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A B S T R A C T   

Background and objectives: Lower-limb wearable devices can significantly improve the quality of life of subjects 
suffering from debilitating conditions, such as amputations, neurodegenerative disorders, and stroke-related 
impairments. Current control approaches, limited to forward walking, fall short of replicating the complexity 
of human locomotion in complex environments, such as uneven terrains or crowded places. Here we propose a 
high-level controller based on two Support Vector Machines exploiting four surface electromyography (EMG) 
signals of the thigh muscles to detect the onset (Toe-off intention decoder) and the direction (Directional EMG 
decoder) of the upcoming step. 
Methods and materials: We validated a preliminary version of the approach by acquiring EMG signals from ten 
healthy subjects, performing steps in four directions (forward, backward, right, and left), in three different 
settings (ground-level walking, stairs, and ramps), and in both steady-state and static conditions. Both the Toe-off 
intention and Directional EMG decoders have been tested with a 5-fold cross-validation repeated five times, using 
linear and radial-basis-function kernels, and by changing the classification output timing, from 200 ms before to 
50 ms after the toe-off. 
Results: The Toe-off intention decoder reached a median accuracy of 83.34 % (interquartile range (IQR): 6.48) 
and specificity of 92.72 % (IQR: 3.62) in its radial-basis-function version, while the Directional EMG decoder’s 
median accuracy ranged between 73.92 % (IQR: 5.8), 200 ms before the toe-off, to 92.91 % (IQR: 4.11), 50 ms 
after the toe-off, with the radial-basis-function kernel implementation. For both the Toe-off intention and 
Directional EMG decoders the radial-basis-function version achieved better performances than the linear one 
(Wilcoxon signed rank test, p < 0.05). 
Conclusions and significance: The combination of the two decoders proved to be a promising solution to detect the 
step initiation and classify its direction, paving the way for wearable devices with a broader range of movements 
and more degrees of freedom, ultimately promoting usability in uncontrolled settings and better reactions to 
external perturbations. Additionally, the encumbrance of the setup is limited to the thigh of the leg of interest, 
which simplifies the implementation in compact devices, concurrently limiting the sensors worn by the subject.   

1. Introduction 

Lower limb pathologies can heavily impact the quality of life of a 
person, limiting his/her mobility and independence. Severe osteoar
thritis, stroke-related lower limb impairments, neurodegenerative dis
orders, spinal cord injuries, and amputations are among the most 
common and invalidating conditions and the number of people suffering 
from them is expected to grow in the next decades [1,2], due to world 
population aging. Wearable devices, such as prostheses and exo
skeletons, can help overcome mobility limitations caused by these 

health conditions, especially if able to provide net mechanical energy 
[3–5], mimicking the healthy leg behavior and limiting the adoption of 
harmful and energy-inefficient compensation strategies [6,7]. 

The above-mentioned robotic platforms are challenging in terms of 
both mechatronic and control system design; in particular, the control 
system must accomplish multiple tasks: recognizing the user’s intent 
(high-level control), converting it into the desired device state (mid- 
level control) and actuating the device (low-level control) [8]. Imple
menting an efficient high-level control strategy promotes ownership, 
agency, embodiment, and usability, decreasing the risk of early 
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abandonment, which is a well-known issue for prostheses [9]. High-level 
control approaches adopting biomechanical (e.g., inertial measurement 
units) [8], surface electromyographic (sEMG) [10], and central [11] or 
peripheral [12,13] nervous system interfaces have been widely studied, 
showing promising results in the research environment. Such methods 
can discriminate different locomotion modalities or gait phases and can 
detect movement intention and onset by leveraging finite-state machine 
or machine learning (ML) techniques. sEMG is widely used for both 
locomotion mode classification [14] and movement onset detection 
[15–17] since it is possible to exploit preparatory movements and 
muscular activity, which can anticipate muscle contraction by up to 80 
ms [16]. In addition, sEMG activity decoding allows the prediction of 
gait events such as toe-off (TO) up to 220 ms in advance [17], or the 
prediction of joint angles, such as the knee one, up to 100 ms in advance, 
as suggested in the preliminary results of [18]. Muscle activity can be 
leveraged by both finite-state control architectures [19] and ML-based 
algorithms, but despite the first approach being the most common due 
to the non-linearity and non-stationarity of sEMG signals, ML ap
proaches represent the most promising solution due to their ability to 
detect the user’s intent before the actual movement. Finite-state archi
tectures fall short in detecting user’s intentions because the decision 
criteria are generally manually selected by an operator, as in the case of 
commercial myoelectric hand prostheses. Consequently, finite-state ar
chitectures can not leverage small signal variations as optimally as ML 
approaches. Ankle-foot prostheses are a good representation of such 
dichotomy since sEMG signals can be used to switch states [20,21] or 
modulate torque parameters [22,23] in finite-state machine prosthetic 
ankles, but also to draw intended movements with ML [24]. 

