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Abstract: In cloud-based Distributed Acoustic Sensing (DAS) sensor data management, we are confronted
with two primary challenges. First, the development of efficient storage mechanisms capable of handling
the enormous volume of data generated by these sensors poses a challenge. To solve this issue, we
propose a method to address the issue of handling the large amount of data involved in DAS by designing
and implementing a pipeline system to efficiently send the big data to DynamoDB in order to fully use
the low latency of the DynamoDB data storage system for a benchmark DAS scheme for performing
continuous monitoring over a 100 km range at a meter-scale spatial resolution. We employ the DynamoDB
functionality of Amazon Web Services (AWS), which allows highly expandable storage capacity with
latency of access of a few tens of milliseconds. The different stages of DAS data handling are performed
in a pipeline, and the scheme is optimized for high overall throughput with reduced latency suitable for
concurrent, real-time event extraction as well as the minimal storage of raw and intermediate data. In
addition, the scalability of the DynamoDB-based data storage scheme is evaluated for linear and nonlinear
variations of number of batches of access and a wide range of data sample sizes corresponding to sensing
ranges of 1–110 km. The results show latencies of 40 ms per batch of access with low standard deviations of
a few milliseconds, and latency per sample decreases for increasing the sample size, paving the way toward
the development of scalable, cloud-based data storage services integrating additional post-processing for
more precise feature extraction. The technique greatly simplifies DAS data handling in key application
areas requiring continuous, large-scale measurement schemes. In addition, the processing of raw traces
in a long-distance DAS for real-time monitoring requires the careful design of computational resources
to guarantee requisite dynamic performance. Now, we will focus on the design of a system for the
performance evaluation of cloud computing systems for diverse computations on DAS data. This system is
aimed at unveiling valuable insights into performance metrics and operational efficiencies of computations
on the data in the cloud, which will provide a deeper understanding of the system’s performance, identify
potential bottlenecks, and suggest areas for improvement. To achieve this, we employ the CloudSim
framework. The analysis reveals that the virtual machine (VM) performance decreases significantly the
processing time with more capable VMs, influenced by Processing Elements (PEs) and Million Instructions
Per Second (MIPS). The results also reflect that, although a larger number of computations is required as the
fiber length increases, with the subsequent increase in processing time, the overall speed of computation is
still suitable for continuous real-time monitoring. We also see that VMs with lower performance in terms
of processing speed and number of CPUs have more inconsistent processing times compared to those
with higher performance,while not incurring significantly higher prices. Additionally, the impact of VM
parameters on computation time is explored, highlighting the importance of resource optimization in
the DAS system design for efficient performance. The study also observes a notable trend in processing
time, showing a significant decrease for every additional 50,000 columns processed as the length of the
fiber increases. This finding underscores the efficiency gains achieved with larger computational loads,
indicating improved system performance and capacity utilization as the DAS system processes more
extensive datasets.
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1. Introduction

Distributed Acoustic Sensing (DAS) is a technology that utilizes optical fibers to detect
and measure acoustic signals along their entire length [1,2]. By sending laser pulses through
the fiber and analyzing the backscattered light acoustic disturbances, DAS systems can
convert fiber optic cables into continuous, high-resolution sensors [3,4]. This capability
enables DAS to monitor vast areas or long infrastructure spans with a single fiber, making
it ideal for applications such as oil and gas pipeline monitoring, the structural health
monitoring of bridges and buildings, and environmental sensing. DAS systems are versatile,
resilient to harsh environments, and can integrate seamlessly into existing fiber optic
networks [5,6], offering a cost-effective solution for real-time acoustic monitoring, and
improving operational efficiency across various industries.

1.1. DAS Sensing Principle

Distributed Acoustic Sensing (DAS) operates by detecting changes in the coherent
Rayleigh back-scattering of a probe laser within an optical fiber [7]. This principle leverages
several physical effects—such as the elasto-optical effect, thermo-optic effect, and thermal
expansion—to measure the ambient physical field. When these effects modulate the
optical characteristics of the probe laser (amplitude, phase, frequency, etc.), detecting
and demodulating these changes allows the determination of the physical field along the
fiber’s length.

The most common implementation of a long-ranged DAS is shown in Figure 1. First,
light from a narrow linewidth laser is amplified with an Erbium-Doped Fiber Amplifier
(EDFA), whose amplified spontaneous emission is filtered using the Optical Bandpass Filter
(OBPF). The amplified light then passes through an acousto-optic modulator (AOM), which
generates the pulses which are subsequently amplified and filtered using a second pair of
EDFA and OBPF. The coherent Rayleigh scattering signal carrying information about the
fiber’s condition is directed back through the return port of the circulator to a photodetector
which converts it to an electrical signal. Then, a data acquisition system is used to acquire
the traces in real-time for subsequent processing to extract changes in physical parameters
such vibration, strain and temperature along the fiber.

Figure 1. Experimental setup of a distributed vibration sensor using a ϕ-OTDR scheme in direct
detection [8].
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In ϕ-OTDR, the propagation phase of the probe pulse is influenced by vibration [9].
The longitudinal strain of the fiber caused by external vibration is denoted as ϵ, and the
resulting change in the fiber’s effective refractive index ∆neff is given by [10,11]:

∆neff = γn0ϵ (1)

where γ is the elasto-optical coefficient, and n0 is the original refractive index of the fiber.
Simultaneously, the length l of the fiber segment under vibration also changes, expressed
as ∆l = ϵ · l. The additional phase induced by this vibration is [10,11]:

∆ϕ = (1 + γ)n0klϵ (2)

where k = 2π
λ is the wavenumber of the laser light (with λ being the wavelength).

Due to the finite width of the probe pulse, backscattering from different points along
the fiber overlaps, causing internal pulse interference. This interference pattern varies
with changes in the additional laser phase and the external vibration. By detecting this
pattern, vibration can be qualitatively identified. Furthermore, since vibration is linearly
proportional to the phase change in backcattering signal indicated by the equation above, it
can be quantitatively measured using phase demodulation. This process forms the core
sensing principle of DAS with ϕ-OTDR [12].

1.2. Measurements in a Distributed Acoustic Sensing

For a DAS based on ϕ-OTDR, a number of traces are acquired [13], and the typical
processing to identify vibration location and frequency involves computing the differential
intensity or phase changes for samples corresponding to each point along the fiber, which
is a matrix subtraction operation.

More precisely, quantitative measurements of the vibration include the demodulation
of the phase variation in subsequent periods for each spatial location, using algorithms
which have large time complexities, which at times impact the dynamic performance when
the sensing distance is long. In this work, we provide the design of a cloud computing
system for data storage and signal processing by focusing on matrix subtraction and FFT,
the most commonly used operations involved in post-processing in distributed sensing.

The schematic and early configurations of time domain DOFSs based on coherent
Rayleigh back-scattering are similar to those of simple OTDR. However, the sources used
in such sensors are stabilized narrow linewidth lasers, and the phenomenon exploited is
coherent Rayleigh back-scattering. The areas of applications and the types of measurements
differ, and hence, the events which can be detected are also different. Typical applications
of such a system include intrusion detection in perimeter security [14] and in long-distance
oil and pipeline monitoring [15].

