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Abstract 

This paper empirically investigates the role played by cross-country spillovers in shap-
ing spatiotemporal differences in country income. While existing literature focused 
on effects captured by direct spillovers with partner countries only, here we take 
a complex network perspective to explore whether the global embeddedness 
of countries in the macroeconomic multi-network may significantly impact income, 
net of country local characteristics such as local foreign exposure. We employ data 
for the period 2000–2020 to build a time sequence of 3-layer multi graphs, with coun-
tries as nodes and links weighted by the intensity of bilateral relations in international 
trade, finance and human migration. Using panel-regression techniques, we then 
ask if country (eigenvector) centrality in the multi network can account for parts 
of the observed heterogeneity in country per-capita income, both cross-sectionally 
and over time. Robustly across a number of alternative specifications of the empiri-
cal model, we find that being more central significantly boosts country income. 
This implies that income-enhancing technological spillovers are not only channeled 
via local exposure, but also through indirect interactions with more distant nodes.

Keywords:  Country per-capita income, Cross-country spillovers, Multi graphs, 
Centrality, Panel-regressions

Introduction
The investigation of the determinants of the spatiotemporal distribution of country per-
capita income has a long tradition in applied and theoretical economics (Solow 1956; 
Mankiw et al. 1992). Within this vast body of research, a large stream of literature has 
recently explored the role that cross-country spillovers may play in shaping the observed 
heterogeneity in the patterns of country income, both cross-sectionally and over time 
(Keller 2004; Howitt 2000; Alvarez et al. 2013; Barro and Sala-I-Martin 1997).

The main idea is that, everything else being constant, the exposure of a country to 
foreign markets (e.g., trade of goods and capital) and her openness to cross-border 
human mobility (both permanent and temporary) may boost domestic income. This 
may happen, for example, via international technology diffusion, which can be facili-
tated by foreign influence through the exchange of goods, capital and ideas induced by 
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communication and sharing of tacit knowledge (Frankel and Romer 1999; Andersen and 
Dalgaard 2011).

Empirical testing of the income-enhancing effect of cross-country spillovers has been 
traditionally carried out using aggregate measures of country openness, as a proxy of the 
extent to which a country is exposed to foreign markets and migration flows (Andersen 
and Dalgaard 2011). For example, country exposure to international trade is typically 
proxied by a simple measure of country openness, computed as the ratio between coun-
try total trade and its gross-domestic product (GDP). Similar openness measures are 
also employed to quantify spillover effects from migration flows (Ortega and Peri 2014) 
and finance (Bekaert et al. 2011).1

However, openness indicators are essentially “local” measures, insofar as they only 
consider direct spillovers coming from partner countries, i.e. those directly linked via 
trade, finance or migration relationships (Fagiolo and Santoni 2015). As we show in 
more detail in “Section Econometric model”, these cannot fully capture indirect spillo-
vers effects originated in countries which are not among their immediate neighbors 
(Abeysinghe and Forbes 2005).

To address this issue, this paper employs a complex-network approach. We consider 
world countries as the nodes of a time-sequence of a 3-layer undirected network, where 
layers represent international trade, finance and migration relationships. Therefore, in 
each time period, any two countries are linked if they exchange goods via import/export 
relations (trade layer), hold a bilateral financial relation (finance layer) and share inflow 
and/or outflow migration corridors (migration layer), see “Section Discussion and con-
clusions” for a discussion.

Our main working hypothesis is that, net of country-specific factors including tradi-
tional (local) openness measures, network-based indicators accounting for the overall 
(global) position of a country within the complex web of interconnections can better 
approximate global income-enhancing effects of cross-country spillovers. This rela-
tionship can be rationalized in terms of a simple theoretical framework wherein coun-
try per-capita income appears to positively depend on eigenvector centrality (Bonacich 
and Lloyd 2001) in the macroeconomic networks where countries are embedded in (see 
“Section  A simple interpretative framework”). More specifically, we employ data on 
international trade, finance and migration flows for 180 countries over the period 2000–
2020 and compute country (eigenvector-based) centrality indicators—in each layer and 
in the multi-graph—to proxy country global openness to potential spillover effects. We 
then employ country centrality indicators as covariates in a large set of panel-regression 
specifications, documenting a widespread positive and significant impact of country 
centrality on per-capita income, net of country-specific effects including local open-
ness. Our empirical results appear to be fairly robust to a number of possible estimation 
biases (e.g., endogeneity and spatial dependence).

This study is closely related to recent works documenting how countries’ embed-
ding in macro-economic networks can have an impact on the spatiotemporal evolu-
tion of their characteristics. For example, Duernecker et  al. (2022) show that country 
global integration in the international trade network positively affects growth net of 

1  For a complementary approach, accounting for geographical (spatial) externalities and interdependencies in country 
production processes, see Ho et al. (2018), Ertur and Koch (2007).



Page 3 of 31Fagiolo and Luzzati ﻿Applied Network Science            (2023) 8:59 	

openness measures. In a similar vein, Fagiolo and Santoni (2015) find a positive and sta-
tistically-significant association between country centrality in the network of temporary 
migration and country income and productivity. Interestingly, both studies document 
a substantial absence of correlation between country global importance in the network 
(e.g., global integration and centrality) and local trade or migration openness meas-
ures. In this work, in order to construct the macroeconomic multi-network channeling 
cross-country spillovers, we build on the large body of literature which documented 
the importance of international trade, foreign-direct investment, mobility and migra-
tion cross-country linkages as drivers of productive knowledge, cf. among others (Bahar 
et al. 2014; Alvarez et al. 2013; Coe 2009; Keller 2021; Coscia et al. 2020; Hovhannisyan 
and Keller 2015; Bahar and Rapoport 2018; Piva et al. 2018). Furthermore, a multi-graph 
description similar to the one explored here has been employed in Pugliese et al. (2019), 
Patelli et al. (2022), who empirically characterize the innovation systems of countries as 
a 3-layered network describing scientific, patenting and industrial activities in different 
sectors.

The rest of the paper is organized as follows. In “Section Empirical framework: data 
and methods” we describe the data we employ to build the 3-layered network and we 
introduce a simple theoretical framework motivating our econometric setups. Section 3 
contains an exploratory statistical analysis of network structure and presents the main 
econometric results. The last section discusses and concludes the paper.

Empirical framework: data and methods
Macroeconomic multi‑network: definitions and analysis

We employ data on international trade, finance and migration to build a weighted, undi-
rected, 3-layer macroeconomic multi-network (MMN) where nodes are countries and 
weighted-undirected links represent the intensity of bilateral international ties in trade 
(T), migration (M) and finance (F). In each layer a link is present if and only if there 
exists a non-zero observation in the correspondent data.

Trade data come from the COMTRADE (United Nations 2023) database. The raw 
yearly observation reports total imports of any world country from any other in that year 
(in nominal US$). As to migration data, we employ Guy Abel repository on “Bilateral 
International Migration Flow Estimates” (Abel and Cohen 2019), which contains, for any 
time wave {2000, 2005, 2010, 2015, 2020} , estimates for the number of people born in any 
given country who permanently moved to another one in the preceding 5-year interval. 
International finance data are retrieved from the IMF “Coordinated Portfolio Investment 
Survey” (CPIS) (The International Monetary Fund 2023), which contains yearly informa-
tion on the total value of portfolio investment securities held by any given country and 
issued by another one.

We first symmetrize weighted-directed relationships.2 Therefore, links are weighted by 
total bilateral trade (imports plus exports) in the T layer, by total permanent-migration 
flows of people (immigrants plus emigrants) in layer M and total (held and issued) bilat-
eral holdings in the F layer.

2  This is done to avoid difficulties in interpreting country eigenvector-based centrality indicators in directed networks, 
where node importance depends on whether centrality scores are obtained through incoming or outgoing links. In “Sec-
tion Directed networks” we relax this assumption.
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Next, to properly match trade and finance data with migration flows over time, we 
compute averages of trade and finance yearly data over the the preceding years.3 An 
alternative way to perform this match would have required to interpolate migration-flow 
data (within 5-year windows) without averaging out trade and finance bilateral data, 
resulting in a yearly dataset with a much larger econometric sample size. As mentioned, 
however, migration data are already estimates coming from stock data observed at a 
10-year frequency. Therefore, a further interpolation would have introduced too much 
exogenous bias, in our opinion, in terms of the variation of bilateral migration flows both 
over time and across country pairs. This would have possibly led to estimation biases in 
our regression exercises (see below), especially concerning global and country-specific 
time trends.