Despite high-level control being essential for smooth human- 
machine interaction, state-of-the-art approaches are distant from repli
cating the complexity of human gait, especially in uncontrolled settings 
[25], such as uneven terrains or crowded places. In the literature, sEMG 
is widely used for predicting the onset of movement and its features (e. 
g., joint torques, joint angles) for both upper [15,16] and lower limbs 
[18,26] applications. For example, [17] demonstrated the possibility of 
detecting heel strike (HS) and TO events 130–260 ms in advance in 
transfemoral amputees using sEMG and kinematic data during forward 
ground-level walking. Nevertheless, while with kinematic signals was 
possible to predict the TO only when the prosthesis was leading (i.e., the 
prosthetic leg is moving first), with sEMG was possible to do it for both 
the leading and trailing (i.e., the healthy leg is moving first) cases. 
Despite their precision in predicting the user’s intention, the known 
control algorithms only consider a frontal walking direction, both as 
regards locomotion mode classification and movement onset detection, 
limiting the usability of the devices in settings where abrupt direction 
changes are needed due to obstacles or external perturbations [27]. Turn 
detection algorithms partially assess the issue, detecting the intention of 
performing a turn during ground-level walking [28–30] or from a 
standing position [31]. They generally rely on kinematic data of the 
upper (e.g., head, trunk) [28–30,32] or lower (e.g., shank, ankle) [28, 
31] body, and are developed for assistive robotic or diagnosis applica
tions. Although they are proven to enhance human-robot interactions 
[30], such algorithms only consider turning movements performed 
during ground-level walking, neglecting backward and lateral steps. In 
the literature, algorithms that consider lateral movements for exoskel
eton control are present [33,34], but they mostly focus on step width 
adaptation to improve balance during ground-level walking tasks. [33] 
is the only work explicitly considering lateral steps, allowing the user to 
initiate the movement by controlling the Center of Mass (CoM) position. 
The CoM position is estimated through the upper body orientation, 
which represents a limitation for integration in devices worn exclusively 
on lower limbs (e.g., prostheses). 

Ultimately, it is important to consider a more realistic scenario, in 
which the device user is free to move in multiple directions and perform 
different tasks (e.g., ground-level walking, stairs and ramps ascending 
and descending), concurrently limiting the setup encumbrance to the 

lower limbs. For these reasons, we developed and tested a novel sEMG- 
based intention detection algorithm (see “Directional EMG decoder” 
section), capable of predicting the upcoming step direction, and a TO 
intention decoder (see “Toe-off intention decoder” section), able to 
detect the movement onset independently from the step direction. 
Contrary to what is presented in the literature, our setup encumbrance is 
limited to a single leg and the approach has been tested on ground-level 
walking, stairs, and ramps scenarios. The combined use of these de
coders is expected to improve the controllability of lower limb wearable 
devices, which will be able to support the user’s movements adapting 
the assistance depending on the intended step direction [27]. 

