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ABSTRACT In-network function offloading using programmable data plane languages like P4 offers
computational resource savings and efficient operations at the network edge. However, the deployment
of ML functions in P4 switches exploiting no additional hardware remains a challenge. In this paper, we
tackle the challenges in deploying Deep Neural Networks (DNNs) within programmable network devices,
introducing a novel distillation based on Look-Up Tables (LUTs). The proposed method maps quantized
DNNs into a cascaded arrangement of LUTs without loss in accuracy and independently of the quantized
network depth. The developed approach is demonstrated in two network function use cases: a cyber
security use case focused on mitigating Distributed Denial of Service attacks and a malicious activity
classification task in IoT Networks. Experimental results show a trade-off between model’s accuracy,
expressed in terms of F1-Score and the computational demands, influenced by bit size and number of
LUTs. In addition, the latency for deploying these models ranged from 54ns to 112ns, showing the
method’s practical applicability in network functions.

INDEX TERMS Cyber security, deep neural networks, look-up tables, P4, traffic classification.

I. INTRODUCTION

IN THE foreseeable future, the deployment of in-network
Machine Learning (ML) is expected to revolutionize

network devices, enabling them to process data such as
packets, flows, and aggregate traffic at wirespeed, without
intermediate processing chains. This advancement will be
supported by built-in ML-enabled components [1], [2]. The
trend of in-network function offloading is gaining popularity
due to the maturity and flexibility of programmable data
plane languages such as P4. This approach holds the
potential to deliver programmable and versatile networking
operations at the data plane, leading to computational
resource savings for edge applications with limited energy
consumption, as the network infrastructure devices can be
reused [3].

Until now, ML-related network accelerations have often
been relegated to external and dedicated backends, such
as co-located Field-Programmable Gate Arrays (FPGAs) or
servers equipped with Graphics Processing Units (GPUs).
However, this approach has resulted in suboptimal solu-
tions, introducing additional latency and with low energy
efficiency. A more promising solution lies in extracting
ML features at the data plane and performing cloud-based
inference [4].
Recent endeavors to introduce ML algorithms directly

at the data plane of programmable devices have explored
reconfigurable pipelines capable of reproducing or approx-
imating ML algorithms through flow tables and stateful
operations [5]. For instance, recent works have focused
on implementing binary neural networks at the Network
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Interface Card (NIC) [6] and specific ML algorithms
like Support Vector Machines (SVMs) [7], Decision Trees
(DTs) [8], and Random Forests (RFs) [9].
On the other hand, deploying Deep Neural Networks

(DNNs) inside programmable network devices presents sig-
nificant hardware constraints. The DNN workflow requires
fast Arithmetic Logic Units (ALU) for efficient neuron com-
putation and high-speed stateful memory updates. However,
programmable hardware pipelines are designed to accommo-
date numerous match-action flow tables, which offer limited
arithmetic variable manipulation and low stateful memory
update rates. Consequently, only P4 DNN implementations
for software switches or smart NICs have been presented so
far [10], [11], [12], with significantly limited performance
capabilities in terms of introduced latency and resource
management.
In this paper, we propose a Look-Up Table (LUT)

distillation method that maps the P4 DNN pipeline, which
inherently demands ALU and substantial stateful capabilities,
into a cascaded architecture of simple flow tables. The
method, inspired by knowledge distillation techniques [13]
is based on the mapping of all possible outputs of the
quantized DNN. These flow tables match input features with
DNN outcomes, effectively creating a simple aggregated
input/output LUT. Importantly, our distillation technique is
lossless, ensuring no information is lost during the mapping
from the quantized DNN to LUT. Additionally, the method
is agnostic to DNN complexity and is able to reproduce the
input-output behavior of a DNN with an arbitrary number
of hidden layers, as it requires a fixed amount of resources
for the distilled LUT, provided that inputs and outputs
adhere to hardware memory constraints. To demonstrate
the practical application of our approach, we apply it to a
number of different network functions: a cyber security use
case focused on mitigating Distributed Denial of Service
(DDoS) attacks, and an IoT anomaly activity classification.
Experimental results performed on the mapping from the
DNN model to the proposed distillation technique, combined
with the performance parameters indicators extracted from
the deployment on a commercially available programmable
switch showcase the feasibility and advantages of our
distillation technique within a P4 pipeline, specifically its
efficient utilization of stateless features compared to other
existing offloading deployments in the data plane, such
as entropy-based anomaly detection strategies [14], which
typically necessitate large stateful memories. Ultimately, our
proposed LUT distillation technique represents a critical
first demonstration of fully offloaded DNN-based functions
within network programmable devices.

