
Journal of Systems Architecture 156 (2024) 103283

A
1
n

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A convolutional autoencoder architecture for robust network intrusion
detection in embedded systems
Niccolò Borgioli a,∗, Federico Aromolo a, Linh Thi Xuan Phan b, Giorgio Buttazzo a

a Scuola Superiore Sant’Anna, Pisa, Italy
b University of Pennsylvania, Philadelphia, USA

A R T I C L E I N F O

Keywords:
Intrusion detection
Artificial neural networks
Autoencoder
Unsupervised learning
Poisoning robustness
Explainable AI

A B S T R A C T

Security threats are becoming an increasingly relevant concern in cyber–physical systems. Cyber attacks on
these systems are not only common today but also increasingly sophisticated and constantly evolving. One way
to secure the system against such threats is by using intrusion detection systems (IDSs) to detect suspicious
or abnormal activities characteristic of potential attacks. State-of-the-art IDSs exploit both signature-based and
anomaly-based strategies to detect network threats. However, existing solutions mainly focus on the analysis
of statically defined features of the traffic flow, making them potentially less effective against new attacks that
cannot be properly captured by analyzing such features. This paper presents an anomaly-based IDS approach
that leverages unsupervised neural models to learn the expected network traffic, enabling the detection of
unknown novel attacks (as well as previously-known ones). The proposed solution uses an autoencoder to
reconstruct the received packets and detect malicious packets based on the reconstruction error. A careful
optimization of the model architecture allowed improving detection accuracy while reducing detection time.
The proposed solution has been implemented on a real embedded platform, showing that it can support modern
high-performance communication interfaces, while significantly outperforming existing approaches in both
detection accuracy, inference time, generalization capability, and robustness to poisoning (which is commonly
ignored by state-of-the-art IDSs). Finally, a novel mechanism has been developed to explain the detection
performed by the proposed IDS through an analysis of the reconstruction error.
1. Introduction

As the reliance on networked systems in cyber–physical systems
(CPS) continues to increase, so does the number of cyberattacks target-
ing these systems. To ensure that these systems are safe, it is important
to be able to detect and respond to such attacks in real time. One way
to accomplish this is by using intrusion detection systems (IDSs), which
can identify network anomalies that may indicate the presence of an
attack.

Modern network intrusion detection techniques typically use
signature-based and anomaly-based strategies. The former rely on
predefined rules or signatures for attack detection, which is efficient
and works well for known attacks, but can easily be bypassed by
attackers who use new or modified attack methods. The latter are
often slower but better suited for detecting new attacks, since they
do not require any prior knowledge of the malicious traffic. Existing
work on this front primarily focuses on analyzing a predefined set of
statistical features extracted from the network packet flow [1–10]. By
using a fixed number of features, usually between 30 and 100, one can

∗ Corresponding author.
E-mail address: borgioli.niccolo@gmail.com (N. Borgioli).

reduce the computational complexity of the problem and thus increase
detection speed. However, the main drawback of this approach is that
an attacker could craft a specifically tailored adversarial packet taking
into account these features to bypass detection [11].

In order to improve the detection performance of network IDS,
many techniques based on machine learning (ML) have been pro-
posed in recent years, leveraging different kinds of artificial neural
networks [1,2]. Such techniques follow either the supervised or unsu-
pervised learning paradigm. With supervised learning, a neural network
is trained to recognize malicious traffic using a labeled dataset. Su-
pervised learning requires labeling each data sample used to train the
neural network, which typically contains millions of packets. Labeling
datasets of this size is an expensive and time-consuming process. Fur-
thermore, techniques based on supervised learning are susceptible to
new categories of attacks that were not covered in the dataset used
to train the network; as a result, they require frequent retraining to
ensure effective detection performance over time. In contrast, with
unsupervised learning, the neural network is trained to recognize the
https://doi.org/10.1016/j.sysarc.2024.103283
Received 1 February 2024; Received in revised form 14 August 2024; Accepted 20
vailable online 28 September 2024
383-7621/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
September 2024

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
mailto:borgioli.niccolo@gmail.com
https://doi.org/10.1016/j.sysarc.2024.103283
https://doi.org/10.1016/j.sysarc.2024.103283
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
expected behavior of the network traffic and detect deviations from
such a behavior, without the need for a labeled dataset.

In this paper, unsupervised learning is exploited to develop a new
generation of IDSs that are capable of detecting general and new kinds
of network attacks (including zero days) without using fixed features.
The idea is to train a 1D convolutional autoencoder to reconstruct
packets coming from normal network traffic; then, at runtime, the
autoencoder is used to reconstruct the received packets and detect
anomalies and malicious packets based on the reconstruction error.
Unlike existing work, our approach uses the full packet as input, thus
allowing for a more in-depth analysis that makes it more difficult for an
attacker to avoid detection. Moreover, our solution not only improves
the detection accuracy, but also reduces the detection time. Hence,
while most of the existing works mainly focus on deploying the IDS on
high-performance servers, our solution can effectively be deployed on
embedded edge devices in the context of cyber–physical applications.

To evaluate the effectiveness of the proposed architecture in
resource-constrained CPS, we conducted an extensive experimental
evaluation on real embedded devices using a dataset of real-world
network traffic. The results demonstrate that the proposed solution can
reliably detect new attacks with high accuracy, outperforming existing
methods [9,12] in detecting a variety of common attack types. The
capability of the proposed approach to detect network attacks in an
unsupervised manner, without the need for labeled data, makes it a
valuable tool for safeguarding CPS against security threats.

A challenge in designing an IDS for cyber–physical systems is real-
time detection: not only the system should be able to accurately detect
a broad range of attacks, but it should do so in a timely fashion.
As a first step towards this goal, this paper presents extensive exper-
iments evaluating the timing properties of the proposed system on
resource-constrained embedded devices commonly used in CPS, both
with and without GPU acceleration. Such an understanding provides
useful insight for optimizing the real-time performance of the IDS.

This work also presents a way to improve inference throughput by
performing the inference of multiple packets in parallel (via packet
batching). To optimize the performance of the networking stack, mod-
ern network interfaces implement the New API (NAPI) mechanism,
which is intended to reduce the overhead of packet receiving. The
idea of such a mechanism is to defer incoming message handling until
a sufficient number of packets is received, so that they can all be
processed at once, thus reducing the overhead due to interrupts. This
work leverages such a mechanism to perform inference on batches of
packets and studies the effect of batch size on the achieved throughput
and latency. The experimental results show that using batching during
inference can substantially increase the bandwidth supported by the
proposed IDS up to 1 Gbps with a limited increase in the introduced
latency.

Although machine learning models can learn to recognize patterns
and make predictions based on large amounts of data, they can be
vulnerable to attacks by malicious actors who introduce poisoned data
into the training dataset. This can cause the network to learn incorrect
or biased patterns, leading to inaccurate predictions that could be
exploited by the attacker. Therefore, it is important for a learning-based
IDS to be robust against dataset poisoning to ensure the reliability and
safety of their predictions in real-world applications. Unfortunately,
this is not adequately accomplished in many existing solutions: for
instance, Nkashama et al. [13] showed that contaminating just 5% of
the training set can disrupt the detection capabilities of several existing
IDS approaches, causing a very significant loss in accuracy. On the
contrary, this work addresses such an issue by introducing random
noise in the input during the training phase. Thanks to this counter-
measure, the network not only better learns the features of the packets
(thus enhancing its detection capability), but also greatly improves its
robustness to dataset poisoning, making the proposed approach almost
invulnerable to this kind of attack. This also broadens the practical

applicability of the proposed models, as they can be trained directly

2
in the actual deployment setting without a need for a fully controlled
training environment.

Explaining the decisions taken by machine learning models is still
an open challenge. Thus, explainable AI (XAI) methods have been
investigated in recent years to enhance the transparency and inter-
pretability of machine learning systems. In this work, we introduce
a novel heatmap-based mechanism exploiting the reconstruction error
to help visualizing why a specific packet has been classified either
as normal or malicious. Using this methodology is not only useful to
validate the model correctness, but can also give useful insights about
how a novel attack might work.

Contributions. In summary, the paper makes the following novel
contributions:

• It proposes a method for detecting network attacks based on
unsupervised learning;

• It evaluates the accuracy and inference time of the proposed
model on an implementation for a real edge platform under
different realistic configurations;

• It compares the performance of the proposed model with state-of-
the-art IDSs;

• It evaluates the robustness of the proposed technique to dataset
poisoning; and

• It proposes an explainability method to understand the detection
decisions.

Paper organization. Section 2 provides an overview of the related
work and the datasets considered in the paper; Section 3 presents the
proposed IDS method; Section 4 presents the experiments performed
to assess the accuracy, timing performance, poisoning robustness and
explainability of the proposed system, and the comparison with state-
of-the-art methods; Section 5 provides a discussion of the experimental
results; and, finally, Section 6 presents some concluding remarks and
directions for future work.

2. Related work

This section begins with an overview of existing datasets, including
the one selected for the design and evaluation of the proposed ap-
proach, and then discusses the state-of-the-art of related IDS techniques
based on neural networks.

2.1. Datasets

Towards a general IDS that is capable of detecting novel attacks
in real time, we evaluated several existing datasets for both training
and testing our models. Since our goal is to develop a packet-based
IDS to be deployed on each edge device of a network, we targeted a
dataset that provides raw network packet captures (pcap files) collected
from different network nodes. In the proposed approach, unsupervised
learning is used to train the network using benign packets only so that
it can learn to detect anomalies in the presence of malicious packets.
We considered the following existing datasets, which cover a range of
representative use case scenarios for different environments and are
widely used in literature to assess IDSs performances: NSL-KDD [24],
UNSW-NB15 [25], CIC-IDS2017 [26], X-IIoTID [27], TON_IoT [28],
and EDGE-IIOTSET [29].