1.1. Design of a directional EMG decoder 

We categorized the possible leg movements into four classes (Fig. 1), 
based on four types of steps that can be performed in real-life scenarios: 
forward step (FW), backward step (BW), right step (R), and left step (L). 
Such categorization allows a good compromise in terms of the subject’s 
mobility and algorithm complexity. For each class, it is necessary to 
explain some practical considerations that can impact the final imple
mentation of the control framework:  

• Forward (FW) step: performing a step forward is an action that can 
be performed in multiple settings (e.g., stairs, ramps, etc.) and, un
like the others, both during steady-state walking (i.e., subsequent 
steps are taken without stopping) and static tasks (i.e., performing 
one step from a standing position). This has two important impli
cations: firstly, a realistic dataset is highly unbalanced toward the 
forward step class; secondly, during steady-state walking the only 
possible class is a forward step since it is very unlikely to abruptly 
change direction in such a case.  

• Backward (BW) step: a backward step can be performed in multiple 
settings (e.g., stairs, ramps, etc.), but only statically; the rationale 
behind this choice is that, for a subject, it is very unlikely in a realistic 
scenario to take multiple backward steps subsequently.  

• Right (R) and left (L) steps: lateral steps can be performed, as 
backward ones, only statically, with the difference that the only 
possible locomotion modality is ground-level walking. This claim can 
be easily justified by the fact that is highly improbable for a user to 
climb a stair or approach a ramp with a lateral step. 

Fig. 1. Possible steps to be taken into account for the directional EMG decoder.  

E. Anselmino et al.                                                                                                                                                                                                                              



Computer Methods and Programs in Biomedicine 254 (2024) 108305

3

Such discretized movements have been considered only for the right 
side both because we wanted to consider the case of unilateral devices 
(e.g., prostheses, orthoses), and because the approach can be easily 
mirrored to the left side if needed. As shown in Fig. 1, the first leg to be 
moved is always the sensorized one (i.e., the right one) except for the left 
step, in which the left leg is moved first. This choice was made to avoid 
crossing steps, which are uncommon in normal daily living situations. 

As shown in Fig. 2, the leg direction classifier is supposed to provide 
the classification output after the detection of a movement intention, 
during the late-stance phase of the gait, and no further than the TO, to 
allow the device to correctly assist the subject during the push-off 
depending on the desired movement direction. Due to the interaction 
between the directional EMG and the movement intention classifiers, in 
this work we also propose a TO intention decoder that has been trained 
and tested on steps taken in all the four directions discussed above. 
Furthermore, this classification time frame can enhance the perfor
mance of the adopted locomotion mode classifier, allowing the predic
tion to be performed only on the subset of classes suitable for the 
detected direction of the step. For locomotion mode classifier we intend 
the algorithm responsible for classifying the task the subject wants to 
perform, intended as walking modality (e.g., typical locomotion modes 
can be: ground-level walking, ramps ascending, stairs descending, etc.). 
However, this interaction between leg direction and locomotion mode 
classifiers is only possible during the gait’s late-stance phase, as the 
directional EMG decoder is invoked close to the TO instant only. 
Nevertheless, for some applications (e.g., lower limb prostheses) the 
locomotion mode needs to be identified close to the HS instant to pro
vide assistance during the stance phase of the gait. Therefore, it is not 
possible to leverage the directional EMG decoder output to further 
improve the locomotion mode classification. 

2. Materials and methods 

Ten healthy subjects have been enrolled to participate in the study, 
five men and five women, aged between 23 and 35. The experimental 
protocol has been approved by the Joint Ethical Committee of Scuola 
Superiore Sant’Anna and Scuola Normale Superiore (protocol number: 
18/2023). Subjects were informed about the experimental procedures 
before the start of the session and signed a written consent form 
approved by the ethical committee. 