After matching, we end up with a balanced panel of N = 180 countries (cf. Table 1) 
observed over 5 time-snapshots t ∈ {2000, 2005, 2010, 2015, 2020} , where the bilateral 
observation at time t refers to the average or total flow or stock in the preceding years. 
More formally, we let Hℓ

t = {hℓijt} be the weight matrix at time t for layer ℓ = {T ,M, F} , 
where i = 1, . . . ,N  and j = 1, . . . ,N  . To facilitate comparison across layers and time, 
link weights were first log-transformed and then re-scaled by the maximum value in Hℓ

t 
for each (t, ℓ) . Therefore link weights are unit-free and hℓijt ∈ [0, 1].

Table  2 reports summary statistics for network layers across time waves. Note that 
trade and migration layers display many more connections than the finance layer, which 
results in a larger density. However, (rescaled) trade and finance link weights are gener-
ally heavier than in migration network, resulting in larger average weight per link. Over 
time, trade and finance layers have become denser, whilst the migration network shows 
more stability in its structure.

The network structure of three layers is displayed in the chord diagrams of Fig. 1 for 
the years 2000 and 2020, where for visualization purposes, we only plot the links associ-
ated to top 30 weights in each layer (see “Appendix 2” for choropleth maps showing, for 
year 2020, the top 1% of the link weight distribution in each layer). Finance and trade top 
link weights are concentrated around a smaller number of countries, while the migration 
layer is more dispersed. As one might expect, the three layers are correlated. We explore 
the evolution of the Pearson correlation coefficient between positive link-weight pairs in 
Fig. 2. Trade and finance link weights are the most correlated, although not perfectly col-
linear. This indicates that countries might globally play different roles in different layers. 
Furthermore, the correlation between migration link weights and the trade/finance ones 
has increased over the years. Overall, the existent correlation structure suggests that an 
underlying common gravity-model structure may be at work (more on that below).

Next, we compute country-centrality scores on weight matrices Hℓ
t , for each layer and 

time wave. Let Cℓ
it be the centrality score of country i at time t in layer ℓ . We focus on 

Bonacich (eigenvector) centrality (EIC henceforth) (Bonacich and Lloyd 2001) as our 
measure of global country embeddedness in MMN layers. According to its definition, a 
country will hold a higher EIC score in the network the more—and more intense—links 
she holds with countries that are also more central. Therefore, country importance does 

3  More precisely, total bilateral trade in year t is the average of observations in years {t − 4, . . . , t} . As to finance data, the 
observation in year t is the average over the 4 preceding years (apart from 2001 when data for antecedent years were not 
available.
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Table 1  List of country names and ISO3 codes used in the analysis

Country ISO3 Country ISO3 Country ISO3

Afghanistan AFG Gabon GAB Norway NOR

Albania ALB Gambia GMB Oman OMN

Algeria DZA Georgia GEO Pakistan PAK

Angola AGO Germany DEU Panama PAN

Antigua & Barbuda ATG​ Ghana GHA Papua New Guinea PNG

Argentina ARG​ Greece GRC​ Paraguay PRY

Armenia ARM Grenada GRD Peru PER

Australia AUS Guatemala GTM Philippines PHL

Austria AUT​ Guinea GIN Poland POL

Azerbaijan AZE Guinea-Bissau GNB Portugal PRT

Bahamas BHS Guyana GUY​ Qatar QAT

Bahrain BHR Haiti HTI Rep. of Korea KOR

Bangladesh BGD Honduras HND Rep. of Moldova MDA

Barbados BRB Hungary HUN Russian Federation RUS

Belarus BLR Iceland ISL Rwanda RWA​

Belgium BEL India IND St. Lucia LCA

Belize BLZ Indonesia IDN St. Vincent VCT

Benin BEN Iran IRN Samoa WSM

Bhutan BTN Iraq IRQ Sao Tome & Principe STP

Bolivia BOL Ireland IRL Saudi Arabia SAU

Bosnia Herzegovina BIH Israel ISR Senegal SEN

Botswana BWA Italy ITA Serbia SRB

Brazil BRA Jamaica JAM Seychelles SYC

Brunei Darussalam BRN Japan JPN Sierra Leone SLE

Bulgaria BGR Jordan JOR Singapore SGP

Burkina Faso BFA Kazakhstan KAZ Slovakia SVK

Burundi BDI Kenya KEN Slovenia SVN

Cabo Verde CPV Kiribati KIR Solomon Isds SLB

Cambodia KHM Kuwait KWT South Africa ZAF

Cameroon CMR Kyrgyzstan KGZ South Sudan SSD

Canada CAN Laos LAO Spain ESP

Central African Rep. CAF Latvia LVA Sri Lanka LKA

Chad TCD Lebanon LBN Sudan SDN

Chile CHL Lesotho LSO Suriname SUR

China CHN Liberia LBR Sweden SWE

Hong Kong HKG Libya LBY Switzerland CHE

Colombia COL Lithuania LTU Syria SYR

Comoros COM Luxembourg LUX Tajikistan TJK

Congo COG Madagascar MDG Thailand THA

Costa Rica CRI Malawi MWI Timor-Leste TLS

Croatia HRV Malaysia MYS Togo TGO

Cyprus CYP Maldives MDV Tonga TON

Czechia CZE Mali MLI Trinidad & Tobago TTO

Cote d’Ivoire CIV Malta MLT Tunisia TUN

Congo (DRC) COD Mauritania MRT Turkey TUR​

Denmark DNK Mauritius MUS Turkmenistan TKM

Djibouti DJI Mexico MEX USA USA

Dominican Rep. DOM Mongolia MNG Uganda UGA​

Ecuador ECU Montenegro MNE Ukraine UKR
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not only depend on that of immediate partners (i.e., local importance), but also on the 
importance of the neighbors of neighbors, and so on. This allows one to evaluate global 
country importance, since computing the EIC score for any given node fully takes into 
account the information contained in the weight matrix.

In order to check for robustness, we complement EIC indicators computed on 
weighted-network layers with binary projections thereof, obtained by setting the 
links equal to 1 the entry of the N × N  binary matrix Aℓ

t = {aℓijt} if the correspond-
ent weight hℓijt > 0 and zero otherwise. This allows us to evaluate the role played by 
intensive (weighted) vs extensive (binary) centrality in affecting country income. An 

Table 1  (continued)

Country ISO3 Country ISO3 Country ISO3

Egypt EGY Morocco MAR United Arab Emirates ARE

El Salvador SLV Mozambique MOZ United Kingdom GBR

Equatorial Guinea GNQ Myanmar MMR Tanzania TZA

Eritrea ERI Namibia NAM Uruguay URY​

Estonia EST Nepal NPL Uzbekistan UZB

Eswatini SWZ Netherlands NLD Vanuatu VUT

Ethiopia ETH New Zealand NZL Venezuela VEN

Micronesia FSM Nicaragua NIC Viet Nam VNM

Fiji FJI Niger NER Yemen YEM

Finland FIN Nigeria NGA Zambia ZMB

France FRA North Macedonia MKD Zimbabwe ZWE

Table 2  Network layers: Descriptive statistics

Trade 2000 2005 2010 2015 2020

No. Nodes 180 180 180 180 180

No. Links 12227 13110 13506 13922 14177

Volume/Link 0.874 0.871 0.883 0.894 0.905

Density 0.759 0.814 0.838 0.864 0.88

Diameter 2 3 2 2 2

Size LCC 176 177 179 180 180

 Migration 2000 2005 2010 2015 2020

No. Nodes 180 180 180 180 180

No. Links 8636 8777 9045 8961 8297

Volume/Link 0.329 0.346 0.365 0.344 0.391

Density 0.536 0.545 0.561 0.556 0.515

Diameter 2 2 2 2 3

Size LCC 176 176 178 180 180

 Finance 2000 2005 2010 2015 2020

No. Nodes 180 180 180 180 180

No. Links 1.899 2.798 3.566 4.123 4.250

Volume/Link 0.898 0.872 0.864 0.858 0.868

Density 0.118 0.174 0.221 0.256 0.264

Diameter 4 3 3 3 3

Size LCC 158 172 178 178 178



Page 7 of 31Fagiolo and Luzzati ﻿Applied Network Science            (2023) 8:59 	

Fi
g.

