow Graphs are then sorted in chronological
order and converted to nodes in the Traffic Graph. The features
of each node in the Traffic Graph are given by the Flow GNN
output vector, which embeds the corresponding Flow Graph.

2. Flow GNN Inference: The second step involves utilizing the
Flow GNN to analyze the Flow-level Graphs. This module lever-
ages three GCN layers to extract node representations from
individual flow graphs. These layers capture local dependencies
and interactions within each flow. A readout layer aggregates
information from the entire graph, followed by a fully connected
layer for final representation learning. Dropout regularization
with a rate of 0.5 is applied after each GCN layer to prevent
overfitting. The output of the last GCN layer is passed through a
fully connected layer with a sigmoid activation function to gen-
erate flow-level predictions. The output vector of the Flow GNN
for each Flow Graph is used as the features of the corresponding
node in the Traffic Graph.

3. Traffic GNN Inference: The third step is to process the traffic-
level graphs using the Traffic GNN. This module, consisting of
three GCN layers, batch normalization, and dropout regulariza-
tion with a rate of 0.5 after each GCN layer, captures high-level
patterns across the network traffic graph. By processing the
aggregated flow representations obtained from the Flow GNN,
this module gives a global understanding of the overall network
traffic behavior. A final fully connected layer with a ReLU ac-
tivation generates the final predictions, differentiating between
benign and DDoS traffic based on the learned representation.
The final prediction is the output of the Traffic GNN for each
flow.

FTG-Net-E is designed to exploit the hierarchical structure of FTG to
earn more effective representations of the traffic data and to improve
he performance of DDoS attack detection. This ensemble model is
eveloped in three main steps: (i) the graph structure is subsampled
nto subgraphs, and node features into subfeatures, (ii) multiple base
NN models are trained on different subgraphs and subfeatures, such
s GCN by [50] and GraphSage by [29]. Each GNN model learns a
epresentation of the nodes in its subgraph, which can then be used to
ake predictions about the node labels, and (iii) finally the predictions

f multiple GNN models are aggregated using a ranking scheme, so
8

to combine the information from different models and make a more
accurate prediction.

5.1. DDoS detection datasets

In 2016, a paper listed 11 criteria that must be fulfilled for a dataset
to be considered suitable for intrusion detection purposes [51]. Among
the various publicly available datasets, we chose the Canadian Institute
of Cybersecurity Intrusion Detection System Datasets (CIC-IDS2017,
CSE-CIC-IDS-2018) as these are modern flow-based datasets that ful-
fill all these criteria. The CIC-IDS2017 was developed by Sharafaldin
et al. [9] and consists of normal and malicious network traffic. The
normal traffic is emulated by utilizing B-profiles, which are obtained
from the benign (normal) conduct of 25 individuals (human). The
malicious traffic consists of common attacks (DoS, DDoS, Brute Force,
XSS, SQL Injection, Infiltration, Port Scan, and Botnet), and is generated
by executing existing DDoS attacking tools at specific time windows.

Aside to the CIC-IDS-2017, we have trained FTG-Net-E also on its
successor, The CSE-CIC-IDS-2018 dataset. The 2018 dataset was gener-
ated using the same tools of the 2017 one, but deployed in AWS rather
than on a local university network. The CIC-IDS2018 dataset is labeled
with more than 83 traffic features collected using CICFlowMeter [52].
The capturing period for this dataset started at 09:00 on Monday and
ended at 17:00 on Friday. The DDoS attacks were performed on Friday
afternoon and are the only significant for this work. Traffic data have
been converted considering only time slots with at least 20% of labeled
data. GNN based preprocessed datasets representing without prediction
and with prediction labels. From the 2018 dataset, 127,844 additional
infiltration samples were obtained, these samples were kept separately
to test the robustness of the zero-day capability of our novel proposed
approach.