The measurement principle used in ϕ-OTDR is qualitatively described in Figure 2 [14].
As shown, in the presence of an external agent such as a vibration source or an intrusion, a
phase change will be induced in the back-scattered signal since touching the fiber changes
the refractive index and the optical path length of the light. The change in phase will be
reflected in the measured intensity of the back-scattered Rayleigh trace. If two independent
measurements Xi and Xj are taken at two different time instances i and j, the traces will
show a difference in the intensity level. As shown in the diagram, this can be rendered
visible by computing a differential trace ∆X = Xj − Xi, which is the arithmetic difference
of the amplitude levels per distance along the fiber.
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Figure 2. Intrusion detection using a ϕ-OTDR sensor [16].

In a DAS based on ϕ-OTDR, the acquisition of a number of independent traces can
be used to determine local vibrations over long distances at the granularity of the spatial
resolution. The frequency of sampling for a given location is dependent on the fiber length
L and the group velocity of the light, as determined by its speed in free space c, and the
group refractive index n. The total measurement time Tmeas for a set of traces is the product
of the round trip time of light in the fiber TR and the number of averages per acquired trace
Nav. The achievable sampling rate is then given by:

fs =
1

Tmeas
=

1
NavTR

=
1

Nav2n L
c
=

c
2NavnL

(3)

and according to Nyquist’s Sampling Theorem, the maximum frequency of vibration that
could be reconstructed is:

fv−max =
1
2

fs =
1
4

c
LnNtr

(4)

Equation (4) shows that the ϕ-OTDR measurement of high-frequency vibrations at
long distance can only be performed if the number of averages can be reduced. In the ideal
case of Nav = 1, using a single-mode fiber of a few kilometers and a coherent optical source
at 1550 nm, the detectable frequency of vibration is in the order of a few tens of kHz. This
is the reason behind the use of ϕ-OTDR in long-range vibration-monitoring applications.
However, it is worth mentioning that the spatial resolution performance of OTDR sensors
for fast online measurements is, in general, lower compared to other forms of sensors using
Rayleigh back-scattering based on Optical Frequency Domain Reflectometry (OFDR) [16].

Even though the main application of DAS based on coherent/phase-sensitive OTDR
is in intrusion detection and vibration frequency measurements, it has also been used to
measure temperature and strain [17,18]. The main principle for strain and temperature
measurement consists of the fact that either temperature or train variations will result in a
change in the local phase.

From the expression of the field for coherent Rayleigh back-scattering given in the
equation [16], we clearly see that the phase of the back-scattering is dependent on the
refractive index of the fiber, the distance in which the phase change occurs, and the
wavelength of the incident light [19].
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The multiplicity of data in distributed sensing has created the necessity to store and
process data on a large scale. This is specifically true for real-time applications requiring
the monitoring of dynamic events with latencies much faster than those can be obtained by
simple processing systems. While cloud storage and computing have been used for data
processing in a number of online services, their use in long-range distribution sensing has
not been investigated properly.

One key step forward in this direction requires quantifying the type, number, and
specifications of resources required for a scenario of real-time monitoring with dynamic
distributed sensing. Specifically, the intermediate data handling and signal processing in
a DAS system involve the acquisition of multiple traces and subsequent processing for
denoising, spectral computations, and phase demodulation techniques [20]. Given that,
often, knowing the exact storage and processing resources for a given system requires tests
on real systems which are costly, it is convenient to use tools which simulate the cloud
architecture, and allow the prediction of the expected performance results in simple, readily
available machines.

One such tool is CloudSim, which has been used in many design scenarios spanning
a number of applications. The tool has been widely used by researchers and engineers
with various approaches including ones for simple processing [21], adaptations for the
simulation of distributed functions as a service (SaaS) [22].

The various scheduling algorithms in cloud environments have been captured by the
simulation tool and shown to serve as effective design tools to determine cloud solutions
for multiple scenarios. Among others, CloudSim has been used to simulate computations in
smart grid by studying parameters such as the number and bandwidth of virtual machines
as well as the RAM and cloudlet length [23]. Specifically, the time share allocation policy
has been shown to offer a greater execution time for a higher number of cloudlets compared
to the space-sharing allocation policy, and the same is true when the VM bandwidth and
RAM have been increased.

More recently, the increase in the number and complexity of devices in the IoT archi-
tecture, which necessitated edge and cloud computing, has also inspired the dedicated
development of a cost-effective simulation tool aimed at capturing the distribution of the
load of computation by optimizing the device specifications and power consumption [24].
This and other scalable simulators enable the analysis of multiple parameters for a large
number of devices and offers application interfaces for visualization [25], including in the
placement and optimization of edge server computing [26].

While different aspects of DAS have been studied in detail, there are limited investigations
of the tools and approaches for rendering long-range distributed sensors suitable for real-time
monitoring. This is, to the best of our knowledge, the first study of the cloud simulation tool
for modeling the signal processing in a sample distributed fiber-sensing system.

1.3. Challenges of DAS Long-Range Sensing

Distributed dynamic fiber optic sensors have interesting applications in many safety
and integrity monitoring systems. Among others, DAS, which involves the use of coher-
ent Rayleigh back-scattering [27] signals whose local phase and intensity are sensitive to
vibrations and temperature, has attracted the interest of a wide array of research and devel-
opment [28,29], focused mostly on improving the cost effectiveness and precision [30,31] of
the interrogation scheme. However, the continuous, real-time monitoring of environmental
parameters in a DAS require the efficient, scalable, and reliable storage and processing of a
large amount of data. For continuous monitoring in long sensing ranges, the problem of
managing data generated by a DAS system enters in the domain of “5Vs” comprising big
volume, high velocity and veracity, and a large variety [32] as well as variability, hence the
critical need for big data storage and analytics tools including those leveraging the cloud.
A recent survey shows that tools in data science and machine learning are projected to
have a strong impact on the next generation of distributed optical fiber sensors used in
environmental monitoring, including in smart cities and Internet of Things (IOT) [33]. So
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far, owing to the large number of sensors generating heterogeneous and multi-dimensional
data, Big Data storage services have been used to manage data from networks of electronic
sensors for smart environmental monitoring [34] including those of fiber seismic sensor
networks [35]. Since they have a capacity to aggregate information from a number of
sensors, cloud-based IoT applications have significant impact on the advance in techniques
used in smart cities [36]. Hence, long-range, single and multi-parameter distributed sens-
ing systems will benefit from the inclusion of well-developed tools in cloud storage and
processing services.

