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1. Introduction

Continuum soft manipulators (CSMs) can
potentially excel in adaptive and safe inter-
action with unstructured environments.[1]

However, hyper-redundancy, complex
dynamics, and nonlinear soft material prop-
erties challenge soft robot modeling and
control.[2] Notable strides in modeling tech-
niques[3] paved the way for diverse model-
based[4] and model-free control strategies.[5]

Nonetheless, the use of CSMs for physical
tasks remains an open problem.[6]

Popular methods for deriving forward
models for CSMs are geometrical models
like the piece-wise constant curvature
(PCC) approximation.[7] Such models fea-
tured in proportional-derivative (PD) con-
trollers to perform real-world tasks with a
soft manipulator.[8] Other studies described
the shape of a synthetic soft arm with a
polynomial curvature model used within
an extended PD steady-state regulator.[9]

Despite the effectiveness of geometrical
models, these assumptions degrade when
soft robots are subject to significant exter-

nal forces typical of interaction tasks.
Other viable modeling and control approaches are inherently

data-driven.[10] Despite not requiring geometric and physical
expertise, they rely on pseudo-random motion data to train artifi-
cial neural networks mapping actuation to task space.[11]

This robot-independent method effectively derived efficient for-
ward models employed in learned policies for tracking[12,13]

and throwing.[14] However, data-driven forward models become
inappropriate for interaction tasks due to the challenges of collect-
ing and labeling representative interaction datasets, extensive
optimization, and over-fitting.

Promising approaches toward CSMs interacting with unstruc-
tured environments are continuum mechanical models. These
models characterize the deformations of soft robots in physical
terms and serve as valuable simulators of physical interactions.
The classical finite element methods can accurately represent
complex 3D geometries.[15] Such accuracy is paid with high
computational costs that complicate the control problem,
although recent model order reduction techniques make these
methods more affordable.[16,17] Other suitable approaches
employ reduced-order mechanical models like Cosserat rods,
which effectively describe slender bodies undergoing large defor-
mations, balancing the accurate representation of complex
mechanics and computational efficiency.
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Soft robots can adaptively interact with unstructured environments. However,
nonlinear soft material properties challenge modeling and control. Learning-
based controllers that leverage efficient mechanical models are promising for
solving complex interaction tasks. This article develops a closed-loop pose/force
controller for a dexterous soft manipulator enabling dynamic pushing tasks using
deep reinforcement learning. Force tests investigate the mechanical properties of
a soft robot module, resulting in orthogonal forces of 9� 13 N. Then, the policy is
trained in simulation leveraging a dynamic Cosserat rod model of the soft robot.
Domain randomization mitigate the sim-to-real gap while careful reward engi-
neering induced pose and force control even without explicit force inputs.
Despite the approximate simulation, the sim-to-real transfer achieved an average
reaching distance of 34� 14 mm (8.1%L� 3.4%L), an average orientation error
of 0.40� 0.29 rad (23°� 17°) and applied pushing forces up to 3 N. Such per-
formance is reasonable for the intended assistive tasks of the manipulator. The
experiments uncovered that the soft robot interacting with the environment
exhibited torsional and counter-balancing movements. Although not explicitly
enforced, they emerged from the mechanical intelligence of the manipulator.
The results demonstrate the potential of soft robotic manipulation via rein-
forcement learning.
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1.1. Article Contribution

In this study, we develop a closed-loop pose/force control
architecture enabling CSMs to perform dynamic pushing tasks
via deep reinforcement learning (RL).

First, we elaborate a simulated environment that handles the
dynamics of the soft robot described by two connected Cosserat
rods and the physical interaction with a spherical object
(Section 2). Then, we design a learning-based control architecture
that enables CSMs to perform pushing tasks, training a policy in
simulation using proximal policy optimization (PPO). To mitigate
the significant sim-to-real gap in soft robotics, we employ domain
randomization (DR), an effective sim-to-real technique in robot-
ics.[18] Herein, we originally applied DR to control a soft robot per-
forming an interaction task in the real world, emphasizing soft
material properties. In addition, we design a reward function such
that the agent learns to rapidly approach the object with the correct
pose and exert pushing forces. This enables pose/force control
even without an explicit force term as an input. Finally, the con-
troller is evaluated in simulation and transferred to the real robot
(Section 3). The results include a discussion of notable simulated
and physical trials that shed some light on domain randomization
and the mechanical intelligence of the soft robot. Furthermore, we
conduct various force tests for one arm module to investigate the
mechanics of the soft robot and its ideal pushing capabilities in
controlled setups. The article concludes with a summary of the
main results and hints for future works (Section 4).

1.2. Related Works

Prior work on manufacturing[19] and modeling[20] of our CSM
only characterized its workspace. For control purposes, it was
employed for trajectory tracking using a data-driven model,[12]

while[21] used the single-section Cosserat rod model to test the
generalization of a control policy to different dynamics in simu-
lation. This article further investigates the CSM mechanics
through force tests and the sim-to-real transfer of an RL control
policy for an interaction task.