5.1.1. Ensemble learning model
The ensemble learning model consists of multiple GNN models,

each trained with distinct hyperparameters. We created three instances
of the GNN model with parameter variations such as learning rate,
hidden size, and dropout rate. Despite variations in hyperparameters,
the training process remains consistent across all models. After inde-
pendent training on the same dataset, the predictions from individual
GNN models are combined using a soft voting approach. This method
involves averaging the predicted probabilities from each model to make
final predictions, allowing for more nuanced outcomes compared to
simple majority voting.
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5.1.2. Dataset preparation
We first loaded the raw dataset to ensure data quality and selected

only the relevant attributes for our analysis. After collecting the data,
we performed data cleaning procedures that involved eliminating re-
dundant columns, removing rows with missing or infinite values and
filtering out any duplicated records. We also handled missing values
by forcing the Flow Pkts/s feature to be numeric and dropping rows
with missing entries. After preprocessing the dataset, to clean and
standardize the features we scaled the data using the StandardScaler
implementation from the sci-kit-learn Python library. The data has been
then split into training and test sets using a stratified split to ensure that
the distribution of classes in each set is representative of the overall
dataset. Using one-hot encoding, we encoded categorical variables like
the protocol to facilitate classification tasks. The preprocessed data,
which included features such as packet size, duration, and source
and destination IP addresses, was then saved as CSV files for easy
integration into our GNN-based DDoS attack detection model.

The resulting dataset, which consisted of 80% benign and 20%
malicious samples, was split into training, validation, and test sets. The
down-sampled malicious dataset was divided into 70% for training 15%
testing, and 15% for validation. The 20 zero-day samples, representing
novel malware attacks that were not previously known to the system,
were added to the test set along with the benign samples so to assess
the ability of our ensemble graph network to detect novel attacks. The
validation set was created by randomly selecting 700 samples from
each of the five attack categories, namely UDP flood, TCP SYN attack,
and HTTP attack, from the malicious training set. As a result, the
validation set consisted of a total of 2,100 samples. The benign samples
were split into the train, validation, and test sets to maintain the overall
distribution of 80% benign and 20% malicious samples in the final
datasets.

5.1.3. Data for the anomaly detector
In the first stage, the anomaly detector was trained using a training

set composed of mostly benign traffic. The validation set is instead
composed of 80% benign and 20% malicious traffic. This approach
was chosen because the anomaly detector primary function is to fil-
ter malicious traffic from a stream of predominantly benign traffic.
However, it is essential to acknowledge that this method produces a
model that is prone to give false positives. One strategy to address
this potential issue involves employing a more balanced dataset for
training and validation. This entails incorporating a higher proportion
of malicious traffic into the validation set, enabling the detector to gain
proficiency in distinguishing between benign and malicious traffic. Still,
implementing this approach is challenging, as acquiring substantial
amounts of malicious traffic data is often tricky. Another approach
to enhance the anomaly detector performance involves utilizing a
more sophisticated training algorithm. Specific algorithms excel at
identifying anomalies and understanding the patterns of normal traffic.
Additionally, we fine-tune the parameters of the training algorithm to
improve its effectiveness further. Monitoring the anomaly detector’s
performance is crucial as new forms of malicious traffic emerge. The
detector needs to be re-trained or updated periodically to maintain its
efficacy.

5.1.4. Classifier dataset
The GNN classifier learns to classify malicious traffic into attack

categories. While its validation set is equally distributed of 50% benign
and 50% malicious samples, the attack kinds are balanced within the
malicious traffic samples. In order to avoid bias towards a specific type
of attack, it is crucial to consider the possibility of unknown attacks.
Instead, the classifier should be rewarded for outputting a vector with
low probabilities for each known attack that it was trained on, and this
9

will result in a higher validation score for benign traffic.
Fig. 3. FTG-Net-E mean F1 scores achieved by FTG-Net-E for all 6 possible
combinations of learning rate and hidden size.