With respect to data storage and handling techniques, traditional, so-called Sequential
Query Language (SQL) databases use simple relational databases which are not easy to
adapt when dealing with complex and dynamic datasets. More recent schemes use NoSQL
(Not only SQL) databases [37], which are optimized for storing data with various shapes
and sizes and exhibit improved flexibility to store a large amount of multi-dimensional and
unstructured information. In addition to such flexibility and dynamic behavior, NoSQL
databases have significantly lower latency of access. Although a number of cloud storage
services exist, including Google Drive, Dropbox, One Drive, Media Fire, etc., Amazon’s
DynamoDB offers unique features, as it is a server-less, NoSQL database which offers low
latency even at huge data volumes [38]. These features have enabled its wide use in the
development of scalable tools in, among others, the shopping, banking, transportation and
entertainment industries, where consistently fast responses per access are observed even in
peak load conditions involving tens of millions of requests. Despite the proven promises
of such big data schemes, their use in distributed fiber optic sensing has not been closely
studied [33]. In this work, we assess and report on the feasibility and scalability of using
DynamoDB for sample DAS data handling.

In a continuous monitoring scenario using any distributed sensing scheme, multiple
traces are acquired at rates whose upper limits are determined by the fiber round trip
time tR. Each individual trace contains information on the sensing parameter for all
locations along the fiber. When the time evolution of each parameter is observed, it
provides information. For instance, in a typical DAS scheme used in acoustic vibration
measurements, the maximum measurable frequency fv−max for a sensing distance S and
number of averages Ntr is given by:

fv−max =
1
4

c
ng

SNtr
(5)

where ng is the group refractive index, and c is the speed of light in free space. For a sensing
range of S = 1 km, in which Ntr = 1 (with no averaging), the maximum measurable
frequency of vibration is 50 kHz. Considering that typically tens of averages are made
to enhance the SNR, the effective measurable frequency can be few as hundreds of Hz.
For a 100 km sensing range and a minimal number of averages, the measurable vibration
frequencies are in the tens of Hz range, which corresponds to tens of milliseconds. While
raw traces need to be taken at rates of the RTT of the fiber, the storage of intermediate data
obtained from them and subsequent processing needs to scale and maintain its efficiency
with the duration of acquisition of the number of samples acquired per acquisition.

In the realm of cloud-based sensor data management, the journey expands beyond
mere storage mechanisms into the dynamic landscape of computational analysis. Our focus
now shifts to the design and evaluation of a robust system tailored for diverse computations
on these data, aimed at unveiling insights into the performance metrics and operational
efficiencies. Fueling this exploration is the CloudSim framework, a versatile simulation
toolkit renowned for its ability to model complex cloud computing infrastructures and
services. Within this framework, our system takes shape, comprising essential elements
such as a resilient data center, agile cloudlets representing computational tasks, virtual
machines (VMs) configured with varying specifications, and a strategic resource broker
orchestrating resource allocation. At the core of our computational powerhouse lies a host
with formidable capabilities with different specs including MIPS of processing power, RAM,
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storage, and a network bandwidth which will be used by our VMs. These foundational
attributes lay the groundwork for simulating intricate cloud infrastructures and gauging
performance benchmarks effectively.

Through a series of simulations, we delve into two distinct scenarios, each illumi-
nating the efficiency and adaptability of cloud computing in handling data acquisition
systems tasks. These simulations involve batch-processing operations, leveraging differen-
tial operation techniques and Fast Fourier Transform (FFT) computations on input data, all
orchestrated within the CloudSim environment. The goal is not just to showcase the com-
putational capabilities but also to unravel insights into cost effectiveness and performance
metrics in cloud-based computational scenarios.

1.4. DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that offers seamless
scalability along with fast and predictable performance [39]. The key features of DynamoDB
are encryption at rest, which removes the complexity and administrative burden of protect-
ing sensitive data and lets you offload the administrative burdens associated with running
and scaling a distributed database, such as hardware provisioning, setup and configuration,
replication, software patching, and cluster scaling [40]. Tens of thousands of micro-services
make up DynamoDB. The metadata service, request routing service, storage nodes, and
auto-admin service are a few of the primary functions of DynamoDB as it is described
in [38]. A high-level overview of the architecture of the Amazon platform, wherein page
rendering components generate dynamic web content by referencing numerous other
services is shown in [41].

1.5. Cloud Computing and CloudSim

The term “cloud computing” refers to a computer paradigm that uses shared com-
puting resources to process applications instead of relying on local servers or personal
devices. Grid computing, which uses the underutilized processing power of every com-
puter connected to a network to address problems too complex for any single standalone
system, is comparable to cloud computing [42,43]. Cloud computing is becoming more
preferable for a number of reasons. Cloud services are flexible, have dynamic behavior,
are server-less, and NoSQL databases have significantly lower latency of access. Some of
the cloud storage services that exist include Google Drive, Dropbox, One Drive, Media
Fire, etc. These features have enabled its wide use in the development of scalable tools in,
among others, the shopping, banking, transportation, and entertainment industries, where
consistently fast responses per access are observed even in peak load conditions involving
tens of millions of requests [44].

Cloud system elements including data centers, virtual machines (VMs), resource
provisioning policies, and the full cloud system and behavior could be modeled with
the help of CloudSim tools. The application provisioning approaches that it employs are
generic and easily extensible. They can currently simulate and model cloud computing
environments made up of single clouds as well as clouds that are interconnected (cloud
federation). It also provides access to customized APIs for provisioning methods and policy
implementation for virtual machine (VM) allocation in scenarios involving interconnected
clouds. In their research on cloud resource provisioning and energy-efficient data center
resource management, a number of researchers from companies like HP Labs in the United
States are utilizing CloudSim [45]. The CloudSim simulator was mostly created in Java
and is freely accessible to the public under an LGPL license. Detailed discussions on cloud
computing architecture can be found in [46–48].

2. Schematic of System for Sending DAS Data to AWS DynamoDB and Signal
Processing with CloudSim

Figure 3 shows a system designed to integrate Distributed Acoustic Sensing (DAS)
with AWS cloud services, specifically, AWS DynamoDB.
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Figure 3. Block diagram of the developed system.

In the cloud environment, the first major component is the scheme designed for
big data transmission to AWS DynamoDB. This involves creating and implementing a
system to efficiently transmit the large volumes of data acquired by the DAS system to
AWS DynamoDB for storage. The cloud DB storage, represented by distributed storage
solutions provided by AWS DynamoDB, stores the transmitted DAS data. Another crucial
component is the scheme designed to preprocess the DAS real-time data, which refer to the
preprocessing steps necessary to prepare the DAS data for storage and further analysis. A
critical aspect of this system is the integration testing labeled as “Testing AWS to Distributed
Acoustic Sensor Integration”. This step involves validating the integration between the
DAS system and AWS cloud services.

2.1. Scheme Design for Big Data Transmission to AWS DynamoDB: Testing AWS to Distributed
Acoustic Sensor Integration

Figure 4 shows the schematic representation of the scheme to test the integration
of AWS DynamoDB with DAS. Creating an AWS account with DynamoDB as one of its
services is the first step in leveraging the powerful cloud-based database solution provided
by Amazon Web Services. After setting up the account, the next task is to create a table
within DynamoDB, which can be accomplished using either the DynamoDB console or
programmatically through Python. The Python approach typically involves using the
Boto3 library, which allows for seamless interaction with AWS services. Once the table is
created, it becomes the repository for the incoming data. In this case, the data comprise
trace samples, which are sent to the DynamoDB table. The process of sending data involves
capturing the start time and end time to accurately record the duration required for each
data transmission. This measurement is crucial for understanding the performance and
efficiency of data handling within the database.
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Figure 4. Schematic representation of the connection of the DAS sensor system to DynamoDB.