Notable model-based position/force controllers were devel-
oped based on a kinetostatic model of continuum rigid arms
making several kinematic and deformability assumptions;[22]

based on a static Cosserat model of a soft arm neglecting
oscillations caused by fast and severe contacts;[23] and for a
planar soft actuator based on a quasi-static PCC with hysteresis
compensation.[24] Our pose/force controller considers the effect
of contact forces dynamically.

Concerning learning-based control of CSMs using rod mod-
els, Naughton et al.[25] effectively controlled Cosserat rods with
RL to adaptively interact with the environment in simulation.
Comparing various deep RL algorithms revealed PPO as the
most consistent. However, in the real world, control policies
trained on rod models were employed for position tracking[26]

or quasi-static positioning with interaction limited to static
payloads[27] with no exploration of the sim-to-real gap. We
sim-to-real transfer a Cosserat-based RL policy for pose/force
control in a dynamic physical task.

Promisingmanipulation tasks for CSMs includeminimally inva-
sive surgery,[28] soft robotic showers,[29] precision agriculture,[30]

or even space debris collection.[31] Toward these efforts, research-
ers explored variants of robotic pushing as a proxy for more com-
plex manipulation tasks.[32] Recently, Yang et al.[33] applied RL for
pushing objects on a plane using a rigid arm equipped with a
soft tactile sensor without DR. Also, Tang et al.[34] proposed a
learning-based approach for simultaneous position and force con-
trol of a soft arm performing a planar assistive task applying
forces up to 0.1 N on a limited workspace. Similarly, an optimal
controller based on meta-learning to interact with changing envi-
ronments was proposed.[35]

In soft robotics, the sim-to-real transfer with DR was adopted
for modeling an optical tactile sensor,[36] for vision-based pose
estimation of origami-inspired continuum robots,[37] and for
tracking circles with an RL policy trained on a PCC model.[38]

Here, we randomize a Cosserat rod-based simulation of
CSMs, emphasizing the material properties.

2. Experimental Section

2.1. Physical Environment

The physical environment comprises a two-module pneumatic
soft manipulator and a force sensor attached to an articulated
arm as shown in Figure 1.

The AM I-Support is a 3D-printed soft robotic arm with three
elliptical pneumatic chambers that can generate large move-
ments by combining stretching and bending.[19] Two terminals
(top and bottom) confine the modules, six rings distributed along
the body constrain the chambers, while nuts and bolts assemble
the parts. Each module has a cross-section of 30mm radius, an
overall length of ≈202mm, and weighs about 183 g. The pneu-
matic chambers are ≈180mm long, while the top and bottom
terminals are ≈20mm and ≈5mm long, respectively. The actua-
tors are distributed axially, at a radial distance of δ ¼ 20mm

(a) (b)

Figure 1. Physical environment. a) The soft robotic arm is oriented down-
ward to reduce the effect of gravity. The force sensor attached to an artic-
ulated arm is moved in the robot workspace at different positions and
orientations. b) A silicone cylinder protects the force sensor plate. The
sensor position corresponds to the centroid of the four reflective markers
on the supporting Plexiglass plate.
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from the cross-section centroid, and equally spaced by 120°
around the center.

The arm was fabricated using the soft material thermoplastic
polyurethane with 80 Shore A hardness (TPU 80 A LF, by BASF),
characterized by 17MPa tensile strength and elongation
at a break of 471%. The Ultimaker S5 (Ultimaker, The
Netherlands) machine equipped with a 0.4 mm nozzle and the
slicing software Ultimaker Cura 4.11 were used to process
TPU 80 A LF and set process parameters. The reduction of voids
(intra-, and inter-layer) in 3D printed parts is crucial to ensure the
airtightness of the soft robotic arm when pressurized. In accor-
dance with,[39,40] we reduced voids and fabricated leakage-free
structures with a low layer thickness of 0.1 mm, an increased
extrusion temperature of 240 °C, and an overlap between adja-
cent beads of 0.1 mm.

To allow complex movements and the coverage of a larger task
space, two identical AM I-Support modules are linked by nuts
and bolts (see Figure 1a). The robot is controlled by an actuation
box composed of six proportional pressure micro-regulators (max
pressure 4 bar) and a control unit comprising an Arduino Due, a
DAC, and an amplifier to manage the pressure micro-regulators.

A protective soft cap attached to the end-effector allows a safe
interaction with the environment by covering the nuts and bolts.
The cup reduces stress peaks and the damage that would result
from almost punctual contact. The protective cup is a sphere sec-
tor with a height of 10mm and a radius of 40mm, made from
TPU using the Ultimaker S3 3D printer.