2.1. Experimental setup and protocol 

Experimental sessions occurred at the Biorobotics Institute of Scuola 

Superiore Sant’Anna (Pisa, Italy), with the subject moving in commonly 
used environments. After the introduction of the experimental protocol, 
participants were asked to wear the instrumentation on the right leg as 
shown in Fig. 3 (left): four pre-gelled sEMG electrodes were placed on 
the Biceps Femoris, Tensor Fasciae Latae, Rectus Femoris, and Adductor, 
together with two footswitches placed under the sole of the shoe, 
respectively under the heel and the toe. Target muscles were chosen 
accordingly to [10], in which they proved to provide gait-related reli
able information for ML applications concurrently limiting the setup 
burden. The choice was also guided by the need to have muscular ac
tivations representative of the abduction and adduction movements of 
the leg, which are essential during the R and L steps described above. 
The Adductor is indeed responsible for the adduction movement of the 
thigh, while the Tensor Fasciae Latae is an abductor of the hip joint [35]. 
The EMG recordings were carried out with a bipolar setting, using two 
pre-gelled electrodes for each muscle with an 8 mm active site and 25 
mm inter-electrode distance. The purpose of the footswitches was to 
allow the identification of the relevant gait events (i.e., TO and HS), 
necessary for successive analyses. The signals were recorded using the 
Sessantaquattro portable system by OT Bioelettronica (Torino, Italy), at 
a sample frequency of 2 kHz. 

Each subject was asked to perform a total of seven sessions con
taining FW, BW, R, and L steps, both in static and steady-state conditions 
when possible (see “Key concepts for a Directional EMG decoder” sec
tion); a detailed description of each session is presented below:  

• Session 1: the subject performs alternated FW and BW steps statically 
in a ground-level setting; a total of 60 steps was acquired.  

• Session 2: the subject performs alternated R and L steps statically; a 
total of 120 steps was acquired.  

• Session 3: the subject performs alternated FW and BW steps on stairs 
statically; a total of 60 steps was acquired.  

• Session 4: the subject performs alternated FW and BW steps on ramps 
statically; a total of 60 steps was acquired.  

• Session 5: the subject performed steady-state FW steps in a ground- 
level setting; a total of 30 steps was acquired.  

• Session 6: the subject performed steady-state FW steps ascending and 
descending flights of stairs, the subject was asked to stop after each 
flight of stairs only, alternating the ascending and descending con
dition; a total of 60 steps was acquired, 30 for each condition.  

• Session 7: the subject performed steady-state FW steps ascending and 
descending ramps, the subject was asked to stop after each ramp 
only, alternating the ascending and descending condition; a total of 
60 steps was acquired, 30 for each condition. 

Fig. 2. Example of timing of the classification output of the classifiers generally involved in the control of a lower limb device; in this work only the movement 
intention and leg direction classifiers are studied. For the sake of the example the instrumented leg is depicted as a prosthesis. 
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The sessions had an average duration of five minutes each and 
occurred subsequently in a single day, interspersed by 5 min of rest. The 
number of steps for each session was selected to balance the final class 
numerosity (i.e., FW, BW, R, L steps), the number of steps for each 
condition (e.g., static steps on stairs, steady-state steps on ramps, etc.), 
and experimental session duration. Nevertheless, as explained in the 
“Directional EMG decoder” section, it is important to consider that in a 
realistic setting there is a predominance of steady-state and FW steps, 
which the decoder must take into account, and consequently the 
composition of the acquired dataset reflects this imbalance. The ratio
nale behind the acquisition of steps during stairs, ramps, and ground- 
level walking is to allow the decoders to be naïve about the setting in 
which the step is taken. 