To further analyze the performance, the process is repeated in a loop, varying the
sample size to simulate data received from fiber sensors over different distances, ranging
from 1 km to 110 km. Each iteration in the loop involves sending a different volume of data
to the DynamoDB table and recording the corresponding time taken for the transmission.
This detailed and repetitive testing helps in understanding how the data size impacts the
transmission time and provides insights into the scalability and efficiency of the database
service when handling large datasets. Through this comprehensive approach, we can gather
valuable metrics on the operational performance of DynamoDB involving large-scale data
collection from fiber optic sensors.

2.2. Design of a Signal-Processing Scheme in a Distributed Acoustic Sensor Using CloudSim

As described in previous section, CloudSim is used to simulate different scenarios of
cloud-based systems in order to understand and test the different working mechanisms
and services of the cloud infrastructure.

Figure 5 provides a step-by-step guide to setting up a cloud simulation project using
CloudSim (cloudsim-5.0), from the installation of necessary software to the execution of the
simulation. The process begins with the installation of the chosen IDE or Java, providing
the necessary tools for the development and execution of the CloudSim project. Once the
IDE or Java is installed, the next step involves downloading and setting up CloudSim, a
framework for the modeling and simulation of the cloud computing infrastructures and
services. After CloudSim is set up, a new project is created within the IDE. This project will
serve as the workspace for developing the cloud simulation. To facilitate the simulation,
CloudSim JAR files are added to the project libraries, and a main class is created. The
main class serves as the entry point for the execution of the project. In parallel to adding
CloudSim JARs to the libraries, understanding the functionalities provided by these classes
and how they can be utilized in the simulation is necessary. Once the project setup is
complete, some classes are selected, presumably for customization or to define the specifics
of the simulation. With the project set up and configured, the simulation can be run. The
process concludes with the termination of the simulation, indicated by the “Stop” node in
the flowchart.
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Figure 5. Steps to use CloudSim.

The simulation flow for the basic scenario process in the CloudSim framework is
shown in Figure 6. The simulation process begins with the initialization of the CloudSim
environment. This is the first step in setting up the simulation and involves preparing the
necessary resources and parameters for the simulation to run. Following the initialization,
a data center is created. The data center is a crucial component of the cloud infrastructure,
housing the physical resources such as servers, storage devices, and networking equipment.
It is responsible for managing the execution of cloudlets, which are tasks that run on virtual
machines (VMs). The virtual machines are needed to simulate nodes in an actual cloud
computing infrastructure so as to evaluate the performance needed for processing large
datasets generated during continuous, real-time monitoring in a long-range DAS, which
would be challenging to perform with ordinary processing systems. Once the data center is
set up, a data center broker is established. The broker acts as an intermediary between users
and the data center, managing the distribution of tasks and the allocation of resources. It is
responsible for scheduling tasks, balancing the load among available resources, creating
VMs, and determining the fee characteristics for the use of resources. After the broker
is set up, the next step involves the creation of VMs and cloudlets. VMs are virtual
representations of physical machines, providing an environment for tasks to run. Cloudlets,
on the other hand, represent the tasks that need to be executed. These VMs and cloudlets
are added to their respective lists for management purposes. The lists of VMs and cloudlets
are then submitted to the broker. The broker takes these lists and schedules the tasks on the
available VMs based on various factors such as resource availability, task requirements, and
scheduling policies. With everything set up, the simulation can now start. The tasks are
executed on the VMs, and the simulation runs until all tasks are completed. Once all tasks
are completed, the simulation is stopped. This marks the end of the simulation process.
Finally, the results of the simulation are printed. This includes information such as the
execution time of tasks, and the utilization of resources. These results provide valuable
insights into the performance and efficiency of the cloud infrastructure. This sequence of
steps provides a structured approach to simulating cloud environments, ensuring that all
necessary components are properly set up and managed, and that the simulation results are
accurately recorded and presented. The arrows in the flowchart indicate the flow of tasks
and information, showing how each component interacts with others in the simulation
process. This helps in understanding the complex interactions and dependencies in a
cloud environment.
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Figure 6. Block diagram of simulation flow for the basic scenario.

The schematic in Figure 7 represents the implementation of the signal-processing
system in a DAS sensor system using CloudSim. The process begins with the installation
and setup of the CloudSim system. This involves downloading the necessary software,
configuring the environment, and ensuring that all dependencies are correctly installed.
This step lays the foundation for the rest of the process and is crucial for the successful
execution of the simulation. Once CloudSim is set up, the next step is to understand how
the system works. This involves studying the documentation, exploring the codebase,
and familiarizing oneself with the various components and functionalities of CloudSim.
This understanding allows for effective utilization of the system in the subsequent steps.
After gaining a thorough understanding of CloudSim, the system requirements are defined.
These requirements could include the hardware specifications, and the data that will be
used in the simulation. These requirements are crucial, as they determine the resources
that will be allocated for the simulation and the performance of the system. With the
system requirements defined, the next step is to create a new project and classes within the
system that meet the sensor system requirements. These classes could represent various
components of the cloud infrastructure such as data centers, virtual machines, and cloudlets.
Once the project and classes are set up, the simulation is started. The simulation runs
twice using two different Java classes. One class is responsible for processing differential
computation, while the other handles Fast Fourier Transform (FFT) computation. These
computations are integral to the simulation, as they process the data and generate the
results. During the simulation, if an error occurs, the process loops back to the step of
creating classes. This allows for the correction of errors and ensures the smooth running
of the simulation. If there are no errors and the system is functioning as expected, the
simulation is stopped. Subsequently the outputs are produced. These outputs could include
various metrics and results from the simulation. Finally, these outputs are processed in
MATLAB for further analysis. This involves visualizing the results, performing statistical
analysis, and using the results to make informed decisions about the cloud infrastructure.
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Figure 7. Schematic representation of the implementation of processing of DAS data in CloudSim.

3. Results and Discussions

To test the effectiveness of the proposed technique, a local Amazon DynamoDB storage
using Python with the Boto3 interfacing feature is implemented. The scheme is tested with
randomly generated intermediate data representing the samples of a generic long-distance
monitoring with meter-scale spatial resolution for Distributed Acoustic Sensing (DAS). For
a benchmark sensing along a 100 km distance with 5 measurements samples in each meter,
a total of 500,000 samples of raw data are stored per trace. We then test the times needed for
database access for the writing of the large volumes of data with respect to the benchmark,
considering scalability in terms of various measurement durations with multiple traces
and different sensing distance values in the range 200 m–100 km.

After we successfully design an efficient storage mechanism for the sensor data in the
cloud environment, we will embark on a comprehensive journey to design and analyze a
robust system for performing a variety of computations on sensor data in the cloud.