NSL-KDD. This dataset is a rebalanced version of the widely used
KDDCUP’99 [30] dataset (which presented some statistical issues). It
contains about one million single connection vectors, each of which
described by 41 features and labeled as either normal or malicious.
However, this dataset presents some limitations which prevents its
adoption in the present work: (i) it does not provide raw packets, but
just a subset of features describing a connection (a set of packets), and

(ii) the data contained in the dataset were generated more than two

N. Borgioli et al.

b
5
l
w
n
R
d
e

Journal of Systems Architecture 156 (2024) 103283
Table 1
A comparison of the proposed approach with state-of-the-art anomaly-based IDSs. The ‘‘Timing performance’’ column reports whether the method was assessed with respect to
inference time and, if so, shows the order of magnitude of the packet processing latency. The ‘‘Poisoning robustness’’ and ‘‘Explainability’’ columns indicate whether the method
was assessed with respect to dataset poisoning and explainability, respectively.

Work Method Input type Learning
paradigm

Accuracy Timing
performance

Poisoning
robustness

Explainability

Gao et al. [5] DBN Flows features Supervised 93% No No No
Alom et al. [14] DBN Flows features Supervised 97% No No No
Yousefi-Azar et al. [6] Autoencoder Flows features Unsupervised 83% No No No
Vaiyapuri and Binbusayyis [15] Autoencoder Flows features Unsupervised 92% No No No
Truong-Huu et al. [16] GAN autoencoder Flows features Unsupervised 82% No No No
Kwon et al. [17] CNN vs. LSTM Flows features Supervised 67% No No No
Malaiya et al. [12] LSTM Flows features Supervised 99% No No No
Kathareios et al. [7] Multistage AE Flows features Supervised 90%–98% seconds No No

Andreas et al. [18] BLSTM Flows features vs.
packets features

Supervised 76%–96% No No No

Dromard et al. [8] Algorithm Flows features Supervised 93% No No No
Alam et al. [19] Autoencoder Flows features Unsupervised 92%–95% microseconds No No

Carrera et al. [20] Mix Flows features Unsupervised 80%–90% milliseconds-
seconds

No No

Mirsky et al. [9] Ensemble autoencoders Flows features Unsupervised 24%–98% milliseconds No No
Tekiner et al. [10] Various classifiers Flows features Supervised 99%a No No No
King et al. [21] GNN Flows features Unsupervised 97%a seconds No No
Roy et al. [22] DNN Flows features Supervised 99% No No Yes
Mane et al. [23] DNN Flows features Supervised 96% No No Yes
This work LSTM and 1D CNN AE Full packets Unsupervised 99% milliseconds Yes Yes

a The corresponding accuracy value is not referred to a wide range of attack classes, but only to the specific one considered in the work.
decades ago and are no longer representative of modern network traffic
and attacks.

UNSW-NB15. This dataset contains about 100 GB of collected raw
benign and malicious packet data generated in a controlled simulation
environment. It provides both a labeled CSV file with the extracted flow
features and the raw pcap files recorded during the simulation, along
with a report on each performed attack. However, this dataset provides
only flow labels but not per-packet labels, making it unsuitable for our
purposes.

CIC-IDS2017. This dataset contains raw packet captures of both
enign and malicious packets collected in a controlled network over
days. The dataset is provided both in the form of a CSV file with

abeled flow information and both as raw pcap files with indications of
hen attacks start and end for each day. However, this dataset also does
ot provide per-packet labeling, making it unsuitable for our purposes.
ecent work also discovered several flaws affecting the CIC-IDS2017
ataset in the labeling of packets and in the traffic capture, including
rrors such as duplicate packets and incorrect labeling [31].
X-IIoTID. This dataset contains extracted features related to net-

work traffic, system and application logs, and system resource usage
(e.g., CPU and memory usage). However, this dataset does not provide
raw packet data, which is necessary to perform training and evaluation
of the proposed approach, which is based on leveraging full packet
information.

TON_IoT. This dataset includes data sources of different types in-
cluding IoT services telemetry, operating system logs, and network
traffic captures. The network traffic captures include both normal
and malicious traffic for nine different classes of attack. This dataset
provides both the raw pcap files with the recorded network traffic and
the csv files with selected features based on correlation matrix analysis.

EDGE-IIOTSET. This dataset collects network traffic of a realistic
network composed of more than 10 different types of IoT devices. The
authors collected the traffic generated by each device in a separate pcap
file and performed 14 different types of attacks. The dataset provides
both the raw pcap files and the CSV files with the extracted features
from each packet, along with its label.

Based on the observed characteristics of each of the considered

datasets, we decided to adopt the EDGE-IIOTSET for the present work,

3
not only because it is the only one that provides labeled raw packets,
but also because it considers the widest range of device types (and thus
protocols) along with one of the most recent set of attacks.

2.2. Related work on anomaly-based network IDS

Network IDSs relying on anomaly detection are responsible for
monitoring the network traffic for suspicious and malicious packets.
Unlike traditional signature-based IDSs, network anomaly detection
techniques provide an effective way to detect new types of attacks for
which a defining signature is not yet available for pattern matching.
These techniques typically leverage machine learning (ML) to classify
each packet as either normal or suspicious based on a set of relevant
features characterizing both the packet itself and the flow of data
to which the packet belongs [1,2]. Their classification performance
strongly depends on the quality of the feature selection procedure
carried out on the training set [3,4].

Earlier work on network anomaly detection relies on classification
algorithms such as support vector machines, decision trees, genetic
algorithms, and 𝑘-nearest neighbors (𝑘-NN) algorithms [32]. With the
advent of deep learning, research efforts in network intrusion detection
have shifted towards applying neural architectures to the classification
problem, given their proven effectiveness in general anomaly detection
tasks [1,33]. Common network IDS architectures include Convolu-
tional Neural Networks (CNNs), recurrent neural networks (RNNs),
Long Short-Term Memory Networks (LSTMs), and deep belief networks
(DBNs), often deployed in autoencoder topologies to enable unsuper-
vised learning of packet flow features. Systematic studies on deep
learning methods for network anomaly detection have also been carried
out, for example, by Ahmad et al. [1] and Lansky et al. [2].

Table 1 gives an overview of the related work on ML-based net-
work IDSs. For each considered work, the table reports the detection
technique, the type of input data provided to the IDS (either flow-
based features or full packets), the adopted ML paradigm (supervised or
unsupervised), the achieved detection accuracy, the order of magnitude
of the packet processing latency (if an evaluation of timing performance
was provided), and whether poisoning robustness and explainability

concerns were considered. For comparison, the table also provides a

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
similar summary for the present work, highlighting how it is positioned
with respect to the state of the art. In the following, more details are
provided on these related approaches.

2.2.1. Input and learning paradigm
Gao et al. [5] proposed one of the first network IDS architectures

leveraging deep learning. They applied a DBN to solve the classification
problem, achieving an accuracy of 93%. However, the training was
performed on the KDDCUP’99 packet flow dataset, which presents some
statistical issues and is now considered mostly obsolete [29]. Later,
Alom et al. [14] proposed a similar DBN architecture, trained on a more
recent dataset, and reported an accuracy of 97%.

With the aim of improving the detection accuracy on new types of
attacks, Yousefi-Azar et al. [6] adopted an autoencoder architecture
trained in an unsupervised fashion to generate a reconstruction of
the input traffic flows and discriminate between normal and anoma-
lous traffic based on the reconstruction error. As the approach is
unsupervised, it does not require labeled data or feature selection; how-
ever, the accuracy attained by the method in the related experiments
only reached 83%. Vaiyapuri and Binbusayyis [15] utilized a con-
volutional autoencoder architecture which leverages flow features to
perform classification, achieving accuracy levels of up to approximately
92%. Truong-Huu et al. [16] adopted an unsupervised deep learning
approach that leverages generative adversarial networks (GANs) to
reconstruct network packets, and achieved a similar accuracy level
(82%).

Kwon et al. [17] compared the experimental performance of CNN-
and LSTM-based approaches for network anomaly detection, show-
ing that increasing the number of layers in a CNN topology beyond
a certain depth does not yield an accuracy improvement, and that
LSTM approaches typically perform better. Malaiya et al. [12] fur-
ther explored the performance of LSTM techniques for feature-based
classification, and achieved 99% accuracy. The relative performance
between CNN- and LSTM-based approaches observed in [17] is not
generalizable, however. More recently, Borgioli et al. [34] showed that,
for unsupervised learning anomaly detection, LSTM-based approaches
outperform CNN-based approaches in terms of accuracy, but are much
slower in terms of timing performance. In the present paper, the
proposed convolutional autoencoder model was carefully optimized to
achieve good timing performance and high detection accuracy with
respect to LSTM-based strategies.

More recently, Andreas et al. [18] explored the design and accu-
racy trade-offs between the packet-based and the flow-based anomaly
detection techniques, with reference to a Bidirectional LSTM (BLSTM)
classifier based on either per-packet or flow-related features. In their
experiments, the BLSTM classifier only reached 76% accuracy when
considering per-packet features, while it reached an accuracy of 96%
with flow-based features. Dromard et al. [8] proposed a custom al-
gorithm to extract features from flows to recognize different anomaly
classes based on some signatures, and obtained a classification accuracy
of 93%.

Numerous network anomaly detection solutions focus on analyzing
the network traffic of a whole network by using a dedicated machine
that receives a copy of the whole network traffic from the router.
For example, Tekiner et al. [10] proposed a mechanism to detect
cryptojacking attacks targeting IoT devices by using statistical features
about sequences of 10 packets of the network and testing those features
with different kinds of classifiers. Similarly, King et al. [21] developed
a framework to detect lateral movements using Graph Neural Networks
to encode the topological features of the network traffic before feeding
them to an RNN.

In general, prior work primarily relies on analyzing high-level statis-
tical features that describe the network traffic for detection. In contrast,
our work focuses on network anomaly detection by analyzing the full
contents of each packet. As such, our proposed method requires neither
feature selection during training nor feature extraction at runtime.
While there exist some prior solutions [16,18] that investigated how
to perform detection using the whole packet, they did not achieve the

same level of accuracy as that of the proposed approach.

4
2.2.2. Timing performance
When deploying an IDS in a real environment, especially in CPS

settings, we should not only evaluate the detection capabilities but also
the time required to perform such detection and its implications.