2.2. Data processing 

Acquired sEMG signals were filtered using a bandstop filter between 
48 Hz and 52 Hz, and a bandpass filter between 20 Hz and 500 Hz. The 
Mean Absolute Value (MAV) was selected as a feature, extracting it 
through a 20 ms moving window with a 15 ms overlap. TO and HS 
events were extracted from footswitch signals and visually inspected to 
remove eventual outliers. Gait events inspection and selection operation 
was carried out on a custom MATLAB graphical user interface (MATLAB 
R2022b, MathWorks). Signal filtering, feature extraction, and decoder 
training, testing, and validation were performed offline on a workstation 
(i7–12,700, 16 GB RAM) using custom Python scripts (Python v3.7.16). 

2.3. Toe-off intention decoder 

The TO intention decoder is based on a single error-correcting- 
output-codes (ECOC) support-vector-machine (SVM) (scikit-learn 
v0.23.1), chosen due to its generalization ability with small datasets and 
its potential real-time portability. The classifier objective is to determine 
if a TO will be performed in the next 200 ms. The input is the stan
dardized MAV computed from the four sEMG signals in a window of 200 
ms preceding the classifier call, and the output is provided every 50 ms 
in the time frame between the HS and the TO. The length of the window 
has been selected according to [17], in which muscular activity is 
detected up to 200 ms before the TO. To minimize false positives, the 
output sequence is post-processed and a TO intention is detected only if 
3 of the last 4 classifications recognized the intention of initiating a step. 

The decoder is subject-specific, and has been tested by performing a 

subject-wise 5-fold cross-validation repeated 5 times, using footswitches 
signals as ground truth for TO instants identification. The test was 
repeated for two SVM kernels, linear and radial-basis-function (RBF), 
and at each iteration a grid search was performed to select the best 
regularization parameter, chosen between a subset of values (0.001, 
0.01, 0.1, 1, 10, 100, 1000). The analysis has been performed offline. 
Wilcoxon signed rank test (WSRT) was performed to compare different 
conditions. Results are presented in the median (IQR: interquartile 
range) format. 

2.4. Directional EMG decoder 

The directional EMG decoder is a hierarchic classifier based on three 
ECOC SVM sub-classifiers: the “steady or not-steady” classifier (sOn), 
which discriminates between a steady-state gait and static steps; the 
“forward or not-forward” classifier (FW), which discerns between FW 
steps and BW, R, L steps; and the “backward or right or left” classifier 
(BWRL), which discriminated between BW, R and L steps. The rationale 
behind this division is that in a realistic dataset, there is a predominance 
toward steady-state and FW steps, and therefore is of primary impor
tance to correctly classify these conditions leveraging all the available 
data for the training phase of the algorithm. 

The sOn classifier takes as input the standardized MAV extracted from 
signals of the second before the classification instant, classifying if the 
upcoming step will be a static or steady-state one. This is the first clas
sifier invoked after a movement intention is detected: if its output states 
that the upcoming step will be a steady-state one, only an FW step will be 
possible and no other classifier will be invoked. 

The FW classifier is the second in order of invocation and takes as 
input the standardized MAV of the 200 ms before the classification 
instant. The length of the input window has been chosen based on the 
results presented in [17], which detects muscular activity up to 200 ms 
before the TO event. The FW classifier has two possible outputs: FW step, 
in which case the BWRL classifier is not invoked; or not-FW step, in 
which case the BWRL classifier is called. 

The BWRL classifier is the last to be invoked and as the FW one takes 
as input the standardized MAV of the 200 ms before the classification 
instant. The classification output corresponds to a BW, R, or L step. 

The three classifiers are subject-specific and have been tested 
singularly and together, in the final form of the hierarchic classifier 
(Fig. 3, right), by performing a subject-wise 5-fold cross-validation 
repeated 5 times and varying the classification output time from 200 

Fig. 3. Position of the sEMG electrodes, for the sake of the example the instrumented leg is depicted as a prosthesis (left); scheme of the directional EMG decoder and 
its subcomponents (right). 
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ms before the TO to 50 ms after, with steps of 5 ms. The test was repeated 
for two SVM kernels, linear and RBF, and at each iteration a grid search 
was performed to select the best regularization parameter, chosen be
tween a subset of values (0.001, 0.01, 0.1, 1, 10, 100, 1000). The output 
of the hierarchic classifier has been computed by selecting the best- 
performing single classifier given the output instant and the kernel. 
The analysis has been performed offline. Wilcoxon signed rank test 
(WSRT) was performed to compare different conditions. Results are 
presented in the median (IQR: interquartile range) format. 