A six-axis force sensor (Touchence S50C1-WM155-K1-P6I,
50 N maximum range) measures pushing forces applied by
the manipulator at the target pose. The sensor communicates
with the computer using I2C (Inter-Integrated Circuit) bus com-
munication. The sensor plate has a radius of about 7mm.
To prevent damage to the force sensor, a disk with a 55mm
diameter made of Dragonskin30 (Smooth-On, Inc.) is placed
on its plate (red disk in Figure 1b). The force sensor is mounted
on an articulated arm to move it in the robot workspace. The
force sensor is also adopted to conduct force tests to explore
the mechanical capabilities of the soft arm and provide an upper
bound of the maximum applicable force.

Finally, a vision-based motion capture system (VICONMotion
Capture Ltd) tracks retroreflective markers attached to the end-
effector and the sensor frame.

2.2. Simulated Environment

We modeled the physical setup in a computational environment,
extending a state-of-the-art implementation of dynamic Cosserat
rods.[41] A rod is a mono-dimensional object with a length lmuch
larger than the other dimensions. The shape of a rod is described
by the kinematic pose

Rðs, tÞ xðs, tÞ
0T 1

� �
(1)

where xðs, tÞ ∈ R3 is the position vector of the center-line,
s ∈ 0, l½ � is the arc-length material coordinate and t ≥ 0 is time.
The special orthogonal rotation matrix Rðs, tÞ ¼ ½d1ðs, tÞ,
d2ðs, tÞ, d3ðs, tÞ� describes the orientation of the material frame.
The normal and binormal directors d1 ∈ R3 and d2 ∈ R3 span

the rod cross-section, while d3 ¼ d1 � d2 points along the
center-line tangent in absence of shear.

Previous work extended the simulator to consider the pneu-
matic actuation and modeled a module of the AM I-Support
as a Cosserat rod with homogeneous geometrical and material
properties.[20] Extensive motion tasks validated the model of
the single module. Table 1 reports the complete list of parame-
ters used in the numerical simulation. The rod-based model
accounts for geometrical properties like the module length l,
the distance between the centroids of the actuators and the

Table 1. Parameters used for the numerical simulations and domain
randomization in the training process.

Parameter, Symbol (unit) Calibrated
Value

Domain
Randomization
Distribution

Robot Geometry

Module length, l [m] 0.190 Uð0:190, 0:205Þ
Actuator-centroid distance, δ [m] 0.02 Uðδ� 1e� 3Þ
Actuator outer radius, ro [m] 0.00779 Uðro � 0:5e� 3Þ
Actuator wall thickness, tw [m] 0.0014 –

Robot Material

Module mass, m [kg] 0.170 Uð0:170, 0:185Þ
Density, ρ [kg m�3] 1104 Nðρ, 0.01ρÞ
Young modulus, E [Pa] 1:64e6 NðE, 0.01EÞ
Poisson ratio, ν [–] 0.5 –

Translational damping constant, λt [s
�1] 800 Nðλt, 0.01λtÞ

Rotational damping constant, λr [m2s�1] 1e� 4 Nðλr , 0.01λr Þ
Actuator strain gains, γ [–] 1 Nðγ, 0.02Þ
Fixed Joint

Spring constant, kjoint [Nm�1] 1e5 –

Spring dissipation, νjoint [N sm�1] 0 –

Rotational stiffness, kjointt [Nm] 10 –

Rotational damping, νjointt [Nm s rad�1] 0 –

Pressure Transient

Pressure threshold, p0 [bar] 0.2 –

Pressure load time, trise [s] 0.2 –

Pressure unload time, tdrop [s] 0.56 –

Environment

Gravity, g [m s�2] [0,0, –9.80513] Nðg, 0.01gÞ
Numerics

Segments per module, n [–] 20 –

Integration timestep, dt [s] 2e� 4 fdt, dt=2g
Object and Contact

Object radius, r tar [m] – Uð0:005, 0:035Þ
Object density, ρtar [kg m�3] 1000 –

Collision stiffness, kcontact [Nm�1] – Uð10, 500Þ
Collision dissipation, νcontact [N sm�1] 0.1 –

Velocity damping coefficient, νslip [N sm�1] 1e5 –

Friction coefficient, μ [–] 0.5 –
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cross-section δ, the approximated outer radius of the actuators ro,
and the wall thickness of the 3D-printed material tw ¼ 1.4mm.
Similarly, material properties include the module mass m, the
material density ρ, and the elastic modulus E fitted from experi-
mental stretching data, a Poisson ratio of ν ¼ 0.5 assuming
incompressibility, and optimized damping constants for forces
λt and torques λr . Moreover, strain gains γ ∈ R6 capture the
manufacturing variability and material degradation by tuning
the pressure–strain relation εðpÞ for each actuator.[20] The model
also approximates the pressure transient pðtÞ of the pneumatic
actuation system through a polynomial curve parameterized
by minimum pressure threshold p0 ¼ 0.2 bar, load time
trise ¼ 0.2 s, and unload time tdrop ¼ 0.56 s.