 1
 C

ho
rd

 d
ia

gr
am

s 
fo

r t
he

 3
 la

ye
rs

 in
 y

ea
rs

 2
00

0 
an

d 
20

20
. O

nl
y 

lin
ks

 a
ss

oc
ia

te
d 

to
 th

e 
to

p 
30

 w
ei

gh
ts

 a
re

 s
ho

w
n.

 T
he

 w
id

th
 o

f e
ac

h 
of

 th
e 

ch
or

ds
 is

 p
ro

po
rt

io
na

l t
o 

th
e 

su
m

 o
f w

ei
gh

ts
 o

f e
ac

h 
co

un
tr

y 
in

 th
e 

co
rr

es
po

nd
in

g 
la

ye
r



Page 8 of 31Fagiolo and Luzzati ﻿Applied Network Science            (2023) 8:59 

extensive analysis of correlation between EIC scores and ranks is reported in “Sec-
tion Correlation between country centrality measures”.

Alternative eigenvector based measures of node importance can be employed 
instead of EIC, e.g., Katz (aka, Alpha) centrality (Katz 1953). However, Katz centrality 
is particularly suited in sparse, directed acyclic networks where Bonacich centrality 
may not be well defined for some nodes. As our graphs are neither directed nor acy-
clic, EIC appears to be a good starting point. Nonetheless, we have computed Katz 
centrality on our data and checked its correlation with EIC, both in weighted and 
binary representations of the network. As Table  3 suggests, EIC and Katz central-
ity distribution are almost perfectly and positively correlated across layers and time 
waves. This is expected as, in undirected and dense networks as those we are consid-
ering here, the two centrality indicators provide very similar results. In “Section Dis-
cussion and conclusions” we shall briefly comment on alternative centrality indicators 
that can be possibly employed in the present analysis.

Fig. 2  Evolution over time of Pearson correlation coefficient between link weights of network layers

Table 3  Correlation coefficients between Bonacich Eigenvector Centrality (EIC) and Katz (Alpha) 
Centrality

Layer Weighted Centrality Scores

2000 2005 2010 2015 2020

Trade 0.9981 0.9986 0.9988 0.9990 0.9991

Migration 0.9898 0.9928 0.9932 0.9919 0.9908

Finance 0.9973 0.9988 0.9993 0.9996 0.9997

Layer Binary Centrality Scores

2000 2005 2010 2015 2020

Trade 0.9971 0.9975 0.9973 0.9977 0.9978

Migration 0.9937 0.9940 0.9944 0.9939 0.9926

Finance 0.9935 0.9962 0.9976 0.9987 0.9989
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A simple interpretative framework

Our main working hypothesis can be rationalized in terms of a simple interpretative 
framework.4 Note that, from a theoretical perspective, the link between (technological) 
spillovers and growth have been explored to understand convergence across countries 
(Barro and Martin 1997; Howitt 2000) or as a possible vehicle of the positive relationship 
between trade and economic growth (Grossman and Helpman 1991). Although most of 
this literature is rooted in the endogenous growth tradition, our interpretative frame-
work, for simplicity, is based on a standard neoclassical Solow growth model (Solow 
1956; Mankiw et  al. 1992), to which we add interdependence between country (exog-
enous) production efficiencies. This is more in the spirit of the model in Ertur and Koch 
(2007), who study country growth in presence of technological interdependencies and 
spillovers.

Consider N world countries ( i = 1, . . . ,N  ) embedded in an undirected weighted 
network—with symmetric N × N  weight matrix W = {wij}—that channels spillovers 
between countries with intensity proxied by link weights. Countries hold constant 
returns-to-scale production functions:

where yi and ki are per-worker output and capital, ai ∈ (0, 1) , φi is a technical-progress 
coefficient (i.e., production efficiency), here assumed to be Hicks-neutral for simplicity, 
and ki is set at its steady-state level:

where ni (the rate of growth of the labor force), di (the depreciation rate of capital), si (the 
saving rate) and ηi = (1− ai)

−1 are constant, country-specific parameters. This implies 
that:

where Hi = s
ηi
i (ni + di)

−ηi only depends on country-specific factors.
Suppose that country efficiency φi depends on the efficiency of countries she interacts 

with. More formally, if country i is linked to country j with link weight wij , we assume 
she may enjoy a share ζwij of her efficiency φj , where ζ ∈ [0, 1] is a global parameter. 
Thus, we have that:

whose solution φ∗
i  is country Bonacich centrality in W. Therefore, country per-worker 

output reads

(1)yi = fi(ki;φi, ai) = φik
ai
i ,

(2)k∗i =
φisi

ni + di

ηi

,

(3)y∗i = φ
ηi
i Hi,

(4)φi =

N
∑

j=1

ζwijφj ,

4  Our framework should not be considered as a fully-fledged economic model delivering clearcut testable implications. 
Rather, we view it as a toy-model whose skeleton can be employed to motivate our empirical analysis, by providing a way 
to interpret a possible association between network centrality in the network channeling spillovers and country income.
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implying that country income should positively depend on country Bonacich centrality 
in W.5

Econometric model

We test whether country centrality in the MMN explains country per-capita GDP (pcGDP) 
using fixed-effects panel regression models, as rationalized in our simple theoretical frame-
work. We employ data on pcGDP from the “World Development Indicators” database 
maintained by the World Bank (The World Bank 2023) and refer to country gross-domestic 
product per capita based on purchasing power parity (PPP), i.e. converted to (constant 2017) 
international dollars using purchasing power parity rates.

The most natural panel-regression specification to test our hypothesis reads:

where i = 1, . . . ,N are country labels, t is time, yit is the log of pcGDP, αi are country-level 
fixed effects (FEs), βt are time dummies, Cit is a vector of country network indicators (e.g., EIC 
scores), Xit are additional country specific, time-varying covariates (e.g., demographic, socio-
economic, and institutional factors) Fagiolo and Santoni (2015) and ǫit are i.i.d. errors.

Among Xit regressors, it is customary to control for country openness. As mentioned, 
this variable should capture the extent to which a country is open to foreign influence 
and it is usually defined as the ratio between total country activity in a certain dimen-
sion (i.e., trade, migration, and finance, in our context) and country economic or demo-
graphic size (country GDP is typically employed for trade and finance, while population 
is used for migration). Openness indicators, therefore, only capture “local” exposure, as 
they only account for the number and intensity of direct linkages with partner coun-
tries.6 EIC scores, on the contrary, take into account both direct and indirect connec-
tions, being able to better grasp “global” country exposure or importance in the network. 
The fact that local measures (e.g., openness) and global indicators (e.g., centrality) may 
not necessarily be strongly and positively correlated has already been documented in the 
literature, see e.g. Duernecker et al. (2022). This appears to be the case also in our data. 
Table 4 reports Pearson correlation coefficients between EIC country scores (computed 
both in weighted and binary network layer) and openness statistics, where openness to 
trade is calculated as total country trade (imports plus exports) over GDP, openness to 
migration is total country migration (immigration plus emigration) over population, and 
openness to finance is total country portfolio investment securities (held and issued) 
over GDP. In order to match the data employed for link weights in network layers, all 
openness measures at year t are computed using averages over the preceding 5-year 

(5)y∗i = (φ∗
i )

ηiHi,

(6)yit = αi + βt + ηCit + γXit + ǫit ,

5  This testable implication is expressed in terms of per-worker and not per-capita output. However, all our main 
results are confirmed replacing pcGDP with productivity. Notice also that Eq. (5) holds also in the case the network is 
unweighted (i.e. W is a binary adjacency matrix A).
6  Indeed, from our weighted-undirected network perspective, total country trade, migration and finance can be recov-
ered by the row (or equivalently column) sum of the correspondent-layer weight matrix. That is, the numerator of coun-
try openness equals total country (node) strength.
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window. The figures in Table  4 clearly show that, overall, openness and centrality are 
weakly and negatively correlated, suggesting that local and global measures may portrait 
very different pictures.7