The first phase of our work involved the design of the computational system. We
aimed to create a system that was not only capable of handling the vast amounts of sensor
data but was also efficient in processing it. The system was designed with scalability
in mind, ensuring that it could handle increasing volumes of data with minimal impact
on performance. Once the system was designed, we moved on to the performing of
computations on the DAS sensor data. The primary objective here was event extraction
by applying different computations like differential and FFT operations on the DAS data
to extract events from these datasets. The final phase of our work was the performance
measurement of the system. This involved a series of tests, where we varied different
parameters of the cloud computing system. These parameters included factors like the
length of the sensing fiber, the complexity of the computations, the number of concurrent
users, and the network bandwidth, among others. By varying these parameters, we were
able to gauge the system’s performance under different conditions. The results of these tests
provided valuable insights into the cloud system’s robustness, scalability, and efficiency in
using it in the DAS sensor system.

3.1. Evaluation of Storage Times for DAS Data Using Amazon DynamoDB

The first set of performance evaluations consisted in the measurement of the latency
for varying durations (varying trace counts) for multiple counts of the 500,000 samples,
with each sample saved in a double-precision floating point format having a size of 8 bytes.
Since the maximum data size for an Amazon DynamoDB input is 400 kB, data were
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stored using batches of 50,000 samples each. For a 100 km sensing distance, there will
be 10 batches for storing samples in the whole trace. Considering an RTT of 1 ms for the
benchmark sensing range, the number of batches for measurement duration Tm will be
given by Tm x10/0.001. Figure 8 shows the latency of storage for 20 different durations
from 1 ms up to a few seconds. The measured latencies per batch have a standard deviation
of ∼0.0036 s and a mean value of ∼0.0396 s, consistent with specifications of Amazon
DynamoDB latencies for corresponding data sizes. Note that the time tags are dependent
on the rate of acquisition of data, and in our simulation, we considered cases with rates of
a few 100 s MS/s corresponding to nanosecond-scale sampling times.

Figure 8. Latency per batch of DynamoDB access for sample number of batches used to write
trace samples.

To assess the resilience of latencies per sample in wider sets of data, another set of mea-
surements were performed, while the traces acquisition duration was varied nonlinearly
with multiples of 2n. The results are reported in Figure 9, which confirms the resilience of
the DynamoDB access against nonlinear variations in the batch length with the mean value
being ∼0.0433 s. As shown, even if the batch length scales with 2n, the per-batch latency
remains the same, and some larger datasets even have lower par-batch latency.

The evaluations of the total latency and the latency per sample for varying sample
sizes corresponding to different sensing distances were also evaluated in the range from
5000 to 550,000 samples with the end points corresponding to sending distances of 1 km
(5 samples per meter) and 110 km, respectively, and the results are reported in Figure 10a,b.

Note that if the probing pulses have narrow-enough width values and pulse peak
power corresponding to a threshold of SNR in the sensing range, the higher number
of samples also corresponds to the increasing spatial points and, hence, more resolved
measurements with shorter pulses. As shown, while the total latency increases with the
number of samples as expected, the latency per sample shows a decrease up to the cutoff at
50,000 samples and consistently stabilizes to a mean value of 5.6649 × 10−7 s, once again
demonstrating the suitability of the DynamoDB service to a wide range of monitoring
ranges or spatial resolution values. The fact that latency per sample has limited values
regardless of sample size confirms the resilience of Amazon DynamoDB to increasing
data sizes.
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Figure 9. Latency per batch of DynamoDB access used to write trace samples with number of batches
scaling with 2n for each index n.

(a) (b)
Figure 10. (a) Total latency of DynamoDB access (b) Latency per sample for varying trace sample
sizes in the range of 5000–550,000 samples corresponding to 1–110 km sensing distances.

3.2. Evaluation of Computation Times of Signal Processing in a DAS Using CloudSim

The system is designed using the CloudSim framework. In our computational model,
cloudlet lengths are rigorously calculated in terms of MI (Million Instructions) to precisely
gauge the computational intensity of different operations. For instance, consider cloudlet0,
where we perform the operation of subtracting the first row from all 1000 rows, each
containing 50,000 columns. This operation entails 50,000 subtractions per row, resulting in
a total of 50,000,000 subtractions across all rows. Assuming each subtraction necessitates
10 computations, the total computational load amounts to 500,000,000 computations or
equivalently 500 MI. Subsequently, as we progress to cloudlet1 with an expanded column
limitation of 100,000 columns, the computational complexity escalates twofold, yielding
1000 MIPS, denoting a doubling of the workload compared to cloudlet0. This methodical
approach extends to cloudlet2, cloudlet3, and beyond, where each cloudlet’s MIPS is
intricately derived as a multiple of its predecessor, portraying the systematic escalation in
computational demands across the continuum of tasks.
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The VM configurations exhibit significant diversity, with MIPS with different ranges,
varying RAM, Processing Elements (PEs) spanning within different ranges, huge storage
capacities, and bandwidth capacities in bits per second. The lengths of the cloudlets, which
stand for computing jobs, range from 500 to 5500 MI; the file and output sizes from 500 MB
to 5500 MB; and the PEs from 1 to 11. The system uses an AWS-style pricing model to
determine prices for DynamoDB operations (read-and-write capacity units), EC2 instance
utilization (MIPS, PEs, RAM, and storage), and storage fees per gigabyte per month. By
means of this simulation, the system offers significant insights into the proper handling of
the huge data that come from DAS sending.

We perform two operations using the CloudSim simulations in order to see the perfor-
mance of cloud computing for DAS systems. The two scenarios are described as follows:

The CloudSim simulation is focused around batch-processing operations using differ-
ential operation and Fast Fourier Transform (FFT) on input data. The simulation creates a
set of virtual machines (VMs) with varying configurations, including different amounts of
RAM, MIPS, and storage capacity. The differential operation is performed by subtracting
the first row from all rows, and to execute FFT calculations, it uses the JTransforms library
of Java’s concept of applying FFTs. These VMs are deployed in a data center environment
with one physical host provisioned with RAM, processing power, and storage that can
support the VMs we will use in the simulation. The goal is to showcase batch-processing
capabilities within a cloud computing context, demonstrating how VMs can efficiently
handle different computations on large datasets. Additionally, the simulation calculates
the processing times and accumulates the total processing time for each VM, emphasizing
the practical aspects of cloud-based batch processing with different operations. We will
provide different plots in order to analyze different aspects of cloud infrastructures. The
plots will be provided in logarithmic scale, except some which will be specified.

Figure 11 provides an analysis of the processing time in relation to the length of
cloudlets for differential operations. This analysis is conducted under two conditions: (a) a
single cycle of measurement, and (b) a series of 10 consecutive cycles of measurement. The
measurements are performed within a fiber optic cable that spans a distance of 110 km.
The term ‘cloudlets’ in this context refers to the number of columns computed, which is
directly proportional to the length of the fiber used for Distributed Acoustic Sensing (DAS).
As such, an increase in the length of cloudlets signifies an increase in the length of the fiber
used for DAS sensing. The data presented in Figure 11 indicate a clear trend: as the length
of the cloudlets increases, so does the processing time. This trend is consistent across both
single-cycle and multi-cycle measurements. The underlying reason for this observed trend
is the increased number of differential computations required as the length of the fiber
increases. In essence, the longer the fiber used for DAS sensing, the more data points are
generated, and consequently, the more differential computations are required. This increase
in computational demand results in a corresponding increase in processing time. Each VM
is represented by a line of a different color. The arrangement from top to bottom indicates
their respective positions on the graph, with VM 1 at the top and VM 10 at the bottom.