Kathareios et al. [7] developed a multi-stage solution for anomaly
detection and also evaluated the inference time in their experiments.
Their method considers a preprocessing phase to extract features con-
cerning the flow of packets and the overall network traffic. The ex-
tracted features are then used as input to an autoencoder, which
attempts to reconstruct the features as closely as possible. Finally, the
reconstruction error of the features produced by the autoencoder is
used to detect anomalous flows. To contain the amount of false posi-
tives (i.e., normal packets misclassified as malicious packets), a second
detection stage consisting in a classifier was adopted to further analyze
suspicious flows. The proposed method achieved a true positive rate
between 90% and 98%, with a 2% rate of false positives. The authors
also evaluated the inference time of their method, which requires at
least one second per prediction.

Alam et al. [19] proposed a memristor-based autoencoder to per-
form anomaly detection in low-power devices. They first trained the au-
toencoder offline and reached a detection accuracy of 95%. Then, they
converted it for execution in the memristor on the low-power platform
and the resulting accuracy was decreased to 92%. They also analyzed
the impact of the proposed solution in terms of power consumption and
inference time under different working configurations.

Carrera et al. [20] proposed to combine multiple unsupervised
approaches to perform anomaly detection. Evaluations showed that
their proposed solutions achieve an accuracy ranging from 80% to 90%
depending on the different model combinations, and an inference time
of up to 1.18 s.

Mirsky et al. [9] proposed a network IDS technique, named Kitsune,
which leverages an ensemble of shallow autoencoders and an unsu-
pervised learning approach for flow-based anomaly detection. Each
autoencoder in the ensemble analyzes a different set of features to char-
acterize the incoming traffic, and is trained to reconstruct such features
for normal packet streams with low error. Given the reconstruction
errors of each autoencoder, an additional shallow autoencoder serves
as a voting mechanism to determine an overall reconstruction error for
the packet flow. If the resulting error surpasses a given threshold, an
anomalous behavior is reported by the IDS. The features are related to
summary statistics aggregated over packet flows identified by source
MAC address, and source and destination IP address, TCP socket or
UDP socket. A hierarchical clustering algorithm is adopted to determine
a suitable mapping between each flow feature and one of the autoen-
coders in the ensemble. Kitsune’s detection accuracy, however, varies
widely (between 24% and 98%).

The main problem of these solutions is that they either showed very
high inference times (making them impractical on modern embedded
devices) or used high-level statistical network traffic features [7,20,21].
Our work instead presents an analysis of the expected inference time on
a real edge computing platform both with and without GPU accelera-
tion. The achieved results showed that our system can satisfy the typical
timing requirements of the cyber–physical systems while analyzing the
full packet features.

2.2.3. Dataset poisoning
Dataset poisoning is a well-known issue that can be exploited by

adversaries to make any kind of classifier produce false negatives.
Even though such a problem has been known in the literature for
decades [35,36], state-of-the-art IDS are generally not robust against
data contamination. Nkashama et al. [13] investigated this issue for six
modern deep learning algorithms for intrusion detection and showed
that even a small injection of malicious packets (5%) among the benign
ones used for training could destroy the detection capabilities of the
considered solutions. To the best of our knowledge, none of the state-
of-the-art solutions consider dataset poisoning in their evaluation. The
experiments presented in this work also consider the effect of dataset
poisoning, and show that the proposed approach is robust against this

kind of threat.

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
2.2.4. Explainability
Several studies have been conducted to explore the application

of explainable AI techniques for IDS. On this front, Roy et al. [22]
proposed a knowledge graph with ontologies to explain the detected
anomalies and applied the proposed approach to the CIC-IDS2017
dataset. Similarly, Mane et al. [23] combined several explainability
techniques (such as LIME, and SHAP) to generate both local and global
explanations with respect to the features of the NSL KDD dataset.
However, these approaches only provide attempts at the explanation for
the high-level features of flow-based datasets [37]. In contrast, our ex-
plainability method considers the contents of the full packet and allows
to identify which specific parts of the packet are considered malicious.
Overall, as summarized in Table 1, to the best of our knowledge, this
work is the first to perform network intrusion detection by analyzing
full packet data in an unsupervised learning approach with very high
detection accuracy (99%) while also considering timing performance,
dataset poisoning and detection explainability.

3. The proposed real-time network IDS method

This section presents the proposed detection method. Before de-
scribing the model architecture – the core component of our detec-
tion method – we first discuss the considered scenario and the data
preprocessing that guided our model design and training.

3.1. Use cases

In this paper, we considered two possible use case scenarios: an
automotive setting and a network of sensors. In the first case, we
considered the new generation of vehicles, composed of a set of devices
interconnected by an Automotive Ethernet infrastructure. In the second
case, we considered a set of sensors (and actuators) interconnected
through a wireless infrastructure. In both scenarios, each of such de-
vices (in particular if performing critical tasks) is also equipped with
our IDS to protect it from malicious attacks.

In this context, the IDS is fine-tuned directly on the machine on
which it is to be deployed using network traffic acquired live from the
real network.

3.2. Threat model

The adversary considered in this work possesses advanced technical
knowledge and skills, has access to the network traffic and structure,
and can perform attacks from multiple locations in the network, posing
a significant risk to the system’s security. The attackers also know
the neural network adopted in the IDS and the set of input features
received by the neural network to perform the detection. Therefore, the
adversary can properly select attacks that are more difficult to detect
when considering the restricted set of features provided as input to the
neural network.

Additionally, unlike most of the state-of-the-art approaches, we
assume that the adversary could partially manipulate the dataset used
to train the IDS by injecting some malicious packets. The ability to be
resilient to attacks by such a powerful adversary is crucial, as it allows
to perform training in a realistic deployment setting, where it is not
possible to have full control over the network traffic.

3.3. Data preprocessing

As discussed above, our work uses the EDGE-IIOTSET dataset as it
covers a broad range of device types and the most recent set of attacks.

Since packets are provided as byte sequences, before feeding them
to the classifier, we must encode them in an interpretable format.
Because the packet length is highly variable and we want the model to
learn the important features of each packet, we encode each byte as a

floating-point value from 0 to 1, by dividing the 8-bit unsigned integer

5
Fig. 1. Figure showing how a sample input tensor to the network is constructed starting
from an input packet. The original packet (in orange) is padded to reach the size of
the desired input tensor to the network.

representation of each byte by 255. Moreover, the 1D CNN needs the
input tensor to be of fixed size, so we added some padding at the end
of each packet to make it fit the maximum packet size, i.e., 1514 bytes,
based on the standard Maximum Transmission Unit (MTU) for Ethernet.
Fig. 1 shows how the input tensor is constructed starting from an input
packet.

3.4. Model architecture

Autoencoders are a class of unsupervised neural networks composed
of two main components: an encoder and a decoder. The encoder
reduces the dimensionality of the incoming data and produces a com-
pressed representation (encoding) of the input. The decoder performs
the opposite operation by reconstructing the original data with little or
no error starting from the encoding. This way, the autoencoder learns
how to automatically extract relevant features from the input and how
to use such features to reconstruct the original input.

Key idea. Traditional approaches make use of binary classifiers
trained with labeled benign and malicious packets; however, their main
drawback is the low accuracy in the classification of new attacks,
thus requiring continuous retraining of the network to keep it up to
date. Our approach aims at overcoming this limitation by training the
autoencoder with only benign packets. In this way, the autoencoder will
have low reconstruction error on benign packets and high error on
malicious (anomalous) ones. Thus, by analyzing the reconstruction loss
of the packets being analyzed by the system, it is possible to detect
malicious packets (including zero-day attacks) without the need for
retraining. Specifically, if 𝑋 is the input sequence of length 𝑁 and
𝑌 is the reconstructed sequence, the reconstruction loss is defined
as:

𝑙𝑜𝑠𝑠(𝑋, 𝑌) =
𝑁
∑

𝑖=1
|𝑥𝑖 − 𝑦𝑖|, (1)

where 𝑥𝑖 and 𝑦𝑖 are the 𝑖th elements of the 𝑋 and 𝑌 sequences,
respectively. Since in the considered dataset all packets are unen-
crypted, we fed the whole Ethernet frame (𝑋) to the neural net-
work.

In this work, we developed a 1D Convolutional Neural Network Au-
toencoder (1D CNN AE). 1D CNNs are widely used when dealing with
sequences and time series, due to their advantages over conventional
(2D) CNNs. In this kind of networks, the convolutional filter slides
along a single dimension to produce an output. Compared to traditional
fully connected autoencoders, a 1D CNN reduces the number of param-
eters and thus the memory footprint and computational complexity of
the network while improving its accuracy.

A convolutional autoencoder is composed of many convolutional (or
transposed-convolutional) and pooling (or unpooling) layers stacked
one on top of the other (see Fig. 2). To guarantee a correct reconstruc-
tion, the kernels and channel sizes of the decoder stage are symmet-
ric to those of the encoder. When designing a 1D-CNN autoencoder
we must carefully select the hyperparameters (i.e., kernel sizes, stride,
padding, etc.) to ensure that the reconstructed packet has the same size
as that of the input. Moreover, we must also ensure that the resulting

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
Fig. 2. Structure of the proposed 1D CNN Autoencoder.

Table 2
IEEE 802.3 Ethernet frame structure.

Name MAC Dst MAC Src Ethertype Payload CRC

Length (Bytes) 6 6 2 46–1500 4

encoding compresses enough input information to allow the network
to generalize, as well as to correctly reconstruct the packets.

To make the output size equal to the input size, we first need
to compute the output size of each convolutional (and transposed
convolutional) layer.

𝐿𝑜𝑢𝑡 =
⌊

𝐿𝑖𝑛 + 2 ⋅ 𝑝𝑎𝑑 − 𝑑𝑖𝑙 ⋅ (𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1) − 1
𝑠𝑡𝑟𝑖𝑑𝑒

+ 1
⌋

(2)

Eq. (2) provides the output size 𝐿𝑜𝑢𝑡 of a convolutional layer where
𝐿𝑖𝑛 is the input size, 𝑝𝑎𝑑 is the padding size, 𝑑𝑖𝑙 the dilation, 𝑠𝑡𝑟𝑖𝑑𝑒
the stride, and 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 the kernel field size. Repeating this process
for each layer we can make sure that the input and output size of the
network satisfy the requirement.