Going back to the specification in Eq. (6), concerns have been raised that it may 
involve over-controlling (or over-fitting) biases (Dell et  al. 2014). In our specific case 
this is crucial as country covariates Xit may indeed depend on centrality Cit . Therefore, 
estimation of Eq. (6), which assumes a functional relationships y = f (Cit ,Xit) , may not 
capture the sheer net effect of Cit on yit , as the true functional relationships is instead 
yit = f (Cit ,Xit(Cit)) . Furthermore, the choice of covariates may induce an omitted-var-
iable bias (Wilms et al. 2021). Furthermore, adding a sufficiently large number of mac-
roeconomic controls Xit may decrease country sample size, due to missing values.8 To 
address those issues, we follow the influential work by Burke et al. (2015) and employ 
here the specification:

where country-specific covariates are removed and the 2-degree, country-specific time 
polynomial is meant to control for all country-specific (time invariant and variant) fac-
tors. This may substantially alleviate omitted-variable and over-controlling biases. The 
idea is to replace regressors Xit , which may depend on Cit and might not be able to 
fully control for country-specific, time-varying heterogeneity, with a flexible battery of 
country-specific non-linear trends. Since 2N − 2 additional dummies now inflate the 

(7)yit = αi0 + αi1t + αi2t
2 + βt + ηCit + ǫit ,

Table 4  Correlation coefficients between Bonacich Eigenvector Centrality (EIC) and Country 
Openness. Openness to trade is total country trade over country GDP. Openness to migration is total 
country migration over country population. Openness to finance is total country assets over country 
GDP. All openness measures at year t are computed using averages over the preceding 5-year 
window

Layer Weighted Centrality Scores

2000 2005 2010 2015 2020

Trade − 0.4172 − 0.3834 − 0.4509 − 0.4596 − 0.5220

Migration − 0.2815 − 0.2854 − 0.2961 − 0.2695 − 0.1363

Finance 0.0350 − 0.0585 − 0.1112 − 0.1003 − 0.1290

Layer Binary Centrality Scores

2000 2005 2010 2015 2020

Trade − 0.3441 − 0.3324 − 0.4068 − 0.5134 − 0.5946

Migration − 0.1963 − 0.2199 − 0.2257 − 0.2055 − 0.0729

Finance 0.0847 − 0.0318 − 0.0814 − 0.0529 − 0.0795

7  Cf. Duernecker et al. (2022) for an interpretation. An intuitive proxy for local exposure may also be defined in terms of 
the number and total intensity of direct links, i.e., using node degree and node strength as measures of local centrality. 
We discuss this issue in more detail in “Section Panel regressions”.
8  This was actually the case in the present study. By adding macroeconomic covariates typically employed in the lit-
erature, we ended up with less than 100 countries available for estimation. Notice that this implies that centrality scores 
inserted in the regressions should now be recomputed on the resulting smaller-size networks. This may further bias the 
analysis, as the networks themselves, and their properties, now depend on the selection process that is used to choose 
the macroeconomic covariates.
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regression, one may be sufficiently sure to limit overfitting and reduce omitted-variable 
biases.9

The vector Cit contains Bonacich country (eigenvector) centrality indicators. We 
experiment with four setups, according to whether EIC scores are computed on 
weighted vs binary network layers; and whether all three layer EIC scores enter jointly in 
a single regression (i.e., Cit = {CT

it ,C
M
it ,C

F
it } ) or separately in three different regressions 

(i.e., Cit = {CT
it } or Cit = {CM

it } or Cit = {CF
it }).

Another well-known issue that may confound the estimate of η is the potential pres-
ence of endogeneity, which may result from reverse causation (i.e., pcGDP affecting 
country centrality) and/or any remaining omitted-variable bias. We address possible 
endogeneity issues in the relation between EIC and pcGDP by using a strategy typically 
employed in the relevant literature (cf., e.g. Ref. Fagiolo and Santoni (2015) and papers 
cited therein), consisting, first, in instrumenting the observed network via a structural 
gravity model featuring origin and destination country-time fixed effects and bilateral 
exogenous variables (e.g., geographical distance). Second, EIC scores are computed on 
the predicted networks and inserted in the regression in place of those computed on the 
observed networks. More formally, for any layer and time wave, we fit to positive link 
weights the model:

where aℓit and bℓjt are country-time origin and destination FEs, �ij is the log of popula-
tion-weighted geographical distance between country i and j (Mayer and Zignago 2011) 
and ηℓjt are i.i.d. errors. We employ an OLS estimator to obtain gravity predictions ĥℓijt 
for link weights and, consequently, instrumented weight matrices Ĥℓ

t , which we employ 
to compute an instrumented version of country EIC scores and ranks. Notice that OLS 
estimates automatically exclude observations equal to zero (i.e., only links that are pre-
sent enter the sample). This implies that predicted binary matrices Âℓ

t  coincide with 
non-instrumented ones Aℓ

t  . In other words, using this procedure, instrumented and 
non-instrumented binary centrality would be the same. To allow for a properly-defined 
instrumented binary EIC, we fit aℓijt with a logit gravity model as in Eq. (8). This allows 
one to obtain predicted probabilities of link existence and, keeping only the links whose 
predicted probability is strictly larger than observed network density, to eventually get 
a single instance for the instrumented binary network (Duenas and Fagiolo 2013).10 It 
has been argued elsewhere (Fagiolo and Santoni 2015) that binary network statistics 
should not strongly suffer from endogeneity issues induced by reverse causation. Indeed, 
changes in the dependent variable may feed back more naturally to intensive margins 
rather than to extensive ones, i.e., changes in country pcGDP should impact on link 
weights without destroying or creating links. If one buys this argument, instrument-
ing binary EIC may be redundant. However, we are concerned here with endogeneity 

(8)hℓijt = aℓit + bℓjt + cℓ�ij + ηℓjt ,

9  Linear, cubic or higher-order country-specific time polynomials may be also employed. The choice should be made 
so as to solve the trade-off between explanatory power and degrees of freedom left for estimation. In our exercises, a 
2-degree polynomial turned out to be the best option.
10  An alternative strategy consists in using the logit-predicted matrix of probabilities to simulate, using i.i.d. Bernoulli 
distributions, a sufficiently-large sample of predicted binary networks and, eventually, a distribution of binary EIC statis-
tics, whose mean/median can be used in regression exercises. A preliminary analysis showed that results using this sec-
ond strategy were very similar to the ones obtained employing observed network density as a threshold to keep binary 
links.
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induced by omitted-variable biases, which might still be present and possibly bias our 
results. Therefore, we stay on the safe side and instrument binary EIC as well.

As a further check, we also control for autocorrelation in pcGDP data, introducing 
a lag in the right-hand side of Eq. (7) as follows:

Therefore, in either the weighted or binary network case, our first set of econometric 
exercises cover six different setups, according to whether: (i) centrality scores enter 
jointly or separately; (ii) the regression specification is the baseline one (i.e., no instru-
mented network, no lag for pcGDP); the specification features instrumented-network 
statistics using Eq. (8); or a lag in pcGDP is inserted as in Eq. (9). In addition, “Sec-
tion Panel regressions” presents some robustness checks aimed at exploring what hap-
pens when a multi-graph definition of country centrality is employed instead of treating 
layers as separate and when spatial (geographical) correlation in pcGDP is dealt with.

Results
Correlation between country centrality measures

Before presenting the main results from panel-regression exercises—aimed at documenting 
the net impact on pcGDP of the overall importance of countries in the MMN—it is instruc-
tive to explore the correlation structure of centrality indicators, both within and across net-
work layers, and over time.

Panels (a) and (b) in Fig. 3 show correlation plots of EIC scores and ranks. In each plot, 
upper-diagonal elements refer to correlation coefficients between EIC computed in weighted-
network layers, while lower-diagonal display correlation coefficients between EIC computed 
in binary-network layers, for all layers and time waves. Note first that centrality indicators 
exhibit a strong within-layer persistence over time (cf. circles within squares), especially in the 
finance network. Between-layer correlation is lower and suggests that countries play different 
roles in the three layers. Furthermore, correlation between EIC computed on binary networks 
(cf. lower-diagonal entries) is generally smaller than that computed on weighted networks (cf. 
upper-diagonal entries), both in terms of scores and ranks. This indicates that intensity of links 
matter. In other words, differences in the intensity of interactions between any two countries 
(given the existence of a link) contribute to a stronger correlation between EIC scores.