To achieve pushing tasks with a dexterous CSM, we further
extend the simulated environment by modeling the two-module
pneumatic CSM and the interaction with the object (see
Figure 2). In particular, a fixed joint connects two identical rods
sequentially by restricting the relative motion and rotation
between rod nodes and elements by applying restoring
forces and torques.[42] The joint is modeled as a stiff spring with

constant translational stiffness kjointt ¼ 1e5 Nm�1, translational

damping νjointt ¼ 0 N sm�1, rotational stiffness kjointr ¼ 10 Nm,

and rotational damping νjointr ¼ 0 Nm s rad�1, found empirically
(see Table 1).

The end-effector of the simulated soft robotic arm interacts
with and pushes objects modeled as spheres of radius rtar and
density ρtar. We approximated the contact between the tip and
the object through repulsive forces of springs uniformly distrib-
uted on the contact surface with stiffness kcontact and constant
damping νcontact ¼ 0.1 N sm�1. In addition to the contact forces,
we employed friction forces combining Coulomb friction with
coefficient μ ¼ 0.5 and a damper opposing the tangential slip
velocity with coefficient νslip ¼ 1e5 N sm�1 as detailed in.[43]

Finally, we achieved a good tradeoff between computing time,
accuracy, and numerical stability by discretizing each rod into
n ¼ 20 segments of equal length and integrating the dynamics
with time-step dt ¼ 2e� 4 s. Both rods were subject to gravita-
tional forces g. This simulated environment was used to train
the controller.

2.3. Control Architecture for Pushing

To address the pushing task using the soft robotic arm, we
designed a closed-loop dynamic controller that considers the
pose of the end-effector, the object pose, and the object dimen-
sion. Figure 3 shows an overview of the control scheme.

The controller consists of a feed-forward neural network with
two hidden layers, each with 512 neurons with tanh activation
function. The output layer has a linear activation function.
The neural network takes as input a vector xt ∈ R28 composed as

xt ¼ dt, dt�1, x
tip
t , xtipt�1, x

tip
t�2, q

tar, qtipt , qtipt�1, r
tar

h i
(2)

where xtipt ∈ R3 is the current end-effector position while
qtipt ∈ R4 is the current end-effector orientation expressed as a
unit quaternion. The vector dt ¼ xtar � xtipt ∈ R3 is the current
distance between the end-effector and the object surface xtar,
while qtar is the object pose and rtar expresses the object dimen-
sion (e.g., the sphere radius). Observe that for the tracking error
d, the end-effector position xtip and orientation qtip we include
previous observations. This inclusion enables the network to cap-
ture the rate of change of these quantities and potentially infer
their velocity and acceleration. Although the controller does not
receive an explicit force term, the designed reward enables an
implicit force control to achieve pushing tasks with CSMs.

The controller outputs differential pressures Δp ∈ R6 for the
six pneumatic actuators, with Δpi ∈ f0.0, � 0.1, � 0.2g bar.
The control policy operates at a frequency of 10 Hz.

2.4. Reinforcement Learning for Pushing

We derive a controller for pushing tasks with CSMs using deep
reinforcement learning (RL). Generally, an RL agent receives at
each time step t an observation ot from the environment (a partial
view of the complete environment state st). The agent acts accord-
ing to a policy πmapping states/observations to actions at, which
can be deterministic or stochastic. The agent receives a scalar
reward signal rðs, aÞ reflecting the level of task performance.
Here, the agent is the controller implementing a feed-forward
neural network. The RL environment comprises the two-section
soft robotic arm and an object, simulated with two sequential
Cosserat rods and a sphere. Therefore, the agent receives contin-
uous observations ot ¼ xt and outputs discrete actions at ¼ Δpt.
Observation and action spaces are min-max scaled in the interval
½�1, 1� to improve the numerical stability of the training process.

2.4.1. Proximal Policy Optimization

We trained the controller using proximal policy optimization
(PPO), a policy-gradient method appropriate for continuous con-
trol tasks.[44] The algorithm jointly optimizes a stochastic policy
πðajsÞ and a value-function approximator alternating between
two phases: 1) sampling data with the policy through episodic
interactions with the environment, and 2) optimizing the policy
on the sampled data using stochastic gradient ascent. The objec-
tive function penalizes aggressive policy updates by clipping the
probability ratio of the current and old policy. We selected PPO

Figure 2. Rendering of the simulation environment including a Cosserat
rod model of the soft robot and a spherical object.
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because it often outperforms other online policy gradient meth-
ods, striking a good tradeoff between sample complexity, simplic-
ity in hyperparameter tuning, and computing time.[44] We adopt
the reliable implementation provided by.[45]

2.4.2. Reward Engineering for Pose/Force Control

We define a reward function for pushing with a soft manipulator
considering position, orientation, and applied force

rt ¼ �10 if NaN
rapproach þ rpush þ rclick otherwise

�
(3)

The penalty term of �10 discourages actions that would cause
numerical instabilities.[25]

A combined approach term induces the agent to reach the
position of the object with a correct orientation:

rapproach ¼ 5.0 ⋅ rdist þ 0.02 ⋅ rori (4)

where rdist ¼ �jjdjj2 rewards proportional to the distance
between the end-effector and the target, while the orientation
term rori ¼ �dtip3 ⋅ dtar3 � 1 is a linear function of the cosine
formed by the tangent directors of the end-effector and the
object. The reward for approaching the target is always nonpos-
itive and contributes only when the end-effector is not touching
the sphere.