By analyzing the Ethernet frame structure (Table 2), we observe that
each byte typically carries little or no useful information on its own.
Since most of the information is typically grouped into 6–8 consecutive
bytes, we start by selecting a kernel size for the first convolutional layer
of at least 8. In machine learning, Receptive Field (RF) is defined as
the size of the region in the input that produces the feature. For the
first layer, the RF is given by the kernel size and should be close to
the size of the low-level features that we want such a layer to learn
to extract, so we started exploring the kernel size of the first layer in
the vicinity of 8 and we found that the optimal performance can be
achieved when the kernel size of the first layer is 7. This means that
each group of 7 consecutive bytes will be encoded in one byte (see
Fig. 3(a)). Similar reasoning is repeated also for subsequent layers that,
instead, are in charge of detecting higher-level features based on the
ones extracted by the first layer. This allows subsequent convolutional
layers to gradually reduce the kernel size to gradually extract higher-
level features. To achieve a high compression of the original input,
1D CNN autoencoders typically use pooling layers (see Fig. 3(b)) to
downsample the data. However, from the mathematical point of view,
a pooling (or unpooling) layer can be replaced by a convolutional (or
transposed convolution) layer with stride equal to the pooling size [38].
Thus, since one convolutional layer followed by a pooling layer can
be replaced by a convolutional layer with stride, we can reduce the
number of operations to be performed and improve the inference time.

The decoder part of the autoencoder should ideally perform the
opposite operation of the encoder. Based on this assumption we de-
signed the decoder part using the same kernel size and number of
channels of the corresponding layer in the encoder part. Furthermore,
the architecture utilizes the concept of skip connections (or residual
connections) across the autoencoder bottleneck. These additional con-
nections forward the feature maps from a layer in the encoder to a later
layer in the decoder, with the aim of facilitating packet reconstruction.
Skip connections have been utilized in numerous neural architectures
in various domains, e.g., in the well-known U-Net architecture and its
variants [39–41].

Based on the above observations, we designed from scratch a novel
ANN architecture that can achieve both high detection accuracy and
6
Fig. 3. Diagram showing the behavior of the 1D Convolution and the 1D Pooling
operations, applied to a sample input vector.

low computational overhead. Achieving such objectives required a
careful selection of the architecture and its hyper-parameters. This was
achieved with an extensive design space exploration of the possible
number of layers and their size, guided by the idea of minimizing the
size of the network.

3.5. Training

The proposed approach relies on training the autoencoders with
only benign packets to enhance the generalization capability against
novel malicious attacks. To do so, we divided the available benign
packets into three groups: training set, validation set, and test set.

During the training phase, the network was fed with only benign
samples and the autoencoder weights were updated to learn how to
extract the relevant features needed for reconstructing such samples.
More specifically, in the training phase, the model optimizer adopted
the reconstruction loss shown in Eq. (1) to update the network weights.
At the end of each training epoch, the network performance was
evaluated by measuring its reconstruction loss on the validation set.
This is a key step for evaluating whether the network is learning to
generalize rather than simply memorizing the training samples.

Recent research has shown the importance of adding random noise
to the inputs, in the training phase, to both improve the capabilities of
the neural network to learn important features [42] and to improve the
model robustness to dataset poisoning [43]. Based on these findings, a
Gaussian perturbation was introduced in all training packets to help
the network learn relevant features rather than an identity function.
This random perturbation is applied as a random change in the float-
encoded value of each byte of the packet by adding/subtracting a float
value between 0 and 1. The effect of this perturbation on the original
packet is a multiple-bit random flip.

In the training phase, a hyperparameter exploration (kernel size,
number of layers, amount of noise, etc.) was also carried out to improve
the reconstruction capability of the network on benign packets.

The anomalous packets are detected based on a threshold on the
loss value. Therefore, the distribution of the reconstruction loss was
analyzed on the trained model in order to tune such a threshold. In
general, a small threshold value makes the detection more sensitive
to malicious packets, but it can also misclassify some sporadic benign
packet. On the contrary, a higher threshold value reduces the misclassi-
fication of benign packets, but at the same time it reduces the sensitivity
of the detection of malicious packets. In a real-world deployment, the
threshold should be tuned based on the analysis of the reconstruction
loss distribution based on the specific application requirements. In
this work, we followed a fully-unsupervised approach, selecting the
threshold based on the 99th percentile of the loss on normal packets
used during training.

4. Implementation and evaluation

Prototype. The proposed 1D CNN autoencoder architecture has been
implemented and trained using the PyTorch framework on an Nvidia

N. Borgioli et al.

t
a
a
o
a
t
i
e
r
b
t

4

t
e
a

t
n
a
p
n
d
a

p
(
c

R
i
c
1
e
o

d

d
p
f
s

4

i
m

Journal of Systems Architecture 156 (2024) 103283
Table 3
Per-packet detection capabilities of proposed network compared with the Kitsune
solution.

Architecture TP TPR FP FPR F1-score

1D CNN AE 9,863,877 99.97% 1144 0.10% 0.9997
Kitsune IDS 3,982,940 40.37% 1143 0.10% 0.5751

DGX server. To evaluate the performance of the model in a real-world
setting, the network has also been implemented in C++ and tested on
an NVIDIA Jetson AGX Orin Developer Kit using the Libtorch library,
setting the weights with the values obtained from the training phase,
and in a specialized GPU-accelerated implementation using the NVIDIA
TensorRT framework for optimized inference performance.

Evaluation. The objective of the experimental study carried out on
he models is twofold and is aimed at evaluating (i) the detection
ccuracy of malicious packets, including those of novel unseen attacks,
lso in the presence of dataset poisoning; and (ii) the inference time
n embedded devices that are typically employed in cyber–physical
pplications. More specifically, the experimental results report: (1)
he detection accuracy of the proposed network architecture; (2) the
nference time of the model on a real embedded platform; (3) the
ffect of batching on latency and throughput performance; and (4) the
obustness of the system against dataset poisoning. Finally, a heatmap-
ased mechanism is presented and discussed to help the user interpret
he decisions made by the model.

.1. Detection accuracy

The trained network was tested with the threshold value obtained in
he tuning phase. Tests were performed using all malicious packets of
ach attack type to assess the generalization capability of the network
gainst new attack types.

The model has been evaluated using the ground truth labels of
he samples to measure conventional performance metrics, such as the
umbers of true positives (TP), true negatives (TN), false positives (FP),
nd false negatives (FN). Here, TP represents the number of malicious
ackets that are correctly detected, and FP represents the number of
ormal packets that are (falsely) classified as malicious. TN (FN) can be
efined similarly, but for normal (malicious) packets that are classified
s normal packets.

Since the different classes of malicious packets and the benign
ackets contain different numbers of samples, the True Positive Rate
TPR), the False Positive Rate (FPR), and the F1-score have also been
omputed, as follows:

𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 , 𝐹𝑃𝑅 = 𝐹𝑃

𝑇𝑁+𝐹𝑃 , 𝐹1 = 2⋅𝑇𝑃
2⋅𝑇𝑃+𝐹𝑃+𝐹𝑁

esults. Table 3 reports the performance of the proposed architecture
n terms of TP, TPR, FP, FPR, and F1-score over all the malicious packet
lasses. The selected dataset contains 9,865,868 malicious packets and
,143,948 normal packets. Results show that the proposed network has
xcellent detection capabilities, with an F1-score very close to 1 (the
ptimal score).

Table 4 shows the performance of the proposed network under
ifferent classes of attacks that the network was not trained on.

The results show that the proposed 1D CNN AE achieved an overall
etection accuracy close to 100%. With the ability to consider the full
acket at the same time, the 1D CNN could easily extract packet-wide
eatures; as a result, it even detected the attack classes that are more
imilar to normal packets.

.2. Importance of skip-connections

To better understand the implications of using the skip connections
n our autoencoder architecture we compared our detection perfor-

ances with and without such architectural feature. To do so, we

7
tested the proposed autoencoder architecture with and without adding
such connections using the same hyperparameters for training. Then,
we evaluated the two solutions using the same metrics presented in
Section 4.1.

Results. Table 5 presents the results of such a comparison. We can
observe that the introduction of the skip-connections further improves
the network performance by 0.1% while maintaining the same FPR
(0.10%). Although this improvement may appear small, in cybersecu-
rity, every single percentage point is critical for ensuring the highest
level of system security.

4.3. Inference time analysis

After assessing the accuracy performance of the proposed architec-
ture, the inference time of the model was assessed on an NVIDIA Jetson
AGX Orin Developer Kit using the Libtorch library, version 1.12.0 [44].
Each measure was repeated one million times, considering the worst-
case packet lengths taken from the dataset. Then, such measures were
evaluated using three aggregated metrics: maximum inference time,
median inference time (50th percentile), and mean inference time.
To assess the performance in realistic scenarios, the measurements
were performed considering two different power configurations of the
platform: 30 W and EDP (full power) [45].

Results. Table 6 shows the inference time of the proposed architecture.
Thanks to the high computational parallelization capability of the
convolutional layers, this network can achieve lower inference times
for each packet compared with existing fully connected and recurrent
neural networks (e.g., [34]).

The inference time obtained above is crucial for reducing the overall
end-to-end latency of the packets and effectively applying the proposed
IDS in practical settings where the typical packet latency is in the order
of milliseconds or tens of milliseconds. In these regards, note that the
detection process applied by the IDS can be performed in parallel with
the propagation of the packet through the networking stack, as a way of
monitoring the security of the system against external attackers. With
this configuration, the detection latency is not added to the end-to-
end packet latency; rather, it only affects the capability of the system
to react to an incoming attack in timely fashion. The response times
observed in the evaluation can be deemed appropriate for most use
cases in CPS development, since they allow initiating a reaction to
the detected attack (including raising a security alarm or blocking a
network connection from the source of the anomalous packet) within
milliseconds from packet reception.

Memory usage of the IDS including the final model implemented in
C++ using the libtorch library is approximately 350 MB.