To get a better feel on this point, Fig.  3 provides a scatter plot—for the year 2020—of 
weighted and binary centrality ranks (cf. panel (c) and (d), respectively). In the two scatter 
plots, country percentage ranks in the trade and migration layers are in the x- and y-axis, 
while country rank in the finance layer is represented using a color scale (from light green to 
dark grey). The plots show that, first, most central countries are so in all the three layers, while 
less central countries display more variability. Second, the clouds of rank dots coming from 
binary EIC is much more dispersed than that coming from weighted EIC, as the correlation 
coefficients in panels (a) and (b) suggested.

Panel regressions

We now discuss our main results from the regression exercises. We begin with esti-
mation of Eq. (7). As mentioned, we consider two alternative setups as far as centrality 

(9)yit = θyit−1 + αi0 + αi1t + αi2t
2 + βt + ηCit + ǫit ,
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scores are concerned. In the first one (labeled as “Jointly”), we run a single regression 
where the vector Cit contains all country EIC scores in the three layers. In the second 
one (labeled as “Sep”), we run three separate regressions, where the vector Cit fea-
tures only country EIC score in a single layer. For each setup, we consider three dif-
ferent specifications. In the first one (“Base”), centrality scores are computed on the 
original weight or adjacency matrices (i.e. either Hℓ

t  or Aℓ
t  ). The second one (“Instr”) 

features instrumented EIC scores, using the gravity-based procedure described in 
“Section Econometric model”. Finally, in the third one (“Lag”), we augment the “Base” 
specification with a pcGDP lag, as in Eq. (9).

We present regression results using forest plots (Lewis and Clarke 2001), where the 
x-axis shows estimated coefficients η̂ and bars around the estimates are 95% confi-
dence intervals (see “Appendix 2” for traditional regression tables).

As Figs.  4 and 5 show, country centrality in the MMN generally appears to significantly 
boosts pcGDP, net of all other determinants. Note that η̂ estimates are generally positive and 

Fig. 3  Correlation between centrality indicators. a Pearson correlation plot of weighted EIC scores (upper 
diagonal elements) and binary EIC scores (lower diagonal elements). b Correlation plot of weighted EIC ranks 
(upper diagonal elements) and binary EIC ranks (lower diagonal elements). Axes: {T_year,M_year,F_year} 
identify the layer-year pair, where {T,M,F} stand for trade, migration and finance layer and ‘year’ ranges in 
2000, 2005, 2010, 2015, 2020. c Scatter plot in year 2020 of weighted EIC percentage country ranks. d Scatter 
plot in year 2020 of binary EIC percentage country ranks. X-axis: Country rank in the trade layer. Y-axis: Country 
rank in the migration layer. Color scale: Country rank in the finance layer. Labels: Country 2-digit ISO codes
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significant not only in the baseline specification (top panels), but also when potential endoge-
neity endogeneity (mid panels) and when possible autocorrelation in pcGDP is accounted for 
(lower panels). The positive impact of EIC mostly occurs in capital (finance) and goods (trade) 
markets, whereas in the permanent-migration network is weaker—or sometimes statistically 
different from 0 in certain specifications—and is stronger when centrality is computed in 
weighted networks than in their binary counterparts.

We shall go back to discuss differences in estimation results in “Section Discussion 
and conclusions”. Now, we turn to three sets of robustness checks.

To begin with, we replace country centrality scores, which were separately com-
puted on the trade, migration and finance layers and then inserted in the regression 
either separately or jointly, with a single eigenvector country-centrality score com-
puted on the MMN. We do so in three different ways. In the first case, we compute 
EIC centrality scores and ranks on an aggregated network obtained by averaging out 
individual-layer link weights to get:

This procedure combines the MMN into a single-layer network and may end up in add-
ing links with respect to the original layers if, for example, any two countries are not 

(10)h̃ijt =
1

3
(hTijt + hMijt + hFijt).

Fig. 4  Regression Results. Forest plots for the estimated coefficients of weighted centrality scores 
(W-EIC). Trade layer (T) in red. Migration layer (M) in green. Finance layer (F) in blue. Models: Base=Baseline 
specification; Instr=Gravity-instrumented networks; Lag=Lag of dependent variable included; Jointly=All 
three EIC scores within the covariates; Sep=Three separate regressions each including only one of the three 
EIC scores. Bars represent 95% confidence intervals for the estimated coefficient
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linked in at least one layer but they are in the remaining ones. Therefore, the correspond-
ent binary projection, where links are defined as ãijt = 1 if h̃ijt > 0 (and zero otherwise) 
may therefore also differ from multi-layer slices. In the second case, we consider, both 
in the weighted and binary case, the three EIC country scores and perform a principal-
component analysis, taking the first component and consider that as the EIC score vec-
tor to insert in panel regressions. In the third case, we simply take the arithmetic average 
of the three EIC country scores. In all three cases, the vector Cit in Eq. 7 will feature a 
single variable, i.e. the aggregate country EIC score. Results are summarized in the for-
est plot of Fig. 6. Our main findings seem to be preserved. Again, both in the binary and 
weighted case, country centrality appears to significantly and positively affect pcGDP.

The second set of robustness exercises addresses the potential spatial dependence in 
pcGDP data (Fawaz and Rahnama-Moghadamm 2019). Indeed, being our observation 
world countries, it may be the case that their cross-section income distributions display 
some spatial correlation, which may bias our estimates. To check if this is the case, we fit 
Eq. (7) with a spatial-error model (SEM) by imposing that the errors read:

(11)ǫit = �

N
∑

k=1

mikǫit + νit ,

Fig. 5  Regression Results. Forest plots for the estimated coefficients of binary centrality scores (B-EIC). Trade 
layer (T) in red. Migration layer (M) in green. Finance layer (F) in blue. Models: Base=Baseline specification; 
Instr=Gravity-instrumented networks; Lag=Lag of dependent variable included; Jointly=All three EIC scores 
within the covariates; Sep=Three separate regressions each including only one of the three EIC scores. Bars 
represent 95% confidence intervals for the estimated coefficient
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where M = {mik} is the spatial-weight matrix, which is assumed to be time invariant, 
and νit are i.i.d. disturbances. The choice for a SEM is justified as both dependent and 
independent variables can be spatially autocorrelated, which may jointly induce spatial 
dependence in the residuals. As to spatial weights, we experiment with two alternatives: 
(i) M is defined as in terms of a binary contiguity matrix (i.e. entries are equal to 1 if any 
two countries share a border); (ii) entries in M are equal to the inverse of the log of pop-
ulation-weighted geographical distance. Notice that population-weighted geographical 
distance was used above, when addressing potential endogeneity with a gravity-model 
approach, as an exogenous regressor that may be useful in improving predictions of 
link weights and existence. Instead, in this case, contiguity and distance are employed 
to build spatial-weight matrices, and hence modeling errors, with the aim of exploring 
possible estimation biases related to spatial dependence. Both country contiguity and 
geographical distance are retrieved from data discussed in Mayer and Zignago (2011). 
Before estimating Eq. (11), we compute Moran’s I statistic on the residuals of our base-
line regressions, observing throughout a statistically-significant, strong rejection of the 
null hypothesis of spatial independence, with p values way smaller that 0.001 in all set-
ups and specifications. Forest plots in Figs. 7 and 8 summarize our estimation results. 
Notice first that the positive and statistically-significant impact of centrality on pcGDP 

Fig. 6  Regression Results for multi-network EIC. Forest plots for the estimated coefficients of binary 
and weighted multi-network centrality scores. PCA: Country centrality scores computed using a 
principal-component analysis over the three layers. Mean: Country centrality scores computed by averaging 
out EIC scores of the three layers. Aggr: Country centrality scores computed on the aggregated network 
obtained by summing up layer-level link weights. Trade layer (T) in red. Migration layer (M) in green. Finance 
layer (F) in blue. Bars represent 95% confidence intervals for the estimated coefficient
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is preserved, especially in the trade and finance layers, both in the case of weighted and 
binary EIC scores. The point estimate of centrality in the migration layer is still posi-
tive but confidence bands enlarge and cross the zero axis, indicating a statistically weak 
impact. On the contrary, accounting for spatial correlation makes much more precise 
estimates in the trade and finance layers, in particular as far as the weighted centrality 
scores are concerned. Finally, as regression tables in “Appendix 2” show, the estimate for 
the spatial coefficient � in Eq. (11) turns out to be always statistically significant, con-
firming the importance of spatial effects in our data.