6. Experimental results

This section presents the experimental results to assess the perfor-
mance of the proposed FTG-Net-E model. The experiments were run
on a Ubuntu 20.04 LTS workstation with Dell PowerEdge R760Intel®
Xeon® Gold 6438M processor and NVIDIA A30X graphics card. The
main libraries for implementing FTG-Net-E are TensorFlow, NumPy,
PyTorch, Scapy, PyTorch Geometric, and Pandas.

The proposed structure deals with a binary classification task, in
which indicators are established through a confusion matrix and in
which it is possible to formulate the following metrics:

𝐴𝐶𝐶 =
𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑥𝑡𝑜𝑡𝑎𝑙

= 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(10)

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(11)

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(12)

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(13)

where 𝐴𝐶𝐶 stands for accuracy and 𝑇𝑃 , 𝑇𝑁, 𝐹𝑃 , 𝐹𝑁 stand for true
positive, true negative, false positive, and false negative, respectively.

In classification problems, the malignant class is usually more im-
portant, and recall becomes the main metric. But in certain cases,
like in DDoS Detection, it is not possible to state that one class is
more significant than the other. In such scenarios, combining metrics
computed considering each class as positive and averaging the results
is a common approach. Weighted F1-Score metric is also used, where
F1-Scores are combined by weighted averaging using the number of
samples of the positive classes as weights. This helps in achieving
a balanced classification that does not block legitimate traffic while
detecting malicious packets.

We investigated the impact of two hyperparameters, learning rate
and hidden size, on the performance of our ensemble model. We have
trained FTG-Net-E with a learning rate of either 0.001 or 0.0001, while
we have changed the hidden size of our models between 128, 256, and
512 neurons.

Fig. 3 shows the mean F1 scores achieved by FTG-Net-E on both
datasets (CIC-IDS-2017, and CSE-CIC-IDS-2018) when trained with all
six possible combinations of learning rate and hidden size. As shown in
the table, the ensemble model achieves the highest F1 of 99.29% with
a learning rate of 0.0001 and a hidden size of 512, making these hyper-
parameters the best for our ensemble model. Nonetheless, in all cases
the F1 score is above 99%, making it possible to use models that are
lighter (lower hidden size) and able to be trained in lower time (higher
learning rate), without a significant loss of accuracy. As observed, the
model achieves the highest F1 score of 99.29% with a learning rate of
0.0001 and a hidden size of 512 neurons. However, it is important to

note that all configurations achieved above 99% F1 scores, indicating
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Fig. 4. FTG-Net-E confusion matrix.

Fig. 5. Performance metrics for the best FTG-Net-E model.

the model’s robustness to these specific hyperparameter choices. This
allows for flexibility in selecting models based on specific deployment
requirements, such as prioritizing faster training times (using a higher
learning rate) or lower computational resources (using a smaller hidden
size) with minimal impact on accuracy.

Fig. 4 shows the confusion matrix when FTG-Net-E is trained with
the best hyperparameter. The ensemble model very high F1 score
testifies its ability to accurately classify both positive and negative
cases. The model correctly predicted 235640 positives and 239534
negative cases. There were 2915 false positives and 29 false negatives.
Our ensemble model correctly predicted 235640 positives and 239534
negative cases. There were 2915 false positives and 29 false negatives.
The high F1 score and low false positives and negatives indicate that
the ensemble model is a very effective classifier for this task.

Fig. 5 presents all the performance metrics for the best FTG-Net-
E. The ensemble model achieved an F1 score of 0.9929, accuracy of
0.9967, precision of 0.9929, and recall of 1.0. These results indicate
10
Fig. 6. ROC Curve with different parameters.

that the model can accurately predict both positive and negative in-
stances with a high degree of accuracy. The model can also minimize
false positives and negatives, which is important for many real-world
applications. This high performance is because it combines the pre-
dictions of multiple GNN models with different hyperparameters. This
averaging process helps reduce the prediction variance and improve the
model overall performance.