Conversely, when there is contact, the agent receives a positive
reward proportional to the pushing force:

rpush ¼ min fð � f tar · dtar3 Þ=f th3 , 1g (5)

where f tar ∈ R3 is the force vector exerted by the robot on the
sphere. We project the force vector on the object director dtar3 ,
then normalize the quantity dividing by f th3 ∈ R, the force thresh-
old needed to terminate the task.

Finally, the agent receives a positive bonus reward rclick for
quickly terminating the pushing task

rclick ¼ 0.1þ expð�tf =TÞ (6)

where tf is the final episode time and T is the time limit. In sum-
mary, closed-loop pose control is attained through explicit control
inputs (2) and rewards (4). In addition, the combination of (5)
and (6) provides an implicit mean to enable force control with
CSMs.

2.5. Training Process

2.5.1. Task Generation

The objective of the reinforcement learning agent is to make
the soft arm approach a position xtar with a desired orientation
qtar and apply a force to push an object along the orthogonal
director dtar3 . Each episode starts with the soft robotic arm unac-

tuated and in resting position, xtip0 ¼ ½0, 0, �L�, and the sphere
oriented and fixed in space as shown in Figure 2. The training
episodes terminated in case of numerical errors, if the task
reached the time limit of T ¼ 7 s, or when the magnitude of
the pushing force surpassed a random threshold f th3 .

For each episode, an arbitrary task generator produced a target
position xtar and orientation qtar. First, it sampled the object

Figure 3. Control scheme for pushing tasks. An arbitrary task generator provides target positions xtar and orientations qtar of a spherical object of radius
r tar with required pushing force f th3 . The robot environment comprising the AM I-Support, a force sensor, and a motion capture system provides the
complete end-effector pose (i.e., xtip and qtip) at various time steps t, and the pushing force applied to the object f tar3 . The reinforcement learning policy
combines the observations to control the soft robot through differential pressures Δp. The task terminates for time limits or for surpassing the required
pushing force.
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positions from the lower hemisphere of a unit sphere, virtually
centered at the initial end-effector position. Then, the 3D coor-
dinates were scaled on each axis by a random absolute value
between 100 and 200mm. Also, the object positions were shifted
randomly by a maximum of �10mm in each coordinate. The
baseline object orientation dtar3 was given by the inward normal
of the unit sphere perturbed randomly by a rotation around an
axis with an angle between 0 and 7 degrees. Finally, the complete
object pose was obtained by appropriately sampling the normal-
binormal object directors. Moreover, we randomized the object’s
physical properties (e.g., dimension and stiffness) to set a force
threshold f tar3 . The process ensured that the controller visited dif-
ferent poses in a large workspace (about 400� 400� 150mm)
and experienced a wide range of forces.

2.5.2. Model Selection and Learning

We trained a stochastic policy using PPO to solicit exploration in
the environment. Following an empirical model selection and
fine-tuning of hyper-parameters, the learning lasted 5.0 million
time steps, ≈120 k episodes, equivalent to about 1400 h of simu-
lated learning experience. Due to hardware constraints, the train-
ing episodes were collected by N ¼ 8 parallel agents interacting
with the environment for M ¼ 64 time steps per policy update.
The policy weights were updated at each iteration based on the
collected N ⋅M samples using stochastic gradient ascent for ten
epochs, with four mini-batches and 3e� 4 learning rate.
The training took place in simulation for about 88 wallclock
hours on a standard PC (Intel i7-7700k CPU @ 4.20 GHz� 8,
32 GB RAM). However, the obtained policy allowed real-time
control thanks to high inference frequency (about 1000Hz).

As shown in Figure 4, the trend of the exponential moving
average of the rewards collected during the training episodes
is increasing and converging. Similarly, the episode duration
tends to decrease thanks to the reward incentive (6) to complete
the task quickly.

2.6. Domain Randomization and Noise

To cope with the significant gap between simulation and reality
in soft robotics, improve the generalization capabilities, and aid

the sim-to-real transfer of the control policy, we employ domain
randomization.[46] In each episode, we randomized thirteen sim-
ulation parameters about the robot morphology, the object, the
environment, and numerics (see Table 1). Moreover, observation
and actuation noise were applied at every control step.