In the third set of robustness checks, we investigate whether, net of local measures 
of country centrality, global country exposure still exerts a positive and statistically-
significant impact on country pcGDP. The rationale of these additional exercises 
stems from the observation that node degree (ND) and node strength (NS) (Barrat 
et al. 2004) may be interpreted as proxies of local country exposure, in line with our 
discussion on country openness indicators in “Section Econometric model”. However, 
unlike openness—which is computed as a share of country GDP or population and 
thus discounts size effects—degrees and strengths may simply capture, extensively 
and intensively, the extent to which a country is open to direct neighbors in terms 
of the number of channels through which spillovers may be locally transmitted, and 

Fig. 7  Regression Results. Forest plots for the estimated coefficients of weighted centrality scores with 
spatial-error models. Cont: Spatial weights modeled using country contiguity. InvD: Spatial weights modeled 
using inverse of logged geographical distance. Join: All three EIC scores enter jointly in the regression. Sep: 
Each EIC score enters separately in the regression. Trade layer (T) in red. Migration layer (M) in green. Finance 
layer (F) in blue. Bars represent 95% confidence intervals for the estimated coefficient
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their total intensity, as ND and NS are not rescaled by country economic or demo-
graphic size. Furthermore, contrary to country openness, in our networks ND and NS 
are positively, although not strongly, correlated with the correspondent binary and 
weighted EIC statistics.11 This is expected, as all our layers are relatively dense net-
works, wherein the number and intensity of first-order connection already controls for 
a share of node centrality. However, since the international networks of trade, migra-
tion and finance (as defined in this paper) are characterized by a marked binary and 
weighted disassortativity12 and right-skewed ND/NS distributions, higher-order link-
ages may convey global importance to countries holding a small number of first-order 
interactions. In other words, there may be countries with small ND or NS that are able 
to acquire some global importance in terms of their EIC scores due to indirect linkages 
(and the other way around), as suggested by the high but not very large Pearson cor-
relation coefficients between ND/NS and binary/weighted EIC scores.

Therefore, despite some potential multicollinearity issues may arise, we run two sets 
of regressions. Using the baseline specification with layer-specific network covariates 

Fig. 8  Regression Results. Forest plots for the estimated coefficients of binary centrality scores with 
spatial-error models. Cont: Spatial weights modeled using country contiguity. InvD: Spatial weights modeled 
using inverse of logged geographical distance. Join: All three EIC scores enter jointly in the regression. Sep: 
Each EIC score enters separately in the regression. Trade layer (T) in red. Migration layer (M) in green. Finance 
layer (F) in blue. Bars represent 95% confidence intervals for the estimated coefficient

11  Pearson correlation coefficients range in [0.44,0.63] for the trade layer, [0.37,0.49] for the migration layer, and 
[0.51,0.74] for the finance layer.
12  A network is said to be disassortative if, on average, nodes with a large degree or strength tend to be linked with 
nodes with a low degree or strength. For an analysis of disassortativity of the three layers employed here see Fagiolo et al. 
(2009), Fagiolo and Mastrorillo (2013), Schiavo et al. (2010).
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entering separately, we first replace binary and weighted EIC with ND and NS, respec-
tively. This allows for a preliminary check of whether local exposure alone affects pcGDP. 
Second, we insert in the same regression both ND or NS, together with either binary or 
weighted EIC, in order to investigate if, net of local network exposure, centrality still 
explains pcGDP. Estimated OLS coefficients for ND, NS, binary and weighted EIC are 
summarized in Table 5, where rows (1)-(4) refer to the trade layer, rows (5)-(8) to the 
migration layer, and rows (9)-(12) to the finance layer; and single lines within each 4-row 
block represent different regressions. Results show that local country-network exposure 
are almost always not significant and, when they are, their coefficient is very small. Once 
both local and global exposure jointly appear in the covariates, country global centrality 
still exerts a positive and statistically-significant impact, much higher in magnitude as 
compared to that coming from local network openness. Finally, notice that this occurs 
net of controlling for country-specific quadratic time trends, which, on the one hand, 
seem to offset local centrality effects modeled using ND or NS, while on the other hand 
still preserve the income-enhancing impact of global centrality indicators. Overall, these 
findings suggest that most of the positive effect of country importance on per-capita 
GDP comes from indirect channels in the diffusion of spillovers across countries.

Directed networks

An important assumption of the present study is the use of undirected networks. Symmetriz-
ing link weights provides indeed a benchmark case that is particularly meaningful whenever, 
as it happens in our data, the frequency of bidirectional links in the original directed network 
is relatively large.13 In fact, reciprocity ratios, computed as the share of all binary directed 
links i → j that are reciprocated (i.e., for which also the directed link j → i does exist), oscil-
late across the years around 0.65 for the trade layer, 0.33 for the migration layer, and 0.40 
for the finance layer. Similarly, the correlation coefficient between upper diagonal and lower 
diagonal entries of weight matrices fluctuates around 0.61 for the trade layer, 0.30 for the 
migration layer (see also the discussion in the last paragraph), and 0.60 for the finance layer. 
This indicates that we are not losing a lot of information by symmetrizing the network.

However, by symmetrizing weights, we are underscoring all those instances wherein 
links exist in both directions, but are characterized by a very uneven magnitude, e.g., 
whenever a very big country interacts with a very small one. In terms of undirected cen-
trality measures, small countries may end up enjoying a higher centrality just because 
the sum of the inward and outward weight is large, but this may not be reflected in an 
even distribution of the inward and outward flow of ideas and/or spillovers.

In this section, we provide therefore some evidence about the impact of country cen-
trality when the underlying networks are modeled as directed graphs. Notice that cen-
trality statistics in directed (weighted) networks must account for the extent to which a 
country is central because it is pointed by (or it point towards) other central countries. 
In other words, in directed networks, node centrality cannot be characterized anymore 
by a single coefficient, as it is the case for undirected networks. A possible solution is to 
employ Kleinberg (hub-authority) centrality (Kleinberg 1998), which attaches two cen-
trality scores to each node, discriminating between nodes that are authorities because 

13  At least as compared to many other real-world graphs such as the interbank network and several biological networks, 
see e.g. Squartini et al. (2013).
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they receive links by hubs, and nodes that are hubs because they point to authorities.14 
As Table  6 shows, both hubs and authorities scores still boost per-capita income. In 
particular, estimated coefficients appear to be rather symmetric, confirming our obser-
vation about the detected large percentage of bidirectional links. If any, being relevant 
authorities (i.e., receiving spillovers from relevant hubs) affects more per-capita GDP 
than being relevant hubs (i.e., sending spillovers to relevant authorities) in both trade 
and migration layers. This result seems to robustly hold in all fitted specifications, where 
hubs and authority scores are inserted as covariates either layer-by-layer or jointly.

Discussion and conclusions
Cross-country spillovers are one of the main drivers of economic growth, and ultimately 
shapes the spatiotemporal distribution of country income. In this paper, we employ 
data about merchandise trade, permanent human migration and international-finance 
linkages, to construct a multi-layer network representing three of the main interaction 
channels through which technological spillovers can be transmitted across world coun-
tries. We are interested in investigating whether country global importance in the multi-
networks of bilateral international relations wherein they are entrenched can explain 
their pcGDP, net of country-specific, time-varying characteristics and common trends. 
Our econometric findings suggest that, robustly across alternative modeling setups and 
specifications, country eigenvector centrality in the MMN significantly boosts country 
income, especially in the trade and finance layers.