4.4. Optimizing the GPU inference time

To enhance the performance of the networking stack, modern net-
work interfaces implement specialized mechanisms designed to reduce
the overhead caused by network interrupts when receiving packets, by
providing interrupts for a group of packets rather than for a single
packet at a time. For instance, the New API (NAPI) interface in the
Linux kernel implements this interrupt mitigation approach via polling,
where the interface periodically checks for arriving packets instead of
relying solely on interrupts.

When such a mechanism is adopted in packet reception and a group
of packets (instead of a single one) is made available to higher-level
components, it is possible to leverage the inherent parallel processing
capabilities of GPUs to perform anomaly detection on multiple packets
at the same time to maximize the packet processing throughput of the
IDS. In this case, a set of packets, referred to as a batch, can be processed
at the same time by a neural network implementation optimized for

GPU inference, in an approach known as batching. In this approach, the

N. Borgioli et al.

p
p
s
f
b
f
m

r
r
m
l

Journal of Systems Architecture 156 (2024) 103283
Table 4
Detection performances of the 1D CNN AE and two techniques from the literature, including the state-of-the-art Kitsune IDS (Mirsky et al. [9]),
on different attack classes of the considered dataset. The Norm. and Mal. columns show how many packets of the considered attack classes
were classified as respectively normal and malicious by each of the considered IDS. The Prec. column shows the true positive rate.

Attack 1D CNN AE Ferrag et al. [29]a Kitsune IDS [9]

Norm. Mal. Prec. Norm. Mal. Prec. Norm. Mal. Prec.

Backdoor 0 24,914 100% – – 0.23% 25 24,889 99.90%
DDoS HTTP 0 229,142 100% – – 99% 5339 223,803 97.67%
DDoS ICMP 1838 2,912,518 99.93% – – 99% 1,851,198 1,063,158 36.48%
DDoS TCP 0 2,020,152 100% – – 99% 1,182,597 837,555 41.46%
DDoS UDP 48 3,215,684 99.99% – – 99% 2,821,162 394,570 12.27%
MITM 0 1229 100% – – 66.21% 262 967 78.68%
OS Fing. 0 1176 100% – – 23.45% 22 1154 98.13%
Password 0 1,053,893 100% – – 0.22% 421 1,053,472 99.96%
Port Scan 105 23,224 99.54% – – 0.23% 21,659 1670 7.16%
Ransom 0 11,030 100% – – 0.23% 50 10,980 99.55%
SQL Inject. 0 51,228 100% – – 0.23% 26 51,202 99.95%
Uploading 0 37,644 100% – – 0.23% 26 37,618 99.93%
Vuln. Scan 0 265,828 100% – – 0.23% 106 265,721 99.96%
XSS 0 16,215 100% – – 0.23% 35 16,181 99.79%
TOTAL 1991 9,863,877 99.97% – – 0.24% 5,882,928 3,982,940 40.37%

a The IDS of the dataset authors was trained using normal and DDoS packets flows (not on single packets), so the comparison cannot be
done in terms of packets, but just as percentages.
Table 5
Comparison of the detection accuracy of the proposed architecture with and without
the shortcuts of the encoder.

Attack With skip connections Without skip connections

Norm. Mal. Prec. Norm. Mal. Prec.

Backdoor 0 24,914 100% 10 24,904 99,95%
DDoS HTTP 0 229,142 100% 906 228,236 99,60%
DDoS ICMP 1838 2,912,518 99.93% 127 2,914,229 99,99%
DDoS TCP 0 2,020,152 100% 0 2,020,152 100%
DDoS UDP 48 3,215,684 99.99% 14 3,215,718 99,99%
MITM 0 1229 100% 0 1229 100%
OS Fing. 0 1176 100% 0 1176 100%
Password 0 1,053,893 100% 334 1,053,559 99,96%
Port Scan 105 23,224 99.54% 105 23,224 99,54
Ransom 0 11,030 100% 7 11,023 100%
SQL Inject. 0 51,228 100% 0 51,228 100%
Uploading 0 37,644 100% 458 37,186 98,78%
Vuln. Scan 0 265,828 100% 160 265,668 99,93%
XSS 0 16,215 100% 564 15,651 96,89%
TOTAL 1991 9,863,877 99.97% 2685 9,863,183 99,96%

Table 6
Inference time measured for the proposed architecture and Kitsune IDS under different
platform configurations.

Power Max Median Mean

1D CNN AE 30 W 30 ms 15 ms 15 ms
EDP 26 ms 15 ms 15 ms

Kitsune 30 W 143 ms 1.23 ms 6.78 ms
EDP 96 ms 0.96 ms 4.78 ms

number of packets processed in a single inference of the neural network
is referred to as batch size.

With an increase in the batch size, provided that sufficient com-
utational resources are available on the GPU, the achieved packet
rocessing throughput grows at the cost of increased latency for each
pecific packet (since collecting the result for single packets has to wait
or the whole batch to complete). However, integrating the proposed
atching mechanism with the already present NAPI mechanism allows
or reducing this extra latency, since it is already paid for by the NAPI
echanism itself.

Moreover, the target application may be characterized by different
equirements in terms of processing performance, available system
esources, and required security responsiveness. For instance, the IDS
echanism might be implemented as a packet filter at the networking

evel, which processes packets before they are delivered to the higher
8
Table 7
Latency, throughput, and GPU utilization of the 1D CNN AE GPU implementation for
different batch sizes.

Batch size Avg. latency Max. latency Throughput

1 0.142 ms 0.146 ms 44.0 Mbps
2 0.142 ms 0.155 ms 176 Mbps
5 0.132 ms 0.144 ms 473 Mbps
10 0.189 ms 0.193 ms 664 Mbps
20 0.293 ms 0.297 ms 837 Mbps
30 0.448 ms 0.589 ms 634 Mbps
80 1.05 ms 1.06 ms 850 Mbps
100 1.30 ms 1.32 ms 951 Mbps
160 1.97 ms 1.98 ms 990 Mbps
200 2.42 ms 2.43 ms 1006 Mbps
350 4.08 ms 4.10 ms 1040 Mbps

levels in the stack, or as a monitoring system characterized by lower
resource utilization, which however might detect anomalous packets
after they were already delivered to the next layer. By exploiting a
batching strategy on the GPU, both packet processing throughput in
the IDS and GPU resource utilization can be maximized or adapted to
the requirements of the application by exploring the design trade-offs
related to packet processing throughput, packet latency, and resource
utilization.

The following experiments investigate the quantitative effects on the
system performance of processing packets in batches when considering
GPU implementations of the 1D CNN AE architecture proposed in this
work. In particular, they report the average throughput and latency
achieved with varying batch sizes.

Results. The performance results of the 1D CNN AE are reported in
Table 7. With a batch size of 1 (i.e., when the batching mechanism is
not active), the 1D CNN AE achieves an average throughput of 44 Mbps
on the GPU with an average added latency of 0.142 ms for the packets
in each batch, which is almost negligible compared with the typical
expected end-to-end transmission latency. However, the processing
capabilities of the GPU are not properly leveraged with a batch size
of 1. Batch sizes larger than 1 give significant performance gains in
terms of throughput. Specifically, when the batch size is increased to
20, a throughput of more than 800 Mbps is reached, with only a slight
loss in terms of average latency (0.293 ms). By further increasing the
batch size to 200, it is possible to completely use the parallelization
capabilities of the GPU. In this setting, the throughput reaches 1 Gbps
and the latency is increased to 4.08 ms per batch. Beyond this value
for the batch size, no significant gain in throughput performance is

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
observed, which is expected since the GPU is already at its maximum
capacity.

Following this evaluation, it is possible to identify a reasonable com-
promise between latency and throughput with a batch size of 20 for the
evaluated 1D CNN AE GPU implementation. However, different batch
sizes can be selected to satisfy the application-specific requirements.

The above design space exploration enables an optimization of the
batch size parameter depending on the requirements of the specific
application to obtain the desired latency and throughput performance.
Additionally, we can envision the use of adaptive batch size selection
strategies to minimize the expected latency while maximizing the
throughput based on the current incoming packet processing workload.

Overall, due to its highly parallelizable architecture, the 1D CNN AE
proved to be very suitable for GPU-accelerated inference, providing sig-
nificant throughput improvements compared with CPU inference. Such
a new result further highlights the strength of the proposed 1D CNN
architecture, reverting the findings reported in previous works [12,17,
34], which gave an advantage of LSTM-based IDSs, with respect to
CNN-based ones, due to their higher level of accuracy.

Note, however, that such comparative studies did not consider a
thorough evaluation of the achieved timing performance, which is
crucial to deploying the required IDS functionality in actual application
scenarios. The experimental results reported in this paper, instead,
show that the 1D CNN AE architecture dominates the LSTM-based
solutions from a timing perspective, especially when GPU acceleration
is available, while achieving comparable detection accuracy.

Memory usage of the GPU-accelerated implementation of the IDS,
which leverages the NVIDIA TensorRT framework for GPU acceleration,
is approximately 3 GB. In contrast, the edge computing platform con-
sidered in the experiments (NVIDIA Jetson AGX Orin Developer Kit)
features 32 GB of main memory.

4.5. Poisoning robustness

Ideally, a model should be trained using only benign samples.
However, in a real-world setting this assumption may not hold, because
it would require having full control over the deployment environment.
Nkashama et al. [13] investigated this issue for several existing IDS
approaches and showed that even a small injection of malicious packets
(5%) into the benign ones used for training could abruptly reduce the
detection capabilities of the considered solutions.

This section presents an analysis of the robustness of the proposed
solution against the poisoning of the training dataset. Based on the
results found by Nkashama [13], the original training set was poisoned
by substituting 5% of benign packets in the training data with malicious
ones. This substitution has been performed by randomly selecting
malicious packets from the dataset and using them to replace an
equal number of randomly selected normal packets in the training and
evaluation sets. This type of training simulates erroneous or intentional
replacement of a portion of the training packets with malicious packets
during training that are still labeled as normal packets, which may
potentially reduce the resulting accuracy of the IDS. Then, the 1D CNN
AE was trained as before, but using the poisoned data as training and
evaluation sets. Finally, the performance achieved by such a trained
model was assessed on the original normal and malicious packets of
the test set.