2.6.1. Geometry Randomization

Geometrical properties significantly influence the kinematics of
soft robots. For instance, the length l of each arm module was
arbitrarily sampled uniformly from an interval exceeding the
design length of 202mm. This approach addresses the tendency
of the physical robot to remain partially stretched after prolonged
usage. The Cosserat model used does not consider this phenom-
enon. Therefore, concerning the sim-to-real gap, the control pol-
icy would benefit from experience operating with arms of slightly
different lengths. Moreover, randomizing the distance between
the cross-section centroid and the actuator δ allows us to cope
with offsets of actuator positioning on the cross-section resulting
from manufacturing variabilities[47] or the interaction with the
environment. Finally, the training process sampled the outer
radius of the elliptical pneumatic actuators from a uniform dis-
tribution in the interval ½ro � 0.5, ro þ 0.5� mm to consider the
uneven geometry of the actuator cross-section along the length
of the arm.[19]

2.6.2. Material Randomization

Materials are one of the most important contributors to the
dynamics of soft robots. For instance, previous work has shown
how changes in material properties affected a control policy in
tracking tasks.[21] We sampled the material density ρ, the elastic
modulus E, the coefficients of translational λt and rotational λr
damping from normal distributions centered at calibrated values
and with 1% of standard deviation. The strain gains of the actua-
tors γ were randomized using a wider normal distribution with a
2% standard deviation. The parameter distribution addressed the
gap between the physical and simulated robot due to the irregu-
larities and degradation of the 3D-printed actuators as studied in
Alessi et al.[20] Finally, the mass m of the module is sampled uni-
formly from an interval that loosely includes the calibrated value
to counter model approximations and unmodelled effects.

2.6.3. Object and Contact Randomization

Varying the parameters of the object and contact is fundamental
for addressing the sim-to-real gap in interaction tasks. Hence, we
uniformly sampled the sphere radius rtar in the interval ½5, 35�
mm and the contact stiffness kcontact between 10 and 500 Nm�1.

2.6.4. Environment and Numerical Randomization

To prepare the controller to adapt to unknown environments and
interactions, we changed the direction and strength of the gravi-
tational acceleration g̃ acting on the robot. The three vector com-
ponents were sampled from a normal distribution with mean g
and standard deviation 1%g. This method includes uniformly

Figure 4. Learning trends: rewards and duration of the training episodes
(exponential moving averages). The agent learned to terminate the push-
ing task rapidly.
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distributed forces f ðsÞ ¼ dm ⋅ ðg̃ � gÞ that perturb the system
efficiently, where dm ¼ m=n is the elemental mass.

In addition, we sampled the integration timestep dt from the
set f1e� 4, 2e� 4g s with equal probability to let the agent expe-
rience different simulation timescales. This choice also main-
tained the simulation stable.

2.6.5. Observation and Actuation Noise

Noise was applied to observations and actions at each control step
to deal with the inherent uncertainty of sensors and actuators.
Specifically, an additive multivariate Gaussian noise with 0 mean
and 1mm of standard deviation were applied to the current

distance vector dt and tip position xtipt to mitigate the uncertain-
ties of the vision system. Moreover, we perturbed the object ori-

entation qtar and the current tip orientation qtipt through a rotation
of 3 degrees around a random axis.

Finally, we added noise pnoise ≈ Nð0, 0:0175Þ bar to the differ-
ential actuation Δp. This process not only captured the variability
of the pneumatic system but also helped the agent explore the
state-action space during training.

3. Results and Discussion

After training the reinforcement learning policy, we tested the
controller in simulation and on the physical robot. We report
results about three metrics that define the pushing task. First,
the distance between the end-effector and target d ¼ jjdjj quan-
tifies the reaching quality. The distance is reported in mm and
normalized relative to the total manipulator length L ¼ 2l
plus the length of the soft cap. Then, the angular error

θ ¼ jπ � arccosðdtip3 ⋅ dtar3 Þj between the end-effector and the tar-
get tangent directors, where π is the optimal angle. An angular
error θ < π=2 is sufficient to enable pushing. Finally, we com-
pute the pushing force f tar3 ¼ �f tar ⋅ dtar3 as the force projected
on the normal director. We discuss notable simulated and exper-
imental trials, which may offer insights into domain randomiza-
tion and sim-to-real gap.

3.1. Force Tests for the AM I-Support

We conducted six force tests for a single module to assess the
mechanical capabilities of the 3D-printed pneumatic soft arm.
We clamped the module at one end oriented downward at vari-
ous vertical distances Δz from the force sensor (see Figure 5).
To better mimic the real pushing scenario, the robot operated
without the support of a central backbone. For each distance,
the robot stretched by actuating the three chambers equally with
incremental steps of Δp ¼ 0.5 bar. The pressure incremented
until the robot exhibited buckling instability to safeguard the soft
actuators (see Figure 5a). We repeated each experiment for five
trials and recorded the orthogonal forces f tar3 .