Overall, our analysis indicates that “local” country importance—as measured, e.g, by 
country openness indicators—is not necessarily collinear, or strongly and positively corre-
lated, with “global” measures of network centrality. Therefore, in our interpretation, being 
intensively and extensively locally connected in the trade, migration and finance networks 

Table 5  Impact of local country network exposure

Estimated coefficients from regression exercises. ND, Node degree; NS, Node strength. Baseline specification with OLS 
estimator and network statistics of different layers separately entering as covariates. Each row in the table in a distinct 
regression where ND/NS enter either alone or together with EIC variables. B-EIC, Binary EIC; W-EIC, Weighted EIC. 
Significance: *0.10, **0.05, ***0.01

Layer ND NS B-EIC W-EIC N adj R2

Trade (1) 0.001 – – – 870 0.965

(2) – 0.000* – – 870 0.964

(3) 0.000 – 0.172** – 870 0.964

(4) – − 0.001* – 0.245** 870 0.964

Migration (5) 0.000 – – – 870 0.965

(6) – 0.001 – – 870 0.965

(7) − 0.002 – 0.277* – 870 0.965

(8) – 0.003 - 0.302* 870 0.964

Finance (9) 0.002* – – – 870 0.964

(10) – 0.002* – – 870 0.964

(11) 0.001* – 0.068** – 870 0.965

(12) – 0.001* – 0.424*** 870 0.965

14  Our interpretative framework (see “Section  A simple interpretative framework”) can be extended to weighted 
directed networks in a straightforward way, for example by letting the technical-progress coefficient φi be equal to the 
product of two parameters, separately controlling for inward and outward centrality. If country inward (respectively, 
outward) centrality depends on a linear combination of country outward (respectively, inward) centrality—with weights 
being the entries of the matrix W—per-capita output shall positively depend on Kleinberg authority and hubness scores.
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does not automatically imply absorbing more technological spillovers. What our analysis 
shows is that countries become more exposed to foreign influence, and therefore increase 
their income, if they are connected with partners that are in turn globally important in the 
MMN because they hold the “right” linkages. As a consequence, network centrality indi-
cators, such as EIC, can better proxy global country exposure to technological spillovers 
and better predict the spatiotemporal distribution of country income.

From a policy perspective, the income-enhancing effect of country centrality sug-
gests that planners should steer for the country to improve her position in the global 
networks where she is embedded in, by strategically favoring the creation of links with 
important nodes in the network. In particular, countries should push for a strategic 
selection of their extensive margins and for a careful, rather than a blind, expansion of 
their intensive margins. Indeed, our empirical evidence suggests that country per-capita 
GDP increases as global country centrality improves. This can be achieved by favoring, 
extensively and intensively, those linkages that are more conducive in terms of possi-
ble spillovers, i.e. connections with other globally central countries. In that respect, an 
interesting extension of the present work would be to investigate if country centrality in 
the MMN affects also country GDP growth, in addition to country income levels.

As mentioned, one possible channel through which global exposure can affect per-
capita GDP is technological diffusion. However, our results may be interpreted in alter-
native ways, since a deeper integration in trade, migration and portfolio investment 
networks may affect, e.g. the credibility of the exchange rate regime, the financing capac-
ity of companies, or the institutional pressure exerted by migrants to improve public 
and private governance. Therefore, more work is needed to dig into different channels at 
work in the detected empirical relationships.

As to the choice of the eigenvector-based Bonacich centrality indicator, the utterly 
simple theoretical framework presented in “Section  A simple interpretative framework” 
provides some support to use it as our primary measure of global country importance. 
Furthermore, in (weighted) undirected networks, there is no real gain in using other 

Table 6  Estimated coefficients from regression exercises where country centrality is computed with 
hubs and authority scores (Kleinberg 1998) and layers are modeled as weighted directed networks

OLS estimates for the model in Eq. (7). Each row in the table in a distinct regression specification. Significance: *0.10, **0.05, 
***0.01

Specs Trade Migration Finance

Authorities Hubs Authorities Hubs Authorities Hubs

(1) 0.231** – – – – –

(2) – 0.134* – – – –

(3) 0.190** 0.126* – – – –

(4) – – 0.079* – – –

(5) – – 0.028* – –

(6) – – 0.067* 0.032* – –

(7) – – – – 0.125**

(8) – – – – 0.125**

(9) – – – – 0.127** 0.128*

(10) 0.228** 0.052** – 0.119**

(11) – 0.133* – 0.026 – 0.124**

(12) 0.179** 0.128** 0.032* 0.021* 0.125** 0.121**
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eigenvector-based indicators, as Table 3 clearly shows for Katz centrality. Of course, other 
global centrality measures that are not eigenvector based can be considered. For exam-
ple, node betweenness (Freeman 1977) can in principle be a good candidate to capture 
global spillovers effects, as it counts the number of shortest paths going through each 
country. However, it is well-known that node betweenness is unambiguously defined only 
for binary networks (Opsahl et al. 2010). Studying the impact of country betweenness on 
pcGDP only in binary layers would have limited the scope of our analysis, also in view of 
the important difference between intensive and extensive margins that we have detected 
throughout. Computing node betweenness on weighted links, requires one to choose 
both the functional form used to transform weights in costs, and the function that aggre-
gates link weights along a shortest path. Since results are often heavily dependent on those 
choices, we have preferred to postpone the exercise of playing with additional degrees of 
freedom in the formulation of a weighted betweenness indicator to a future analysis.

A critical choice made in the paper was about the data employed to empirically describe 
the three main channels through which technological spillovers may be transmitted across 
countries. To begin with, we believe that focusing on trade, migration, and finance is a good 
starting point, as those three dimensions represent the most important economic channels as 
far as international relations are concerned. However, alternative network data may be consid-
ered to better proxy the extent to which those channels are able to facilitate spillover diffusion. 
For example, employing data about international trade in services (U.S. International Trade 
Commission 2023) could complement the analysis that so far has considered commodity 
trade only. Similarly, data on temporary migration for business purposes (Fagiolo and Santoni 
2015), migration of scholars (Sanliturk et al. 2023), cross-border patents (Burnel and Zylkin 
2022), or air-fight traffic (ICAO 2023), may better proxy both intensive and extensive margins 
of linkages vehiculating (technological) spillover effects through the exchange of ideas.

The choice of using total-portfolio investment (TPI) to proxy the effects from the financial 
layer is perhaps the most questionable one. Indeed, it is well-known that TPI volumes are typi-
cally smaller, more volatile and shorter in horizon than those for other types of country invest-
ment such as foreign-direct investment (FDI), which would have been a more natural proxy 
to capture technological transfers or other spillover channels. The reason why we chose TPI 
in this study is twofold. On the one hand, TPI data have been widely employed in the com-
plex-network literature in the past and the topological properties of TPI networks (aka the 
International Financial Network, IFN) are well understood [cf., e.g., Refs. Schiavo et al. (2010), 
Chinazzi et al. (2013), Korniyenko et al. (2018)], among others), as it happens for the two other 
layers used in this analysis. Conversely, the topological properties of the international FDI net-
work and their evolution have been much less explored15, and a substantial amount of work 
is still required to make existing databases (United Nations Conference on Trade and Devel-
opment 2023; The International Monetary Fund 2023; Dueñas et al. 2017) comparable and 
study their topological properties. Therefore, using TPI as a first approximation allows us to 
focus on our main working hypothesis while disregarding a necessary and preliminary net-
work analysis.

Of course, one of the first points in our agenda is to properly incorporate data about 
country centrality in additional country financial-interaction layers, such as cross-bor-
der FDI, and also bank lending (Bank for International Settlements 2023; Cerutti and 

15  An example focusing on the international merger and acquisition network is in Ref. Dueñas et al. (2017).
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Zhou 2017). Combining all those data sources in a higher-dimensional MMN, where the 
number of layers increases in all the three original dimensions (trade, people, finance), 
may allow one to better characterize—and assess the relative importance of—the differ-
ent channels through which spillovers can flow among countries (Bonaccorsi et al. 2019).

This might be particularly important as far as the flow of ideas via geographical relo-
cation of people is concerned. Indeed, our econometric exercises indicate that country 
centrality in the migration layer impacts income more weakly, and sometimes in a statis-
tically not significant way. Whether this is a robust results or not is an open question, as 
it may be the case that data on permanent migration employed here are not able to fully 
capture the contribution of human resettling in the process of ideas diffusion. Besides, 
permanent-migration data, unlike, e.g., those for temporary migration and cross-border 
patents, are available only at five-year intervals and are more persistent over time, which 
may in principle constrain the analysis and result in a weaker explanatory power.