Fig. 6 presents the Receiver Operating Characteristic (ROC) curve
analysis for our GNN models with different hyperparameter settings.
The single ROC curve plot showcases the performance of each GNN
model across these parameter configurations. Each curve represents
the ROC curve for a specific parameter setting, and the area under
the curve Accuracy (AUC) is used as a metric to quantify the model’s
discriminative power. As seen in the plot, the ROC curves demonstrate
the trade-off between the true positive rate (sensitivity) and the false
positive rate (1-specificity) for various threshold values. The dashed
line represents the baseline scenario where the model’s predictions are
no better than random chance. Our analysis reveals that these ensemble
GNN models consistently achieve high AUC values, even with distinct
hyperparameter settings, indicating their effectiveness in distinguishing
malicious and legitimate traffic. The consistent performance of our
models across different hyperparameter configurations underscores the
reproducibility of our approach and suggests that our models can
generalize well to new data.

6.1. Inference time and model comparison

We evaluated the performance of FTG-Net-E using a 5-fold cross-
validation method to determine its effectiveness. The dataset was ran-
domly partitioned into five segments for each fold, with a model trained
on four segments and the remaining one serving as the validation
set. The configuration details include a 5-second time slot size, an 8-
dimensional vector as the output of the Flow GNN, and a 64-hidden
channel output for the GCN layers. Initially, the Flow Graph nodes are
made up of only one element which corresponds to the length of the
packet. In our approach, the size of the time slot needs to be configured
carefully. A larger time slot provides a broader view of the traffic
topology, which contains more information to detect potential DDoS
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Fig. 7. (a) Weighted F1-Score and accuracy for GNN and Ensemble GNN (b) Average inference time for GNN and Ensemble GNN models results using different time slot sizes.
Table 1
Comparison of results.

Method Accuracy F1-score Precision

LUCID [15] 0.9967 0.9966
GLD-Net [26] 0.9940 0.9920
GraphDDoS [24] 0.9959 0.9959
N-STGAT [39] 0.9788 0.9869
Anomal-E [34] 0.9412 0.9630
E-GraphSAG [29] 0.95472 0.9719
ST-GCN [8] 0.9110 NA

FTG-Net [5] 0.9914 0.9913 0.9908

FTG-Net-E 0.99675 0.9929 0.99256

attacks. However, the size of the time slot is inversely proportional
to the system’s responsiveness. A larger time slot may not allow the
system to detect attacks in a timely manner, which could result in
significant damage. Moreover, with large Traffic Graphs, the inference
time increases. It is possible that a short time period may not provide
sufficient data to accurately classify traffic. To address this, we tested
the performance of four different time slot sizes by evaluating their
average inference time and weighted F1-Score.

Fig. 7(a) compares the accuracy and weighted F1-score of the simple
GNN and Ensemble GNN models as a function of the time slot size. The
simple GNN model achieves an accuracy of 93.5% weighted F1-score
of 92.9% for a time slot size of 10 and increases accuracy to 99.14%,
the same increase seen in weighted F1-score 99.13% for a time slot
size of 50. The Ensemble GNN model achieves a weighted F1-score
and accuracy of 93.9% and 92.29%, respectively, for a time slot size
of 10 and increases to 99.10% and 99.29% for a time slot size of 50.
FTG-Net-E consistently outperforms FTG-Net in the weighted F1-score
as expected.

Fig. 7(b) shows the average inference time of the GNN and Ensemble
GNN models as a function of the time slot size. The GNN model has
an average inference time of 8.12 ms for a time slot size of 10 and
increases to 82 ms for a time slot size of 50. The Ensemble GNN model
has an average inference time of 10 ms for a time slot size of 10 and
increases to 98 ms for a time slot size of 50. Noteworthy, up to a time
slot size of 20, FTG-Net-E has an almost negligible increase of inference
time, while having a higher F1 score, making it the best choice in this
range. In particular, for a time slot of 20, it increases the F1 score of
more than 1%.

The results from the best models for each training phase are sum-
marized in Table 1, with a comparison with three models from the
literature.