The graph shows almost a linear relationship between the Cloudlet ID and the process-
ing time in seconds for each VM. This suggests that as the number of cloudlets increases,
the processing time for each VM also increases at a consistent rate. VM 1, represented by the
green line, has the steepest slope among all the VMs. This indicates that its processing time
increases most rapidly with the number of cloudlets, which implies that VM 1 is the least
efficient or is handling more complex tasks that require more processing time. On the other
hand, VMs 2 to 10, represented by lines of different colors, have less steep slopes compared
to VM 1. This shows that their processing times increase more gradually with the number
of cloudlets. The top-to-bottom arrangement of the lines provides a clear comparison of
efficiency across the VMs. VM 1 has the highest processing times, while VM 10 has the
lowest. This shows that VM 10 is the most efficient in terms of processing time. This graph
provides valuable insights into the performance of each VM, allowing for an assessment
of their efficiency and capacity for processing cloudlets during the differential operation.
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As we can see from the figures, as the length of the fiber increases, the increase rate in the
processing time decreases more and more. We will discuss this further.

(a) (b)
Figure 11. Analysis of processing time and cloudlet utilization for differential operations in DAS
sensing system: a study on single cycle versus multiple cycles. The study focuses on two distinct
scenarios: (a) a single cycle of measurement, and (b) a series of 10 consecutive cycles of measurement.
The measurements are conducted in a 110 km long optical sensing fiber. Note that the number of
cloudlets increases for each cloudlet ID in the horizontal axis.

Figure 12 illustrates the relationship between the processing time and cloudlet length
for Fast Fourier Transform (FFT) operations. This relationship is examined under two
distinct scenarios, a single cycle of measurement and ten cycles of measurement, both
conducted within a 110 km fiber optic cable. As such, an increase in the length of the
cloudlets signifies an increase in the length of the fiber used for DAS sensing. The data
presented in Figure 12 indicate a clear trend: as the length of the cloudlets increases, so
does the processing time. This trend is consistent across both single-cycle and multi-cycle
measurements. The underlying reason for this observed trend is the increased number
of FFT computations required as the length of the fiber increases. In essence, the longer
the fiber used for DAS sensing, the more data points are generated, and consequently, the
more FFT computations are required. This increase in computational demand results in a
corresponding increase in processing time. This observation aligns with the fundamental
principles of computational science, providing a reasonable explanation for the trend
depicted in Figure 12. It underscores the computational implications of using longer fibers
in DAS sensing and highlights the need for efficient computational strategies to manage
the increased processing demand. The explanation that were given for the differential
operation can be given here. Comparing this FFT operation graph to the previous one with
subtraction operation, we can infer that the FFT operation adds computational complexity,
resulting in increased processing times for the VMs, which is also clear from the steepness
of the lines in the FFT graph compared to the differential graph. This can provide insights
into how much additional processing time the FFT operation requires for each VM. This
analysis can help in understanding the impact of FFT operations on VM performance and
in making decisions about resource allocation and optimization for computational tasks
involving FFTs.
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(a) (b)
Figure 12. Processing time versus cloudlets for FFT operation for (a) a single cycle, and (b) 10 cycles,
of measurement in a 110 km fiber. Note that the number of cloudlets increases for each cloudlet ID in
the horizontal axis.

3.3. Evaluation of Different Statistical Characteristics of Signal Processing in a DAS
Using CloudSim

Various statistical characteristics like mean, standard deviation, and variance of the
signal processing will be evaluated in this section.

Figures 13 and 14 provide a comparative analysis of the mean processing time for two
distinct operations—differential and Fast Fourier Transform (FFT)—under two different
conditions: (a) a single cycle of measurement, and (b) ten cycles of measurement. These
measurements are conducted within a fiber optic cable that spans a distance of 110 km. The
figures indicate a clear trend: the processing time decreases significantly as we transition
to a more capable virtual machine (VM). The underlying reason for this observed trend
is the efficiency of the more capable VM in executing differential and FFT computations.
Simply put, a more powerful VM can process larger datasets—in this case, data from the
fiber optic cable—in a shorter amount of time. This results in a significant reduction in
processing time as depicted in Figures 13 and 14. These figures underscore the impor-
tance of computational power in processing large datasets, particularly in the context of
differential and FFT operations in Distributed Acoustic Sensing (DAS). They highlight the
efficiency gains that can be achieved by utilizing more capable VMs, thereby emphasizing
the need for strategic resource allocation in computational tasks. In all plots, there is a
trend of decreasing processing time with increasing VM ID. This indicates that VMs with
higher IDs are more efficient or have been optimized for the different computations like
the differential and FFT. The difference in precise measurements (for a single cycle and
10 cycles of measurement) affects the processing time. We can see that when the precision
of measurements is increased, the mean of the computation time for differential operation
also increases. As the precision is increased more, the trend of the decreasing processing
time with increasing VM ID decreases; this indicates that the performance characteristics of
the VMs are stable regardless of the operation distance and the type of operation. Note that
a typical application of the cloud computing system is pipeline safety and integrity moni-
toring, which requires long-range sensing for leakage detection. The processing time for a
110 km fiber has typical values of up to a few ms for some virtual machine configurations,
which means it could enable the monitoring of vibrations with frequencies of a few 100 s of
Hz in real time. In addition, we have considered 5 sampling points for each meter of fiber,
and the benchmark processing scheme is suitable for monitoring with sub-meter spatial
resolution.
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(a) (b)
Figure 13. Evaluation of the mean processing time for each virtual machine in differential operations:
a comparative study on a single cycle versus multiple cycles in a 110 km optical fiber. The investigation
is conducted under two distinct conditions: (a) a single cycle of measurement, and (b) a series of
10 consecutive cycles of measurement. The measurements are performed in a 110 km long optical
fiber. This research aims to understand the computational efficiency of cloud services in DAS sensing
systems.

(a) (b)
Figure 14. Mean processing time for each VM for FFT operation for (a) a single cycle, and (b) 10 cycles,
of measurement in a 110 km fiber.