The performance of the proposed network was analyzed using Re-
ceiver Operating Characteristic (ROC) curves (Fig. 4), which plot the
TPR as a function of the FPR for various threshold values. The goodness
of a ROC curve is evaluated by the area under the curve (AUC), which
captures how much the model can distinguish between two classes of
packets (i.e., benign and malicious samples). In an ideal situation, when
detection is perfect, this curve reaches the top-left edge of the graph
and thus the AUC value is 1. In general, the higher the AUC, the better
the model is at detecting an anomaly.
9
Fig. 4. ROC curve for the proposed 1D CNN AE when trained with the normal and
the 5% poisoned datasets.

Fig. 5. Analysis of the effect of introducing random noise to the input in training
phase on the detection capabilities of malicious packets.

To investigate the importance of introducing random noise on the
inputs used for training, the proposed architecture was tested both
with and without such a disturbance. Moreover, to provide a baseline,
the results were compared with the one achieved when training the
network without poisoning. Fig. 4 shows the ROC curves of the 1D
CNN AE when trained using the normal and poisoned datasets. Note
that, without using noise in the training phase, but with a poisoned
dataset, the detection capabilities of the network are almost completely
sabotaged. However, by introducing a small perturbation to the input
bytes of the packet, the robustness of the network to such an attack is
greatly improved, reaching a performance that is very close to the one
achieved without poisoning.

We performed an extensive analysis to measure of the effect of in-
troducing such a random perturbation on the input. This was achieved
by repeating the training of the proposed architecture on the poisoned
and on the normal dataset while varying the amount of random noise
applied to the input. For each noise configuration, the network was
then tested in terms of its detection capabilities against malicious
packets. Results shown in Fig. 5 show that the addition of noise should
be at least about 0.02 to be effective in improving the performance of
the network. At the same time, if the noise amount is too high then the
network stops learning properly and its detection capabilities start to
degrade. This is particularly noticeable when the training is performed
on the poisoned dataset, where the effect of adding 0.20 of random
noise to the input destroys the detection capabilities of the autoencoder.
Given these results, for the purpose of deploying the autoencoder in a
real setting the optimal amount of noise that should be introduced to

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
guarantee the maximum detection accuracy if the dataset is poisoned
is about 0.10.

Such a type of robustness is highly beneficial in practice, as it can
still ensure good detection capability even when the training set is not
clean. It also broadens the deployment capabilities, since one should
be able to train his IDS directly on the target deployment environment
using data recorded during run time. This is possible because, even if
an attacker can inject some malicious packets in the training data, if
the amount of malicious traffic is below a certain fraction of the total
traffic (e.g., 5% based on our tests), this will not significantly impact the
IDS performance. This threshold assumption is a representative value
of a realistic scenario, where the attacker typically tries to minimize
the amount of malicious traffic to avoid being detected by traditional
IDSs.

4.6. Comparison with existing work

To position the proposed solution with respect to the existing liter-
ature, the experiments were repeated on the solutions proposed by the
dataset’s authors [29] and by Mirsky et al. [9], who presented a leading
state-of-the-art IDS (Kitsune).

In addition to introducing the EDGE-IIOTSET dataset, Ferrag et al.
[29] applied the dataset to train and evaluate both a binary and a
multiclass classifier, using as input a set of features manually extracted
from the packet flow. Due to the nature of the proposed solutions, the
performance comparison was carried out with the binary classifier only.
Based on the information provided in [29], the same model used by the
authors (referred to as reference architecture) was recreated and trained
using the same hyperparameters. This reference architecture needs to
be trained using both normal and malicious packets. However, since
we would like to evaluate also the generalization capabilities of the
different approaches to new unseen attacks, we performed this training
using the benign samples and only a subset of the attack classes (i.e., by
considering DDoS attacks only). Then, the evaluation was performed
considering also the other unseen attack classes. This was necessary to
evaluate how well the reference architecture could detect new types of
attacks.

As presented in Section 2.2, the Kitsune IDS is a multi-stage solution
where the first stage extracts and selects the features of each packet to
be fed to the autoencoders in the second stage. To perform the com-
parison with this model, the implementation provided by the authors
was retrained on the common dataset, setting the threshold at the 99th
percentile of the benign samples loss (like with the proposed model).

The evaluation results comparing the proposed solution with the
ones by Ferrag et al. [29] and Mirsky et al. [9] are discussed below.

Results. In Table 4 we reported the results of our experiments using
the existing solutions by Ferrag et al. [29] and Mirsky et al. [9] when
applied to the EDGE-IIOTSET dataset. The solution by Ferrag et al. [29]
can achieve excellent performance (99% accuracy) in detecting the
attacks it was trained on. However, it is unable to detect the unseen
ones. Table 4 reports the TPR achieved by the reference architecture
on all attack flows when trained using normal and DDoS malicious
flows (the same test has been repeated using different malicious flows
for the training, achieving similar results). Since the work by Ferrag
et al. [29] uses per-flow instead of per-packet detection, it is not
meaningful to compare the inference times it achieves with respect to
the timing performance of the proposed approach. As the table shows,
for unseen attacks, its detection accuracy is close to 0%, classifying
almost all malicious packets as normal packets. Such results confirm
that the proposed unsupervised approach is much more robust than an
supervised one since it can correctly identify new types of attacks as
well as known attacks (cf. Section 4.1).

Regarding the Kitsune IDS, the global detection accuracy on the
considered dataset is close to (but still lower than) the one achieved by
the proposed solution in some specific attack classes such as XSS and
10
Fig. 6. ROC curve comparing the effect of poisoning with the proposed approach
trained with noise and with the Kitsune IDS [9].

Fig. 7. Heatmaps of some sample packets reconstructed by the proposed 1D CNN AE
model. Normal bytes are colored in blue, while anomalous ones are in red. The color
bar illustrates the full color mapping used to represent the reconstruction loss. (a)
Normal packet; (b) Ransomware packet; (c) DDoS ICMP. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Backdoor attacks. However, Table 4 clearly shows that, although the
Kitsune IDS performs similarly to the proposed solution on some attack
classes, it is almost unable to detect other attack classes (e.g., DDoS
attacks) whereas the proposed IDS performs very well in all classes.

Concerning the inference time (Table 6), the Kitsune IDS achieves
a better mean inference time compared to the proposed solution,
but its maximum inference time is much higher. This is because the
computation time for the feature extraction of the Kitsune IDS highly
depends on the packet length. Since, in the considered dataset, most
of the packets are short (around 60–80 bytes), the mean inference
time is highly affected by the low inference time achieved for such
packets. However, when fed with longer packets (e.g., 1500 bytes), then
their inference time increases almost linearly by about two orders of
magnitude. Instead, due to limitations that are currently imposed by
the machine learning libraries, the proposed approach is independent
of the input size since it always considers the inference time required
by the longest packet that can be fed into the network. However, it is
worth noting that when considering the longest packets, the proposed
solution outperforms the Kitsune IDS by one order of magnitude (see
Max inference time).

Finally, we compared the poisoning robustness of the proposed
method with that of the Kitsune IDS [9]. We did not consider the
solution by Ferrag et al. [29] due to the different nature of the data
taken as input (flows rather than single packets). To perform a fair
evaluation we trained the Kitsune IDS using the poisoned dataset
presented in Section 4.5 and then we tested it on the normal and
malicious datasets. Results presented in Fig. 6 confirm the findings of
Nkashama et al. [13], and highlight how the Kitsune state-of-the-art
solution is not robust to poisoning (dropping to 0.55 AUC), whereas
the proposed approach is (retaining approximately 1.0 AUC).

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
4.7. Explainability issues

Explainable AI is about understanding how a machine learning
model obtained a particular solution. Modern AI-based IDSs can ana-
lyze large amounts of data, recognize patterns, and identify suspicious
activity more accurately and efficiently than traditional IDSs.

However, this comes with a challenge: the lack of transparency
and interpretability of AI algorithms, which can make it difficult to
understand how a system arrived at a particular decision or identified
a potential threat. Because of this, explainable AI (XAI) methods have
lately been studied to help make AI-based systems more transparent
and interpretable. In the context of IDSs, XAI can provide insights into
how the system makes decisions and identify the features that trigger
an alert or flag an activity as suspicious.

This section presents a heatmap-based mechanism that can be used
to understand why a given packet is classified as an anomaly. The
proposed detection method makes use of the reconstruction loss and
a threshold to detect anomalous packets. As explained in Section 3.4,
this loss is computed based on the reconstruction error of each byte
of the packet (Eq. (1)). Thus, if considering the reconstruction error of
the single bytes, it is possible to understand which ones have a higher
impact on the threshold value and thus which are the most anomalous
ones. The higher the loss value of a specific byte, the more likely
that byte represents an anomaly with respect to the expected network
traffic. On the other hand, the closer to zero the reconstruction error
of a specific byte, the more likely the byte is considered normal by the
system. Plotting such values as a heatmap produces a visual explanation
of a specific detection decision.

As illustrated in Fig. 7, normal packets have a small or negligible
reconstruction error on the majority of their bytes except for those
that are more subject to change (e.g., the sequence number). Instead,
in malicious packets, the reconstruction error spreads widely across
the whole packet. In particular, when dealing with ransomware pack-
ets, the IDS considers as anomalous mainly the payload and the IP
addresses, whereas, when reconstructing a DDoS ICMP packet, the
addresses and the ethertype are considered to be correct (as in a normal
traffic lots of ICMP packets are regularly exchanged), thus the error
comes mainly from the payload. This is a further demonstration of how
the proposed detection method was able to correctly learn to recognize
the specific features that are characteristic of the expected traffic, and
distinguish them from the anomalous ones.

4.8. Portability

Evaluating the performance of the proposed approach across mul-
tiple datasets is crucial to evaluate the generalization capabilities of
the IDS across multiple environments. Therefore, we considered the
TON_IoT dataset [28] to perform additional testing. TON_IoT is an-
other IoT-related dataset which is widely used in the literature on
IDSs. We trained and tested the proposed autoencoder architecture
on this dataset with the same hyperparameters used in the previous
experiments.