FTG-Net-E shows a higher accuracy in respect to all considered
models, and an F1 score that is surpassed by less than 0.5%. Note-
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worthy, FTG-Net-E achieves this by solely considering the network
structure and without relying on numerous stateful features. Hence, our
approach significantly reduces computational complexity and system
latency, demonstrating the advantage of focusing solely on the network
structure rather than incorporating numerous stateful features.

To testify how our approach is significantly more computationally
efficient than previous methods consider for example the CICIDS2018
dataset. FTG-Net-E takes 10 min to train a model with 8.3 million
parameters, while LUCID [15] takes 1 h to train a model with the
same number of parameters. This computational efficiency makes our
approach much more practical for real-world applications.

6.2. Limitations and potential challenges

The experimental results showcased the efficacy of FTG-Net-E in
mitigating DDoS attacks. However, deploying such a system in real-
world scenarios may encounter several challenges and limitations.
Scaling FTG-Net-E to large-scale network environments might pose
computational and memory challenges. Evaluating scalability issues
depends on hardware dependent and requires optimizing model ar-
chitecture, training procedures, and inference strategies. Real-world
deployment relies on the availability and quality of network traffic
data. Strategies for collecting and augmenting of network data and
representative datasets need also a solid consideration. Network traf-
fic patterns evolve due to changes in network configurations, user
behaviors, and emerging threats. We can also consider a factor of imple-
menting FTG-Net-E in resource-constrained environments, such as edge
devices or IoT networks, which may necessitate model compression, op-
timization, or distributed learning approaches to reduce computational
and memory overhead. We used to minimize the effect of adversarial
attacks but ensuring the robustness and security of FTG-Net-E against
adversarial attacks, model poisoning, and data tampering is important
to evaluate. Robust training techniques, model validation procedures,
and adversarial defense mechanisms need more exploration. Future
research endeavors should focus on mitigating these challenges to facil-
itate the effective deployment of FTG-Net-E in real-world cybersecurity
ecosystems.

7. Conclusions and future work

This invited paper presented a novel DDoS detection approach based
on ensemble GNNs. This paper extended FTG-Net, a novel approach
for robustly detecting DDoS attacks using GNN. FTG-Net-E leverages
a hierarchical traffic representation and a hierarchical GNN model, en-
abling it to capture significant structural patterns embedded in network
traffic. Unlike solutions that combine traffic high-level topology with
statistical flow features, FTG-Net-E offers a distinct advantage: the Flow
GNN and Traffic GNN architectures are intimately connected through
a shared training phase. Additionally, FTG-Net-E employs ensemble
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GNN techniques to enhance the model’s predictive power further. A
comprehensive evaluation of FTG-Net-E using the CIC-IDS2017 and
CICIDS2018 datasets demonstrates that by focusing on traffic structure
only, FTG-Net-E can achieve performance comparable to state-of-the-
art approaches while avoiding the need for stateful features. This
finding underscores the effectiveness of the FTG-Net-E methodology,
including the ensemble GNN component, opening up possibilities for
exploring different data representations based on similar principles.
FTG-Net-E is well-suited for resource- and time-constrained real-world
scenarios, making it an attractive option for distributed and quantized
lightweight solutions. Our results demonstrate that the ensemble GNN
model can achieve state-of-the-art performance on botnet detection
tasks. The model achieved an F1 score of 0.9929, accuracy of 0.9967,
precision of 0.9936, and recall of 1.0. These results indicate that this
FTG-Net-E with ensemble GNN can accurately predict both positive and
negative cases while minimizing false positives and negatives.

In future work, we will extend FTG-Net-E architecture to incor-
porate additional features, such as historical multi-traffic data or in-
formation about the network topology and multi-attack classification.
We plan to investigate advanced techniques for efficiently identifying
and responding to concept drift, such as online learning algorithms or
specialized methods for detecting specific changes in attack patterns.
Not only limited to DDoS, we can also explore and evaluate other types
of attacks such as SQL injection, DNS poisoning, and Metasploit attack
detection.
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