From Figures 15 and 16, we can see that VM ID 1 has the highest standard deviation
and variance among all, with both values approximately 1500 ms in the differential process
for a single cycle of measurement in a 110 km fiber. These values become even larger for
the FFT operation, larger distances, and more precise measurements. This shows that VM 1
has the most variability in processing time. VM IDs 2, 3, 4, and 5 show a similar pattern,
where the standard deviation is higher than the variance but lower than that of VM ID 1.
This indicates that these VMs also have a significant amount of variability in processing
time but less than VM 1. On the other hand, VM IDs 6 through 10 show a decrease in
both the standard deviation and variance, with VM ID 8 having the lowest values. This
suggests that these VMs have the least variability in processing time. In general, a higher
standard deviation or variance indicates more variability or dispersion in the data. In
this context, VMs with lower values (VM 1, VM 2...) have more inconsistent processing
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times, which could be due to various factors such as workload, hardware performance, etc.
Conversely, VMs with higher values (VM 10, VM 9, etc.) have more consistent processing
times. Note that standard deviation measures how far apart from each other our values are
in a dataset. As we can see from the bar plots, which show a decrement from VM 0 to VM
9, it is suggested that the variance in processing time decreases across the VMs. This means
that the earlier VMs have more variability in their processing times, while the later ones
are more consistent, as we have seen earlier from previous plots. The line representing the
mean also decreases, indicating that the average processing time is reducing as we move
from VM 0 to VM 9. This trend implies that the later VMs are not only more consistent but
also faster on average than the earlier ones. This analysis shows the relationship between
the variance and the mean processing time and indicates that the high configuration of
VMs contributes to both the consistency and efficiency of the VMs as their IDs increase
(as the parameters of the VMs increase). The VMs with smaller standard deviation lines
are more reliable in terms of consistent performance, whereas VMs with larger standard
deviation lines have more fluctuation in their processing times.

(a) (b)
Figure 15. Statistical analysis of processing time for virtual machines in differential operations: an
examination of standard deviation and variance across single and multiple cycles in a 110 km optical
fiber. The analysis is conducted under two different scenarios: (a) a single cycle of measurement,
and (b) a sequence of 10 cycles of measurement. The measurements are carried out in a 110 km long
optical fiber. This study provides a deeper understanding of the variability and consistency in the
performance of VMs during differential operations in DAS sensing systems.

(a) (b)
Figure 16. Standard deviation and variance for vms based on processing time-for differential
operation for (a) a single cycle, and (b) 10 cycles, of measurement in a 110 km fiber.
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3.4. Evaluation of Scalability of Signal Processing in a DAS Using CloudSim

One important aspect when dealing with a system is that it is scalable as input data
become bigger and bigger. In this section, we will assess the scalability of our cloud
computing system, particularly focusing on its ability to handle increasing input data sizes
effectively.

Figure 17 represents the processing time for differential and FFT operation for a
single cycle of measurement in a 110 km fiber, respectively. The figures show that the
processing time required for every new 50,000 columns added (when the length of the fiber
is increased) decreases significantly as the length of the fiber used for the sensor increases.
This is because the more capable VM will execute differential and FFT computations in
parallel and will utilize the VM fully. In the graph, as the number of batch of columns
added to the cloudlets increases, we observe that the processing time for each individual
batch of columns added to the cloudlet is decreasing. This is because, with more data,
the computational resources such as CPUs or GPUs can be utilized more efficiently. The
parallel processing capabilities of these resources mean that they can handle larger batches
of data more effectively than smaller ones. Additionally, the overhead costs associated with
setting up each batch for processing are distributed across a larger batch of columns added
to the cloudlets. So, while the total processing time for all cloudlets might increase with
more data, the time attributed to each individual batch of columns added to the cloudlet
(or the average processing time per batch of columns added to the cloudlet) is decreasing,
which shows that our cloud computing system is scalable. However, it is important to note
that this trend will only hold up to a certain point. If the batch size becomes too large, it
may exceed the memory capacity of the hardware, or the efficiency gains from parallel
processing may plateau, leading to no further reductions in processing time per cloudlet.

(a) (b)
Figure 17. Evaluation of processing time for incremental data in optical fiber measurements (for each
additional 50,000 rows) during two distinct operations: (a) the differential operation, and (b) the Fast
Fourier Transform (FFT) operation. The measurements are conducted in a 110 km long optical fiber.
This examination aims to understand the computational scalability of these operations in the context
of increasing data volume.

3.5. Evaluation of the Effect of Different Parameters of VM on Computation Times of Signal
Processing in a DAS Using CloudSim

In this section, we will investigate whether the different parameters of VM like the
MIPS and PE will affect the performance of our system separately.
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Figure 18 provides a detailed analysis of the processing time in relation to the length
of cloudlets for differential operations under two distinct scenarios. Both scenarios involve
a single cycle of measurement within a 110 km fiber optic cable, but they differ in the
parameters of the virtual machines (VMs) that are varied: (a) in the first scenario, the
processing capability of the VMs, represented by the Million Instructions Per Second (MIPS),
is varied while all other parameters remain constant, and (b) in the second scenario, the
number of Processing Elements (PEs) of the VMs is varied, again, with all other parameters
held constant. The figures indicate a clear trend: both the MIPS and PE parameters of
the VMs have a direct impact on the performance of the computation. They highlight the
efficiency gains that can be achieved by optimizing the MIPS and PE parameters of the
VMs, thereby emphasizing the need for strategic resource allocation in computational tasks.
Figure 18 offers valuable insights into the relationship between the processing time, the
length of the cloudlets, and the computational capabilities of the VMs used for DAS sensing.
It underscores the computational implications of using VMs with different MIPS and PE
parameters and highlights the need for efficient computational strategies to manage the
increased processing demand. It is the MIPS and PE that directly affect the computation.
The processing time for VM 1 is the same when we vary the different parameters because
VM1 have always the same parameters. Hence, the effect is only seen on the other VMs.

(a) (b)
Figure 18. Analysis of processing time and cloudlet utilization for differential operations in optical
fiber measurements with a specific focus on two distinct scenarios: (a) varying only the Million
Instructions Per Second (MIPS) of the virtual machines (VMs), and (b) varying only the Processing
Elements (PE) of the VMs. The measurements are conducted during a single cycle in a 110 km
long optical fiber. This study aims to understand the influence of MIPS and PE variations on the
performance and efficiency of VMs during differential operations in DAS sensing systems.

Figure 19 shows the (a) processing time versus cloudlets for differential operation for
a 10 cycle of measurements in a 110 km fiber while varying only the MIPS of the VMs,
and (b) the processing time versus cloudlets for a differential operation for 10 cycles of
measurements in a 110 km fiber while varying only the PE of the VMs. The same analysis
in that of Figure 18 applies here too.
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(a) (b)
Figure 19. Processing time versus cloudlets for differential operation for (a) varying only the MIPS of
the VMs, and (b) varying only the PE of the VMs, for a 10 cycle of measurements in a 110 km fiber.

3.6. Cost Analysis for Computation Time and Computation Distance of Fiber of Signal Processing
in a DAS Using CloudSim

In this section, we will analyze the computational time costs for signal processing and
the computation costs associated with the fiber length.

Figure 20 represents the processing time versus cost for (a) differential, and (b) FFT op-
eration for 10 cycles of measurement in a 110 km fiber. The figures show that cost increases
as the processing time increase. This is because the differential and FFT computations are
performed for longer time in the VM. The plot indicates that as the cost associated with a
VM increases, the processing time for the operation generally decreases. This trend shows
that more expensive VMs have better performance, likely due to higher specifications or
better resources, which allow them to process tasks more quickly. However, there is an
exception noted by a green line on the plot (VM 1), where this particular VM exhibits a
sharp increase in processing time despite an increase in cost. This anomaly could be due
to various factors such as inefficient resource allocation, sub-optimal configuration, or
other issues because we are using VM with very low configurations for complex and large
computations. So, we should avoid using this type of VM when dealing with complex and
large computations.