As shown in Figure 5b, the average maximum forces mea-
sured along the orthogonal of the sensor plate were between 9
and 13 N. The force tests provided an upper bound of the appli-
cable forces. Indeed, the robot cannot attain such maximum
forces for tilted poses and for the mechanical complexity of
the additional robot module. The buckling instabilities resulted
from the different pressure–strain performance of the pneu-
matic actuators. Although a supporting backbone would allow
more precise force measurements and derivation of parametric
force–pressure curves, the results would deviate further than
those expected in uncontrolled settings.

3.2. Control with Domain Randomization

The control policy was evaluated in simulation for experiments
generated with domain randomization. For example, Figure 6
shows the soft robot successfully approaching the object and
applying a pushing force with precise orientation. Here, the pol-
icy smoothly reduced the initial pose error d0 ¼ 125mm and
θ0 ¼ 1.3 rad to d ¼ 4mm and θ ¼ 0.02 rad.

Figure 7a reports overall statistics for the simulated tasks.
The controller achieved an average reaching distance d of
17� 11mm (i.e., 4.53%L� 2.95%L). This value is about half
the 30mm end-effector radius, which allows the robot to touch
the object and exert forces. The distance distribution spreads
between a minimum of 0.5 mm and a maximum of 89mm.
The latter value corresponds to a notable trial where domain

(a) (b)

Figure 5. Force tests for the AM I-Support. a) Soft robot with one end fixed and one free end at distance Δz from the sensor. The arm exhibits buckling
instability. b) Mean and standard deviation of the maximum forces applied.
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randomization sampled a challenging combination of
simulation parameters (see Figure 7b). Indeed, we inspected
the experiment and uncovered a target in a distant position
xtar ¼ ½172;�45, �393�mm. Whatsmore, the robot was subject
to a distributed acceleration g̃ ¼ ½�0.034, 0.131, �9.567�m s�1,
which caused a net perturbation in direction
½�0.034, 0.131, 0.239�m s�1. The perturbation has relatively
strong components in the opposite direction of the task.
This limited the robot’s dexterity and workspace.

Concerning orientation, the angular error θ corresponding
to the position with minimum distance attained a mean of
0.3� 0.2 rad (17°� 12°). The orientation error spanned the inter-
val ½0.02, 1.43� rad (i.e., between 1° and 81°). These angular errors
are below the threshold π=2. Therefore, they enable the robot to
apply a force component along the orthogonal director of the tar-
get, dtar3 , which is functional to the task.

Finally, the policy controlled the end-effector to push objects
with an average force f tar3 of 4.81� 4.18 N, spanning the interval

(a) (b)

Figure 6. Control policy in simulation. a) The soft robot pushes the object at distance d0 ¼ ½80, �91, �33�mm and relative angle θ0 ¼ 1.3 rad (75°) with
force f tar3 ¼ 2.1 N. b) The simulated soft manipulator pushing in 3D space.

(a) (b) (c)

Figure 7. Control in simulation with domain randomization. a) Box plots of the distribution of reaching distance d, angular error θ between the end-
effector and the object orientation, and the pushing force f tar3 applied (blue line shows the mean). b) Experiment with high position error due to strong
perturbation (red). c) Experiment with high pushing force thanks to high contact stiffness and concord perturbation (green).
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½0.04, 38�N. A few maximal forces are beyond the expected upper
bounds of 9–13 N given by the force tests. Here, high forces were
allowed by a relatively central position of the object coupled with
a perturbation that favored the task and the absence of buckling
instability (see Figure 7c). A sphere of radius rtar ¼ 32mm with
high contact stiffness k ¼ 426 Nm�1 also contributed to high
simulated forces. It is worth observing the torsion exhibited
by the distal module due to the interaction with the object.

3.3. Sim-to-Real Transfer of Pushing Policy

After the validation in simulation and discussing a few domain
randomization examples, we transferred the control policy to the
physical environment without further training (i.e., zero-shot
sim-to-real transfer). The small neural network size allowed
real-time control. We generated real-world pushing tasks with
various poses in the robot workspace by moving the articulated
arm supporting the force sensor.

Figure 8 showcases a notable sim-to-real transfer in a challeng-
ing trial. The policy controls the robot to approach the object and
push along the target orientation. The initial reaching distance
d ¼ 148mm decreases to d ¼ 20mm. Upon contact between
the end-effector and the object, the robot adapts to the interaction
and achieves a perfect orientation of θ ¼ 0.0 rad. Then, the push-
ing force f tar3 increases and finally surpasses the threshold f th3 in
less than 5 s (see Figure 8a). Surprisingly, the soft arm during the
pushing tasks exhibited interesting mechanical behaviors like
non-actuated arm torsion and the counter-balancing of the prox-
imal part as a result of the interaction with the environment
(see Figure 8b and Supporting Information). These behaviors
were not explicitly programmed or imposed in the reward func-
tion but naturally emerged from the mechanical intelligence of

the soft robot coupled with the rich sensory information of the
control policy. We show several trials in the Supporting
Information video. It is worth noting that the simulated soft
arm did not exhibit buckling instability like the proximal part
of the physical arm. The discrepancy could be due to using a sin-
gle Cosserat rod to represent the entire robot module with three
pneumatic actuators. Perhaps modeling each actuator with a ded-
icated rod would have increased the simulation fidelity. However,
this would have significantly increased the computational cost.
Thanks to the approximate robot model developed, we could
train a control policy efficiently.