Unfortunately, it was not possible to evaluate the performance of
the Kitsune architecture on such a dataset due to an incompatibility
between the expected input format of Kitsune and the packet format
provided by the raw captures in TON_IoT, with the result that the orig-
inal Kitsune implementation [9] failed to extract the features during
the learning phase. On the other hand, we note that the proposed au-
toencoder approach does not make specific assumptions on the packet
format, thus enabling out-of-the-box compatibility with different packet
formats.

The results of the performance evaluation for the proposed autoen-
coder approach on the TON_IoT dataset are reported in Table 8. It is
worth noticing that, even though results achieved on the per-packet
detection seem lower than the ones achieved on the EDGE-IIOTSET

dataset, this is partially due to the different nature of the two datasets.

11
Table 8
Performance of the proposed architecture on the TON_IoT dataset.

TP TPR FP FPR F1-score

15,560,042 88% 19,547 1,0% 0,9341

More in detail, differently from EDGE-IIOTSET, the raw network cap-
tures in the TON-IoT dataset are organized in pcap files that are
categorized under either normal captures or malicious captures de-
pending on the presence of an ongoing attack during the capture of
such traffic. As a result, pcap files that are overall categorized under
malicious captures also contain packets that should be considered as
normal. This choice made by the dataset authors is reasonable since
the raw pcap files are then processed to generate csv files containing
features for each flow of packets, and each of such sets of features is
then labeled as either normal or malicious based on detailed logging
information.

Therefore, given that the pcap files containing malicious traffic also
contain normal packets (about 10% of the traffic), when performing the
per-packet evaluation with the proposed approach some normal packets
may correctly be classified as non-malicious while the corresponding
packet flow is categorized as malicious within the dataset.

5. Discussion

The experimental studies carried out in this work show that the
developed 1D CNN AE architecture can learn the features of the packets
it was trained on and thus properly distinguish between normal and
malicious packets.

The presented inference time analysis provided an estimation of the
inference time of such a detection algorithm on a real platform. This
kind of analysis is crucial to correctly deploy IDS in a real setting,
but it was largely ignored in prior IDS research. The experimental
results showed that, in terms of inference time, the 1D CNN AE pre-
sented in this work is more efficient than existing approaches based
on recurrent neural networks. Moreover, it is worth noticing that the
overhead introduced by the proposed solution is comparable with the
processing latency, which is normally experienced by network packets,
thus it is applicable in real-world cyber–physical systems. The proposed
architecture was trained and tested on the EDGE-IIOTSET and TON_IoT
datasets. As with other IDS solutions, applying this solution in an
environment with different expected normal traffic requires retraining
it to learn the new features. In short, the proposed network not only
exhibits excellent detection capabilities, but also provides reasonable
inference times. It is worth noting that inference timing results reported
here were achieved without exploiting network quantization or other
optimizations, since they are currently not supported by the underly-
ing library. We expect that leveraging such optimizations will further
improve the already good timing performance. We plan to investigate
such optimizations in a future work.

The network proposed in this work has an accuracy comparable
to that of the state-of-the-art supervised approach when tested on
already-known malicious attacks. More importantly, when dealing with
novel attacks, our solution can maintain the same accuracy as the one
observed with the known attacks, whereas the evaluated approach by
Ferrag et al. [29] exhibited poor detection performance. The achieved
results confirm the importance of unsupervised learning for IDSs, given
that it does not require continuous retraining to detect novel threats but
only needs to update the model if the network traffic pattern changes.
Moreover, when compared with the state-of-the-art unsupervised ap-
proach (Mirsky et al. [9]), the proposed architecture experimentally
demonstrated a better capability in identifying malicious packets, as
well as a lower worst-case inference time.

The exploitation of the parallel processing capabilities of GPUs

allowed further improving the timing performance of the proposed

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
architecture. Experiments showed that the 1D CNN reached about 800
Mbps of throughput while preserving a very low latency. Also, a proper
selection of the batch size at inference time allowed to further improve
both latency and throughput performance for the specific application,
while optimizing the utilization of the GPU resources available.

Previous works in the literature [12,17] reported a superior accu-
racy of LSTM-based approaches over CNN-based approaches. Differ-
ently, the experimental results presented in this work highlighted the
importance of properly accounting for timing performance to determine
the applicability of an IDS technique in real settings. This is especially
critical for systems to be deployed in the context of cyber–physical
applications.

This work also showed that, introducing random noise in the input
samples used for training, the proposed method not only can detect
novel unseen malicious packets, but is also robust to the contamination
of the training set. The robustness of the IDS against poisoning attacks
is a crucial property, as it provides security guarantees not only when
training the IDS on public untrusted datasets, but also when deploying
the IDS in a real environment. Despite its importance, data contamina-
tion has largely been ignored by state-of-art IDS solutions. The analysis
presented in this work also demonstrated that the proposed architecture
is much more robust to dataset poisoning than state-of-the-art baseline
IDS solutions [13].

Finally, the explainability method presented in this work can help
the user to understand why a given packet is detected (or not) as
malicious and which bytes are corrupted. This not only makes the
proposed IDS more transparent and understandable, but also highlights
potential vulnerabilities in the detection process. The achieved results
show that when reconstructing anomalous packets, the proposed ar-
chitecture correctly identifies the malicious features of each specific
attack, even though they had never been shown during the training
phase. In a real-world setting, this explainability mechanism can be
used as part of the reporting process to provide valuable insights
about what is happening in the monitored infrastructure to the incident
response team. Thanks to the generated heatmap an analyst could more
easily identify the malicious patterns in the anomalous packets, thus
simplifying the understanding of the attack that has been attempted.

6. Conclusions

This paper presented a novel packet-level anomaly-based intrusion
detection system for networked cyber–physical systems, based on a 1D
CNN autoencoder fully trained by an unsupervised learning paradigm.
The unsupervised approach made the proposed IDS capable of detecting
different types of malicious attacks without showing the corresponding
packets in the training phase. This makes the proposed IDS able to
detect new types of attacks without retraining the model.

The proposed autoencoder architecture was carefully designed to
achieve high accuracy, reduced inference time, and enhanced poisoning
robustness. Experimental results showed that the proposed technique
substantially outperforms state-of-the-art supervised learning-based so-
lutions in terms of detecting novel attacks. Moreover, when compared
with leading unsupervised learning techniques, the proposed solution
showed better performance both in terms of detection accuracy and
worst-case inference time. The throughput was further improved by
introducing a novel way to exploit the parallel architecture of GPUs
by using batching at inference time. An experimental evaluation carried
out on a real embedded platform further demonstrated the applicability
of the proposed technique on CPS devices.

Finally, this work presented a method to help the user interpret the
outputs produced by the model in detecting anomalous packets, making
the system more transparent and understandable. This explainability
method was also used to confirm the ability of the proposed approach
to learn the ‘right’ characteristics of the genuine packets, and to distin-
guish them from malicious ones for a wide range of attacks. In future
12
work, we plan to investigate optimization strategies to further improve
the inference time of the proposed approach.

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Italian Ministry of University
and Research (MUR), under the SPHERE project funded within the
PRIN-2017 framework (grant no. 20172NNB4T_001) and in part by
the Project SERICS under the Ministry of University and Research
(MUR) National Recovery and Resilience Plan funded by the European
Union–NextGenerationEU under Grant PE00000014.

References

[1] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, F. Ahmad, Network
intrusion detection system: A systematic study of machine learning and deep
learning approaches, Trans. Emerg. Telecommun. Technol. 32 (1) (2021) e4150.

[2] J. Lansky, S. Ali, M. Mohammadi, M.K. Majeed, S.H.T. Karim, S. Rashidi, M.
Hosseinzadeh, A.M. Rahmani, Deep learning-based intrusion detection systems:
a systematic review, IEEE Access 9 (2021) 101574–101599.

[3] Y. Chen, Y. Li, X.-Q. Cheng, L. Guo, Survey and taxonomy of feature selection
algorithms in intrusion detection system, in: H. Lipmaa, M. Yung, D. Lin
(Eds.), Information Security and Cryptology, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, pp. 153–167.

[4] A.H. Sung, S. Mukkamala, The feature selection and intrusion detection problems,
in: M.J. Maher (Ed.), Advances in Computer Science - ASIAN 2004. Higher-
Level Decision Making, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp.
468–482.

[5] N. Gao, L. Gao, Q. Gao, H. Wang, An intrusion detection model based on deep
belief networks, in: 2014 Second International Conference on Advanced Cloud
and Big Data, IEEE, 2014, pp. 247–252.

[6] M. Yousefi-Azar, V. Varadharajan, L. Hamey, U. Tupakula, Autoencoder-based
feature learning for cyber security applications, in: 2017 International Joint
Conference on Neural Networks, IJCNN, IEEE, 2017, pp. 3854–3861.

[7] G. Kathareios, A. Anghel, A. Mate, R. Clauberg, M. Gusat, Catch it if you can:
Real-time network anomaly detection with low false alarm rates, in: ICMLA,
2017.

[8] J. Dromard, G. Roudière, P. Owezarski, Online and scalable unsupervised
network anomaly detection method, IEEE Trans. Netw. Serv. Manag. 14 (1)
(2017) 34–47.

[9] Y. Mirsky, T. Doitshman, Y. Elovici, A. Shabtai, Kitsune: An ensemble of
autoencoders for online network intrusion detection, 2018, arXiv:1802.09089.

[10] E. Tekiner, A. Acar, A.S. Uluagac, A lightweight IoT cryptojacking detection
mechanism in heterogeneous smart home networks, in: Proceedings 2022
Network and Distributed System Security Symposium, 2022.

[11] H. Jmila, M.I. Khedher, Adversarial machine learning for network intrusion
detection: A comparative study, Comput. Netw. 214 (2022) 109073, http://
dx.doi.org/10.1016/j.comnet.2022.109073, URL https://www.sciencedirect.com/
science/article/pii/S1389128622002146.