(a) (b)
Figure 20. Processing time versus cost for (a) differential, and (b) FFT operation for 10 cycles of
measurement in a 110 km fiber.
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Figures 21 and 22 represent the cost of processing time versus cloulets for differential
and FFT operation for (a) a single cycle, and (b) 10 cycles, of measurement in a 110 km
fiber. The figures show that the cost increases as the length of the cloudlets increases or
the accuracy of the measurement is increased. This is because the differential and FFT
computations are performed for more columns (for more length of the fiber and/or for
accurate measurements). On both figures, we have figures for (a) a single cycle, and
(b) 10 cycles, of measurement in a 110 km fiber to produce more precise plots. Comparing
the figures, we see that both operations exhibit a trend where the processing time increases
with the cloudlet ID. Since the cloudlet length represents the computations for the the
length of the fiber, we can see that the processing time increases as the length of the fiber
increases and as the computation becomes complex. FFT operations are computationally
intensive, so we expect them to have longer processing times compared to differential
operations; this is also explicitly indicated by the plots. Specifically, we can also see from
the plot (a) of the Figure 21 that the increase in the cost from cloudlet0 to cloudlet10 is
∼$0.2, i.e., as we change the length of the fiber from 1 km to 110 km, and also when we
change the VMs choice, the cost increases between consecutive VMs.

(a) (b)
Figure 21. Cost of processing versus cloudlets for differential operation for (a) a single cycle, and
(b) 10 cycles, of measurement in a 110 km fiber.

(a) (b)
Figure 22. Cost of processing versus cloudlets for FFT operation for (a) a single cycle, and (b) 10 cycles,
of measurement in a 110 km fiber.
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4. Conclusions

In summary, we have demonstrated the capacity of the Amazon DynamoDB service
to be used in scalable storage in a DAS based on a phase-sensitive OTDR, using as the
benchmark a 100 km sensing distance with a meter-scale spatial resolution. The latency per
batch of data access shows a consistent mean value of ∼40 ms with low standard deviation
values for both linearly and nonlinearly varying numbers of batches of data. In addition,
the latency per sample for sampling points corresponding to the sensing distances of
1–110 km converges to an optimum value as the number of samples increases. Our study
suggests a strong potential for DynamoDB to address one of the open issues of efficient
and scalable data storage and handling in not only DAS but also many distributed optical
fiber sensors, and could lead to the wider development of scalable data handling schemes,
including those leveraging signal processing with cloud computing services.

In addition, in the second part of our work, we have shown that the cloud comput-
ing is capable of supporting different computations that are needed for the extraction of
sensing data from the large DAS sensor data. To show this, we will use a potent com-
putational system using CloudSim for managing sensor data in the cloud. The system
comprises a robust data center, agile cloudlets, and virtual machines (VMs) with diverse
configurations, processing power, memory, storage, and networking capabilities. Through
simulations focused on batch-processing tasks like differential and Fast Fourier Transform
(FFT) operations, the system demonstrates its prowess in efficient data handling. These
simulations yield valuable insights into the key performance metrics necessary for signal
processing for dynamic monitoring with a DAS as well as resource optimization strate-
gies and cost-effectiveness analysis showcasing the system’s effectiveness in cloud-based
computational environments.

The analysis delves into the relationship between the processing time, cloudlets,
cost, and various virtual machine (VM) parameters in the context of differential and Fast
Fourier Transform (FFT) operations across different fiber lengths in a Distributed Acoustic
Sensing (DAS) system using CloudSim simulations. Computations of the processing time
versus cloudlets for both operations for a single cycle and 10 cycles of measurement in a
110 km fiber demonstrate a clear trend of increasing processing time with longer cloudlets,
reflecting the greater number of computations required as the fiber length (and thus, the
columns processed) increases. It also confirms the scalability of the signal-processing
system for larger numbers of cycles of measurements, hence demonstrating that the design
scheme is suitable for real-time dynamic monitoring.

Moreover, analyses of the VM performance in terms of the the mean processing
time across different VMs show a significant decrease in the processing time with more
capable VMs. This trend confirms the importance of VM selection in optimizing system
performance and efficiency. Additionally, the examination of standard deviation among
VMs reveals insights into processing time variability, with the VM having the lowest
performance (processing speed, number of CPUs) exhibiting the highest variability and
higher-performance VMs showing decreasing variability and lower average processing
times. Further investigation into the impact of VM parameters elucidates that an increase
in the Processing Elements (PE) and Million Instructions Per Second (MIPS) reduces the
processing time. Additionally, the analysis observes performance trends with increasing
fiber length, demonstrating a notable decrease in the processing time as the fiber length
(and cloudlets) increases. The observed decrease in processing time for each new set
of 50,000 columns added as the fiber length increases highlights the system’s scalability
and efficiency in handling larger computational workloads. This efficiency gain, coupled
with the correlation between processing time, cost, and VM parameters, underscores the
importance of resource allocation and configuration optimization for achieving optimal
performance and cost effectiveness in DAS systems. These findings contribute to a deeper
understanding of system dynamics and inform decision-making processes in designing
and managing processing resources in DAS for real-time monitoring in diverse applications.
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This trend suggests improved system performance and efficiency with larger fiber lengths,
reflecting the capabilities of more extensive computational resources.

Moving to the cost analysis, it reveals a direct relation between the processing time
and cost, as longer processing times in VMs for both differential and FFT computations
lead to higher costs. Similarly, examining cost versus cloudlets for differential and FFT
operations shows an upward trend in cost with longer cloudlets, indicating increased
processing requirements for larger fiber lengths. But the cost does not increase significantly
as the fiber length and or the VM parameters are changed. These findings highlight that
longer fiber lengths can be used for sensing, while not incurring significantly higher prices.

In summary, we can see that the analysis provides valuable insights into the interplay
between the processing time, VM parameters, cost, and system performance in DAS
systems, offering a nuanced understanding of resource utilization, optimization strategies,
cost, and performance trends across varying computational requirements, fiber lengths,
and measurement accuracies.
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Abbreviations
The following abbreviations are used in this manuscript:

AWS Amazon Web Services
DAS Distributed Acoustic Sensing
DB Data base
FBG Fiber Bragg Grating
FFT Fast Fourier Transform
IaaS Cloud Infrastructure as a service
IOT Internet of Things
MI Million Instruction
MIPS Million Instruction Per Second
NoSQL Not only SQL
OTDR Optical Time Domain Reflectometer
PaaS Cloud Platform as service
PE Processing Elements
RBS Rayleigh back-scattering
RTT Round-Trip Time
SaaS Cloud software as a service
SNR Signal-to-Noise Ratio
SQL Sequential Query Language
SWI Swept Wavelength Interferometry
VM Virtual Machine
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