Regarding statistics, Figure 9a reports an overview of the
physical experiments. In particular, the control policy achieved
a satisfactory average reaching distance d of 34� 14mm (the
equivalent of 8.1%L� 3.4%L ). The reaching distance spans
the interval between 12 and 90mm. The trial with the maximum
distance value corresponds to a target with a challenging pose
(shown in Figure 9b). Despite a high position error for this
outlier, the policy achieved an accurate orientation with
θ ¼ 0.14 rad (8°), which would have allowed the robot to push.

Similarly, the control policy attained a mean absolute angular
error θ of 0.40� 0.29 rad (23°� 17°), far below the maximum ori-
entation error of π=2 needed to exert forces. Also, the spread of the
angular error measured with an interquartile range of 0.26 rad was
low. The value of θ ranged between a minimum of 0.05 (3°) rad
and a maximum of 2.29 rad (131°). The trial related to this outlier
is visualized in Figure 9c. While the end-effector achieved a poor
orientation, the reaching distance d ¼ 41mm was acceptable.

Concerning the pushing forces, the force sensor registered
loads f tar3 in the axis orthogonal to the sensor plate in the range
½0.46, 3.08�N with mean 0.96� 0.52 N. This force range is reason-
able for the assistive purposes of the soft arm in interaction tasks.[29]

(a) (b)

Figure 8. Sim-to-real transfer. a) The soft robot rapidly pushes the object displaced at distance d0 ¼ ½20, �147, 10�mm and relative angle θ0 ¼ 1.24 rad
(71°) with force f tar3 ¼ 2.91 N. b) The soft manipulator pushing in 3D space.
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4. Conclusion

Empowering soft robots to perform interaction tasks autono-
mously still presents challenges. However, the sim-to-real trans-
fer of reinforcement learning policies trained on efficient
mechanical models seems promising. This article developed a
closed-loop pose/force controller for soft robotic arms to rapidly
perform pushing tasks parametrized by position, orientation,
and force. The policy trained on a simulated environment
comprising a dynamic Cosserat rod model of the soft arm. In
particular, PPO was augmented with domain randomization
to mitigate the persistent sim-to-real gap in soft robotics. The val-
idation of the control policy investigated the effects of domain
randomization in simulation. Despite the approximate training
environment, the sim-to-real transfer of the controller was satis-
factory, achieving an average pose error of 34� 14mm and
0.40� 0.29 rad and applying forces up to 3 N. Moreover, the
real-world experiments revealed interesting twisting and balanc-
ing behaviors, which naturally emerged from the interaction
between the robot and the object. Overall, this article contributes
toward soft manipulators learning physical interaction tasks.

4.1. Limitation and Future Work

Although the results demonstrated the effectiveness of reinforce-
ment learning for interaction tasks with soft robots, there are
opportunities to improve the control policy.

Future work could improve the sim-to-real transfer by reduc-
ing the gap between reality and simulation through an effort in
model calibration. For instance, a data-driven approach could

augment the Cosserat rod model to address unmodelled effects.
In addition, the contact model could be improved and validated
with experimental data. Moreover, more sophisticated domain ran-
domization strategies could better direct the training process.[48]

Concerning task generation, despite the manipulator’s dexter-
ity, some combinations of positions and orientations could be
unattainable. Therefore, we envisage improvements in pose con-
trol by generating tasks from experimental motion data, which
better consider the physiological robot capabilities.

Regarding force measurements in the pushing task, the manip-
ulator could solicit the force sensor only when the end-effector
touched the tiny sensor plate. In addition, the soft disk protecting
the sensor from damage also attenuated the pushing force.
Conversely, forces in the simulation were distributed over the object
surface and could be accessed easily. We envisage that engineering
ad-hoc physical environments could give more accurate force meas-
urements. Further improvements in the control policy could apply
filters to simulated and measured forces to reduce noise, allowing
force as a control input in complex manipulation tasks.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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(a) (b) (c)

Figure 9. Control policy evaluation in the real world. a) Box plots of the distribution of reaching distance d, angular error θ between the end-effector and
the object orientation, and the pushing force f tar3 applied (blue line shows the mean). b) Experiment with a high reaching distance but low orientation error
(red). c) Experiment with a low reaching distance but high orientation error (orange). The trial marked green refers to Figure 8.
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