2.5. Real-time portability 

To validate the online portability of the proposed decoders, we 
measured the inference time of each classifier involved in the classifi
cation pipeline, for one subject and one classification instant (50 ms 
before TO). The test was performed on a Google Coral Developer Board 
(NXP i.MX 8 M SoC CPU, 1GB RAM, Python v3.7.3) and repeated until 
each classifier performed 10,000 classifications for each kernel type. 

3. Results 

As shown in Fig. 4, the accuracy of the TO intention decoder is 72.69 
% (IQR: 3.54) for the linear kernel version and 83.34 % (IQR: 6.48) for 
the RBF one. Both kernels reach a recognition rate above 90 % for the 
absence of intention (i.e., true negatives), but the RBF one shows a 
higher precision regarding the recognition of TO intention with 72.48 % 
(IQR: 11.47). The results imply greater usability of the RBF kernel 
version of the algorithm, which shows better overall performances 
(WSRT, p < 0.05) maintaining a lower level of false positives (WSRT, p <
0.05), essential to avoid potentially detrimental step initiations. 

The accuracies of the sOn, FW, and BWRL classifiers are presented in 
Fig. 5 (left), with the accuracy expressed with the f1-score metric and the 
variability with IQR. The sOn classifiers show stable accuracies of 
around 95 % along the whole window of interest, with no statistically 
significant differences between the two kernel implementations (WSRT, 
p > 0.05). A degradation of performance is present for both the FW and 
BWRL classifiers with earlier classification outputs, with a median ac
curacy of around 80 % 200 ms before the TO to above 90 % 50 ms after 
the TO. In the FW case, the RBF kernel of the algorithm overperforms the 
linear one (WSRT, p < 0.05); while in the BWRL case, no statistically 
significant differences are observed between the two kernels (WSRT, p >
0.05). 

The accuracies of the hierarchic classifier are shown in Fig. 5 (right) 
and Fig. 6. As for the FW and BWRL classifiers, a similar degradation of 
the performances is noticeable with the anticipation of the classification 

output, with median accuracies ranging from 70 % 200 ms before the TO 
to more than 90 % 50 ms after the TO. The RBF kernel version of the 
classifier outperforms the linear one (WSRT, p < 0.05), with an accuracy 
ranging between 73.92 % (IQR: 5.8), 200 ms before the toe-off, to above 
92.91 % (IQR: 4.11), 50 ms after the toe-off. As presented in Fig. 6, the 
RBF hierarchic algorithm detects an FW step with an accuracy above 90 
%, while for BW, R, and L steps the performances are lower, with ac
curacies between 75 % to 90 % depending on the classification instant. 
As shown in Fig. 7, given the kernel and classification instant, the hi
erarchic classifier does not show statistically significant differences 
(WSRT, p > 0.05) in classification accuracy across the different loco
motion tasks (i.e., ground-level walking, stairs ascending and descend
ing, ramps ascending and descending). The median accuracies for the 
population range from 68.84 % to 93.13 % depending on the locomotion 
task and the classification instant. 

As shown in Fig. 8, the linear kernel version of each classifier is 
significantly faster than the RBF counterpart (WSRT, p < 0.05) in 
providing the classification output. The FW and BWRL classifiers have 
an inference time that never exceeds 0.75 ms, with a median classifi
cation time of 0.6 ms and 0.59 ms respectively. The sOn classifier and 
the classifier used for the TO intention decoder have an inference time 
that never exceeds 3.55 ms, with a median classification time of 3.37 ms 
and 2.74 ms respectively. 