[12] R.K. Malaiya, D. Kwon, J. Kim, S.C. Suh, H. Kim, I. Kim, An empirical eval-
uation of deep learning for network anomaly detection, in: 2018 International
Conference on Computing, Networking and Communications, ICNC, IEEE, 2018,
pp. 893–898.

[13] D. Nkashama, A. Soltani, J.-C. Verdier, M. Frappier, P.-M. Tardif, F. Kabanza,
Robustness evaluation of deep unsupervised learning algorithms for intrusion
detection systems, 2022, arXiv preprint arXiv:2207.03576.

[14] M.Z. Alom, V. Bontupalli, T.M. Taha, Intrusion detection using deep belief
networks, in: 2015 National Aerospace and Electronics Conference, NAECON,
IEEE, 2015, pp. 339–344.

[15] T. Vaiyapuri, A. Binbusayyis, Application of deep autoencoder as an one-class
classifier for unsupervised network intrusion detection: a comparative evaluation,
PeerJ Comput. Sci. 6 (2020) e327.

[16] T. Truong-Huu, N. Dheenadhayalan, P. Pratim Kundu, V. Ramnath, J. Liao, S.G.
Teo, S. Praveen Kadiyala, An empirical study on unsupervised network anomaly
detection using generative adversarial networks, in: SPAI, 2020.

[17] D. Kwon, K. Natarajan, S.C. Suh, H. Kim, J. Kim, An empirical study on network
anomaly detection using convolutional neural networks, in: 2018 IEEE 38th
International Conference on Distributed Computing Systems, ICDCS, IEEE, 2018,
pp. 1595–1598.

[18] B. Andreas, J. Dilruksha, E. McCandless, Flow-based and packet-based intrusion
detection using BLSTM, in: SMU Data Science Review, 2020.

[19] M.S. Alam, B.R. Fernando, Y. Jaoudi, C. Yakopcic, R. Hasan, T.M. Taha, G.
Subramanyam, Memristor based autoencoder for unsupervised real-time network

intrusion and anomaly detection, in: Proceedings of the ICONS, 2019.

http://refhub.elsevier.com/S1383-7621(24)00220-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb1
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb2
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb3
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb4
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb5
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb6
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb7
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb8
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb8
http://arxiv.org/abs/1802.09089
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb10
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb10
http://dx.doi.org/10.1016/j.comnet.2022.109073
http://dx.doi.org/10.1016/j.comnet.2022.109073
http://dx.doi.org/10.1016/j.comnet.2022.109073
https://www.sciencedirect.com/science/article/pii/S1389128622002146
https://www.sciencedirect.com/science/article/pii/S1389128622002146
https://www.sciencedirect.com/science/article/pii/S1389128622002146
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb12
http://arxiv.org/abs/2207.03576
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb14
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb15
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb16
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb17
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb18
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb19
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb19

N. Borgioli et al. Journal of Systems Architecture 156 (2024) 103283
[20] F. Carrera, V. Dentamaro, S. Galantucci, A. Iannacone, D. Impedovo, G. Pirlo,
Combining unsupervised approaches for near real-time network traffic anomaly
detection, Appl. Sci. 12 (3) (2022).

[21] I.J. King, H.H. Huang, Euler: Detecting network lateral movement via scalable
temporal link prediction, ACM Trans. Priv. Secur. 26 (3) (2023) http://dx.doi.
org/10.1145/3588771.

[22] S. Roy, J. Li, V. Pandey, Y. Bai, An explainable deep neural framework for trust-
worthy network intrusion detection, in: 2022 10th IEEE International Conference
on Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2022, pp.
25–30, http://dx.doi.org/10.1109/MobileCloud55333.2022.00011.

[23] S. Mane, D. Rao, Explaining network intrusion detection system using explainable
AI framework, 2021, arXiv:2103.07110.

[24] G. Mohi-ud din, NSL-KDD, 2018, http://dx.doi.org/10.21227/425a-3e55.
[25] N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set), in: MilCIS, 2015.
[26] I. Sharafaldin, A.H. Lashkari, A.A. Ghorbani, Toward generating a new intru-

sion detection dataset and intrusion traffic characterization, in: International
Conference on Information Systems Security and Privacy, 2018.

[27] M. Al-Hawawreh, E. Sitnikova, N. Aboutorab, X-IIoTID: A connectivity-agnostic
and device-agnostic intrusion data set for industrial Internet of Things, IEEE
Internet Things J. 9 (5) (2021) 3962–3977.

[28] N. Moustafa, A new distributed architecture for evaluating AI-based security
systems at the edge: Network TON_IoT datasets, Sustainable Cities Soc. 72 (2021)
102994.

[29] M.A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, H. Janicke, Edge-IIoTset: A new
comprehensive realistic cyber security dataset of IoT and IIoT applications for
centralized and federated learning, IEEE Access 10 (2022) 40281–40306.

[30] S. Hettich, S. Bay, The UCI KDD Archive, University of California, Department
of Information and Computer Science, Irvine, CA, 1999, p. 152, http://kdd.ics.
uci.edu.

[31] M. Lanvin, P.-F. Gimenez, Y. Han, F. Majorczyk, L. Mé, E. Totel, Errors in the
CICIDS2017 dataset and the significant differences in detection performances
it makes, in: International Conference on Risks and Security of Internet and
Systems, Springer, 2022, pp. 18–33.

[32] D.K. Bhattacharyya, J.K. Kalita, Network Anomaly Detection: A Machine Learning
Perspective, Crc Press, 2013.

[33] D. Kwon, H. Kim, J. Kim, S.C. Suh, I. Kim, K.J. Kim, A survey of deep
learning-based network anomaly detection, Cluster Comput. 22 (2019) 949–961.
13
[34] N. Borgioli, L. Thi Xuan Phan, F. Aromolo, A. Biondi, G. Buttazzo, Real-time
packet-based intrusion detection on edge devices, in: Proceedings of Cyber-
Physical Systems and Internet of Things Week 2023, in: CPS-IoT Week ’23,
Association for Computing Machinery, New York, NY, USA, 2023, pp. 234–240,
http://dx.doi.org/10.1145/3576914.3587551.

[35] J. Newsome, B. Karp, D.X. Song, Paragraph: Thwarting signature learning
by training maliciously, in: International Symposium on Recent Advances in
Intrusion Detection, 2006.

[36] N. Dalvi, P. Domingos, Mausam, S. Sanghai, D. Verma, Adversarial classifica-
tion, in: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04, Association for Computing
Machinery, New York, NY, USA, 2004, pp. 99–108, http://dx.doi.org/10.1145/
1014052.1014066.

[37] S. Neupane, J. Ables, W. Anderson, S. Mittal, S. Rahimi, I. Banicescu, M. Seale,
Explainable intrusion detection systems (X-IDS): A survey of current methods,
challenges, and opportunities, IEEE Access 10 (2022) 112392–112415, http:
//dx.doi.org/10.1109/ACCESS.2022.3216617.

[38] J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity:
The all convolutional net, 2015, arXiv:1412.6806.

[39] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedi-
cal image segmentation, in: Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015, Proceedings, Part III 18, Springer, 2015, pp. 234–241.

[40] J. Santokhi, P. Daga, J. Sarwar, A. Jordan, E. Hewage, Temporal autoencoder
with u-net style skip-connections for frame prediction, 2020, arXiv preprint
arXiv:2011.12661.

[41] A.-S. Collin, C. De Vleeschouwer, Improved anomaly detection by training an
autoencoder with skip connections on images corrupted with stain-shaped noise,
in: 2020 25th International Conference on Pattern Recognition, ICPR, IEEE, 2021,
pp. 7915–7922.

[42] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing
robust features with denoising autoencoders, in: Proceedings of the 25th Inter-
national Conference on Machine Learning, ICML ’08, Association for Computing
Machinery, New York, NY, USA, 2008, pp. 1096–1103, http://dx.doi.org/10.
1145/1390156.1390294.

[43] F. Razmi, L. Xiong, Classification auto-encoder based detector against diverse
data poisoning attacks, 2022, arXiv:2108.04206.

[44] P. Foundation, Libtorch, 2022, https://pytorch.org/cppdocs/installing.html.
[45] N. Corporation, NVIDIA jetson orin - tuning power, 2022.

http://refhub.elsevier.com/S1383-7621(24)00220-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb20
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb20
http://dx.doi.org/10.1145/3588771
http://dx.doi.org/10.1145/3588771
http://dx.doi.org/10.1145/3588771
http://dx.doi.org/10.1109/MobileCloud55333.2022.00011
http://arxiv.org/abs/2103.07110
http://dx.doi.org/10.21227/425a-3e55
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb25
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb26
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb27
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb28
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb29
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb29
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb31
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb32
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb33
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb33
http://dx.doi.org/10.1145/3576914.3587551
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb35
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb35
http://dx.doi.org/10.1145/1014052.1014066
http://dx.doi.org/10.1145/1014052.1014066
http://dx.doi.org/10.1145/1014052.1014066
http://dx.doi.org/10.1109/ACCESS.2022.3216617
http://dx.doi.org/10.1109/ACCESS.2022.3216617
http://dx.doi.org/10.1109/ACCESS.2022.3216617
http://arxiv.org/abs/1412.6806
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb39
http://arxiv.org/abs/2011.12661
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb41
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1145/1390156.1390294
http://dx.doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/2108.04206
https://pytorch.org/cppdocs/installing.html
http://refhub.elsevier.com/S1383-7621(24)00220-0/sb45

	A convolutional autoencoder architecture for robust network intrusion detection in embedded systems
	Introduction
	Related work
	Datasets
	Related work on anomaly-based network IDS
	Input and learning paradigm
	Timing performance
	Dataset poisoning
	Explainability

	The proposed real-time network IDS method
	Use cases
	Threat model
	Data preprocessing
	Model architecture
	Training

	Implementation and Evaluation
	Detection accuracy
	Importance of skip-connections
	Inference time analysis
	Optimizing the GPU inference time
	Poisoning robustness
	Comparison with existing work
	Explainability issues
	Portability

	Discussion
	Conclusions
	Acknowledgments
	References