Finally, several additional exercises may help in obtaining more robust results and 
extending our analyses. For example, one might further explore issues related to reverse-
causation endogeneity issues in our econometric specifications by fitting models with 
GMM estimators (Arellano and Bond 1991). Besides, with new data allowing for a longer 
time span and more waves (e.g., yearly observations), one may better investigate persis-
tency issues in the relation between centrality and income. Indeed, if diffusion in the mac-
roeconomic network is a gradual process, it can take time for spillovers to percolate across 
the system. Therefore, country global exposure may be better proxied by adding among 
covariates lagged EIC terms. In addition, one might exploit the well-known decomposition 
of some eigenvector-based centrality measures—such as Katz (Alpha) centrality—into the 
sum of powers of the weight or adjacency matrix to dig further into the contribution to 
country income coming from nodes that are connected through walks of increasing length.

Appendix 1: Choropleth maps (year 2020)
See Figs. 9, 10 and 11.

Fig. 9  Choropleth map for the trade layer in year 2020. Only top 1% link weights are shown. Link thickness is 
proportional to link weights and node size is proportional to country weighted eigenvector centrality in the 
full layer network



Page 25 of 31Fagiolo and Luzzati ﻿Applied Network Science            (2023) 8:59 	

Fi
g.

 1
0 

C
ho

ro
pl

et
h 

m
ap

 fo
r t

he
 m

ig
ra

tio
n 

la
ye

r i
n 

ye
ar

 2
02

0.
 O

nl
y 

to
p 

1%
 li

nk
 w

ei
gh

ts
 a

re
 s

ho
w

n.
 L

in
k 

th
ic

kn
es

s 
is

 p
ro

po
rt

io
na

l t
o 

lin
k 

w
ei

gh
ts

 a
nd

 n
od

e 
si

ze
 is

 p
ro

po
rt

io
na

l t
o 

co
un

tr
y 

w
ei

gh
te

d 
ei

ge
nv

ec
to

r c
en

tr
al

ity
 in

 th
e 

fu
ll 

la
ye

r n
et

w
or

k



Page 26 of 31Fagiolo and Luzzati ﻿Applied Network Science            (2023) 8:59 

Fi
g.

 1
1 

C
ho

ro
pl

et
h 

m
ap

 fo
r t

he
 fi

na
nc

e 
la

ye
r i

n 
ye

ar
 2

02
0.

 O
nl

y 
to

p 
1%

 li
nk

 w
ei

gh
ts

 a
re

 s
ho

w
n.

 L
in

k 
th

ic
kn

es
s 

is
 p

ro
po

rt
io

na
l t

o 
lin

k 
w

ei
gh

ts
 a

nd
 n

od
e 

si
ze

 is
 p

ro
po

rt
io

na
l t

o 
co

un
tr

y 
w

ei
gh

te
d 

ei
ge

nv
ec

to
r c

en
tr

al
ity

 in
 th

e 
fu

ll 
la

ye
r n

et
w

or
k



Page 27 of 31Fagiolo and Luzzati ﻿Applied Network Science            (2023) 8:59 	

Appendix 2: Regression tables
See Tables 7, 8, 9, 10 and 11.

Table 7  Panel regression exercises

Baseline Specification. Estimation results. Significance: *0.10, **0.05, ***0.01

Dependent Variable: pcGDP. Weighted EIC

 Setup Network Coeff Std Err p value Stars N adj R2

Separately Trade 0.112 0.045 0.013 ** 870 0.965

Migration 0.057 0.031 0.067 * 870 0.964

Finance 0.29 0.106 0.007 *** 870 0.965

Jointly Trade 0.111 0.045 0.014 ** 870 0.966

Migration 0.049 0.028 0.079 * 870 0.966

Finance 0.289 0.106 0.007 *** 870 0.966

Dependent Variable: pcGDP. Binary EIC

 Setup Network Coeff Std Err p value Stars N adj R2

Separately Trade 0.097 0.041 0.018 ** 870 0.964

Migration 0.008 0.004 0.074 * 870 0.964

Finance 0.185 0.083 0.028 ** 870 0.965

Jointly Trade 0.097 0.042 0.021 ** 870 0.965

Migration 0.006 0.004 0.092 * 870 0.965

Finance 0.186 0.083 0.027 ** 870 0.965

Table 8  Panel regression exercises

Gravity-Instrumented Networks. Estimation results. Significance: *0.10, **0.05, ***0.01

Dependent Variable: pcGDP. Weighted EIC, Gravity-Instrumented Networks

 Setup Network Coeff Std Err p value Stars N adj R2

Separately Trade 0.11 0.044 0.014 ** 870 0.965

Migration 0.075 0.042 0.076 * 870 0.964

Finance 0.289 0.106 0.007 *** 870 0.965

Jointly Trade 0.107 0.045 0.018 ** 870 0.966

Migration 0.061 0.033 0.069 * 870 0.966

Finance 0.287 0.105 0.007 *** 870 0.966

Dependent Variable: pcGDP. Binary EIC, Gravity-Instrumented Networks

 Setup Network Coeff Std Err p value Stars N adj R2

Separately Trade 0.096 0.040 0.018 ** 870 0.964

Migration 0.021 0.012 0.082 * 870 0.964

Finance 0.186 0.084 0.029 ** 870 0.965

Jointly Trade 0.095 0.042 0.026 ** 870 0.965

Migration 0.005 0.003 0.079 * 870 0.965

Finance 0.185 0.084 0.029 ** 870 0.965
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Table 9  Panel regression exercises

Lag of pcGDP included. Estimation results. Significance: *0.10, **0.05, ***0.01

Dependent Variable: pcGDP. Weighted EIC, Lag of pcGDP included

 Setup Network Coeff Std Err p value Stars N adj R2

Separately Trade 0.073 0.037 0.052 * 695 0.973

Migration 0.09 0.049 0.068 * 695 0.973

Finance 0.388 0.115 0.001 *** 695 0.975

Jointly Trade 0.066 0.036 0.067 * 695 0.975

Migration 0.067 0.038 0.079 * 695 0.975

Finance 0.381 0.113 0.001 *** 695 0.975

Dependent Variable: pcGDP. Binary EIC, Lag of pcGDP included

 Setup Network Coeff Std Err p value Stars N adj R2

Separately Trade 0.085 0.049 0.086 * 695 0.973

Migration 0.026 0.015 0.077 * 695 0.972

Finance 0.282 0.099 0.005 *** 695 0.974

Jointly Trade 0.097 0.054 0.076 * 695 0.975

Migration 0.022 0.012 0.079 * 695 0.975

Finance 0.294 0.100 0.004 *** 695 0.975

Table 10  Panel regression exercises

Multi-Graph Centrality. Estimation results. Significance: * 0.10, ** 0.05, *** 0.01

Dependent Variable: pcGDP. Multi-Graph Weighted EIC

 EIC Coeff Std Err p value Stars N adj R2

PCA 0.035 0.015 0.017 ** 870 0.965

Mean 0.352 0.112 0.002 *** 870 0.965

Aggr 0.157 0.060 0.01 ** 870 0.965

Dependent Variable: pcGDP. Multi-Graph Binary EIC

 EIC Coeff Std Err p value Stars N adj R2

PCA 0.019 0.011 0.085 * 870 0.964

Mean 0.188 0.094 0.047 ** 870 0.965

Aggr 0.073 0.042 0.082 * 870 0.964

Table 11  Panel regression exercises. Spatial Error Models. Estimation results. Significance: * 0.10, ** 
0.05, *** 0.01

Dependent Variable: pcGDP. Contiguity spatial weights, Weighted EIC

 Setup Network Coeff p value Stars Lambda Std Err

Separately Trade 0.098 0.003 *** 0.339*** 0.033

Migration 0.02 0.091 * 0.341*** 0.012

Finance 0.23 0.001 *** 0.334*** 0.069

Jointly Trade 0.098 0.003 *** 0.325*** 0.033

Migration 0.017 0.088 * 0.325*** 0.010

Finance 0.233 0.001 *** 0.325*** 0.070
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