4. Discussion 

We developed, tested, and validated two novel decoders meant to be 
implemented into existing high-level controls of wearable lower-limb 
devices, with the objective of better mimicking the ability of humans 
to perform steps in multiple directions. Despite not being widely studied 
in the literature, “non-frontal” steps are crucial for locomotion in 
crowded places and uneven terrain, and for reacting to external per
turbations [27]; moreover, allowing a wider range of controllable 
movements could promote embodiment and usability of wearable de
vices in uncontrolled settings. We presented a TO intention decoder 
independent of the direction of the step, unlike previous works present 
in literature, and a novel EMG decoder able to classify the direction of 
the upcoming step. The two classification algorithms have been tested 
by acquiring data from ten healthy subjects, sensorized with four sEMG 
electrodes and performing both static and steady-state tasks on stairs, 
ramps, and ground-level walking. Their predictive accuracy was studied 
by varying classification output instant and SVM kernel typology. 

As presented in the “Results” section, the TO intention decoder shows 
an overall classification accuracy of 83.34 % in the RBF kernel version, 
but a far more interesting 92.72 % specificity, making it preferable to the 

Fig. 4. Average performance of the TO intention decoder on the population, for linear and RBF kernel (left); example of confusion matrix for a single subject (right).  
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linear kernel implementation. Having a low false positive rate is crucial 
for this application since from the point of view of usability and safety is 
preferable to avoid false step initiations of the wearable device, which 
could unbalance the user causing potentially harmful falls. Furthermore, 
spurious device activations could increase the risk of early abandon
ment, which is a known issue for specific populations (e.g., prostheses 
users). The directional EMG decoder shows accuracies above 75 % across 

the output window of interest, reaching an accuracy above 90 % close to 
the TO and with the RBF kernel version, which outperforms the linear 
kernel implementation, especially for early output instants. The algo
rithm presents noticeably higher performances in classifying FW steps if 
compared to the other classes; this implies a high capability in detecting 
the type of steps that show a higher degree of risk, being performed 
dynamically, and that are more likely to happen in a real-life scenario. 

Fig. 5. Performance of the single classifiers composing the directional EMG decoder (left); performance of the hierarchic classifier (right).  

Fig. 6. Classification performance of the hierarchic classifier for each step direction, at TO and 50 ms prior the TO (left); example confusion matrixes of the hierachic 
classifier for a single subject, at TO and 50 ms prior the TO (right). 
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The reasons behind the discrepancy in classification accuracy of the 
different types of steps are multiple: first, the dataset mimics the 
composition of a realistic dataset and therefore FW steps are the most 
represented to the detriment of BW, R, and L steps (see “Experimental 
setup and protocol” section); secondly, the muscles responsible for the 
abduction and adduction of the hip joint play also a role in the stabili
zation of the leg during forward walking [35]. This stabilization role can 
cause muscular activations during forward walking tasks, increasing the 
chance of misclassifications. The algorithm does not present different 
performances across different locomotion tasks (i.e., ground-level 
walking, stairs ascending and descending, ramps ascending and 
descending), confirming its robustness with respect to the setting in 
which the step is performed. 

The classifiers involved in the directional EMG and TO intention 
decoders showed inference times shorter than 3.55 ms, confirming the 
portability of such an approach on embedded computing platforms. 
Despite the linear versions of the algorithms being faster than their RBF 
counterparts, the adoption of the latter is generally justified by the 
noticeable increase in classification accuracy at the expense of an in
crease in inference time of a maximum of 1.5 ms. The only exceptions 
are the sOn and BWRL classifiers, of which both kernel versions have 
comparable classification performances. Ultimately, the combination of 

the two decoders represents a promising approach to developing more 
usable lower-limb wearable devices, taking into account a broader range 
of movements and increasing the degrees of freedom available to the 
user. 

Our decoders can have several applications. Modern lower limb 
prostheses could benefit both in terms of usability and embodiment of the 
algorithms proposed, which can provide smoother control over the 
prosthetic leg together with additional mobility. The possibility of 
flawlessly performing lateral and backward steps can also help in 
engaging activities in more challenging environments, providing more 
stability to the user and the ability to better react to external perturba
tions (e.g., a bump with a person). Ultimately, a more stable and 
controllable prosthesis would promote an active lifestyle, reducing the 
risk of insurgence of comorbidities. Nevertheless, it is important to point 
out that the majority of commercial prostheses present passive ankle 
mechanisms, which allow only plantar flexion and dorsiflexion; it would 
be therefore necessary to modify the directional EMG decoder to 
discriminate only between forward and backward steps (i.e., without 
implementing the BWRL classifier). It is also worth mentioning that the 
classification output of the directional EMG decoder must anticipate the 
TO to allow the assistance of the push-off movement. For similar rea
sons, orthoses and exoskeletons could benefit from the implementation of 

Fig. 7. Classification performance of the hierarchic classifier for each locomotion task (ground-level walking, stairs ascending and descending, ramps ascending and 
descending). The chart shows the classification performances for all the directional steps possible during the locomotion task considered. 

Fig. 8. Computational time required for the inference of the classifiers proposed; for the sake of the example, we run the test on one subject, assuming the clas
sification to happen 50 ms before the TO. Results for both the linear and rbf versions of the classifiers are presented. 
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the proposed decoders in their high-level controls, increasing the range 
of motion and usability, and obtaining better stability on uneven terrains 
and in reactions to perturbations. However, both decoders could 
necessitate modifications depending on the subject’s joints assisted by 
the device; such as in the case of hip orthoses and exoskeletons, for 
which would be possible to provide the directional EMG decoder output 
near or after the TO instant since the push-off is managed by subject, 
contrary to what happens for prostheses user. It is important to point out 
that different applications bring different requirements in terms of 
safety, depending on the level of assistance provided to the subject. As 
an example, a hip exoskeleton, intended to be used with mildly impaired 
subjects to improve their metabolic economy, presents a lower degree of 
risk if compared to a transfemoral prosthesis. A classification error, if 
performed with a hip exoskeleton on a subject able to stand and walk 
autonomously, would lead to discomfort rather than a fall, contrary to 
the case of lower limb prostheses. 

In conclusion, the combined use of the two presented decoders would 
allow the development of more effective high-level controllers, capable 
of guaranteeing a broader range of movements and ultimately 
enhancing the use of a broad range of wearable devices in realistic 
settings. The setup adopted is compact and limited to one leg, which 
allows the implementation in compact devices, concurrently limiting the 
sensors worn by the subject. Further developments are possible, both in 
terms of classification accuracy and approach validation. Regarding the 
first, sensor fusion techniques involving inertial motion units (IMUs) and 
high-density sEMG will be tested, to increase the amount of information 
available for the algorithm training. In particular, IMUs proved to be a 
source of valuable information for locomotion mode classification [10], 
gait assessment applications [35], and gait event prediction [17]. Sensor 
fusion approaches can also help in mitigating the time-varying and 
non-stationary nature of sEMG signals, that are responsible for the 
subject specificity of the current iteration of the presented algorithm. 
Leveraging additional data sources can help close the gap towards a 
subject-independent directional EMG decoder. In addition, the classi
fiers will be tested for specific applications (e.g., prostheses users, exo
skeletons), in less controlled settings (e.g., crowded places), and with 
multiday acquisitions on the same subject to study the long-term 
robustness of the proposed approach. Further developing application 
and patient-specific versions of the presented control framework will be 
essential to fully validate these algorithms in realistic settings. Never
theless, it is important to point out that such specific implementations 
will largely depend on the target population and hardware adopted by 
future studies; for example, the classification algorithm may vary greatly 
depending on the degrees of freedom allowed by an exoskeleton. 
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