II. BACKGROUND
A. MACHINE LEARNING AND AI FOR NETWORK
FUNCTIONS
ML techniques have been applied to various problem
domains, from healthcare to robotics [15]. As the amount of
data grows and the complexity of network architectures rise,

ML algorithms have been recently adopted in networking
problems. Indeed, issues regarding human network adminis-
trators in overseeing every aspect of networks are becoming
evident: a challenge that is expected to intensify with the
continuous expansion of network complexity [16].
Hence, with next generation networks expected to be

self-driven [16], ML algorithms represent an incredible
opportunity to overcome the management and optimization
problem. For instance, authors in [17], introduce a method
to combat DDoS attacks, which are a significant threat
to network security. Utilizing software-defined networking
(SDN), the approach integrates a one-dimensional convo-
lutional neural network (1D-CNN) with a Ryu controller
and Mininet for efficient detection and mitigation of DDoS
attacks. The 1D-CNN model performance significantly sur-
passes other machine learning models.
Besides cybersecurity, ML techniques can be applied

to many other aspects of networking. In the context of
congestion control, in [18], the authors present a novel
approach that integrates ML and heuristic strategies to
enhance network performance in terms of fairness, latency,
and packet drop rate. The proposed strategy not only lowers
end-to-end latency, but also significantly diminishes packet
drop rates and enhances fairness.

B. PROGRAMMABLE DATA PLANE (PDP) AND P4
The SDN paradigm has gained wide consensus, introducing
the concept of network programmability. In its early stages,
the adoption of network programmability was primarily
facilitated by the OpenFlow protocol. To delve deeper,
OpenFlow switches possess the ability to process and
manipulate a predefined set of headers. Furthermore, they
enable the creation of tables with a fixed set of actions
designed for traffic management [19]. Subsequently, the
potential for complete access to the network operating system
(NOS) and data plane pipelines enables the attainment of
full network programmability.
This advancement laid the foundation for the emer-

gence of the P4 (Programming Protocol-Independent Packet
Processors) language. As described in [20], P4 is a program-
ming language for creating custom data plane pipelines. P4
enables the definition and manipulation of customized packet
headers by creating dedicated packet parsers. It supports
the utilization of counters, registers, facilitating the creation
of stateful functions. Furthermore, thanks to P4 high-level
language properties of logic and arithmetic manipulation,
it becomes feasible to perform various simple arithmetic
operations, such as addition, subtraction, multiplication, and
division. Additionally, P4 enhances network visibility, par-
ticularly through methods like In-band Network Telemetry
(INT). P4 finds support across various target platforms,
including bare metal or software switches, smart-NICs,
and NetFPGAs. As presented in [21], P4 finds application
in a diverse range of use cases, encompassing network
telemetry, network features, middlebox functions, accelerated
computation, cybersecurity, etc.
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In [22], a novel pipeline is implemented to deliver
stateful traffic engineering and cybersecurity functionalities
on an edge node tailored for a multi-layer IP over optical
network. Additionally, the concept of augmented firewalling
capabilities is envisaged to counteract DDoS cyberattacks.
Further P4 use cases within multi-layer networks are detailed
in [11], encompassing end-to-end optical performance indi-
cator telemetry exchanged among packet-optical nodes, as
well as P4-defined neural networks designed to enhance
online cybersecurity measures. P4 can be also used to
implement active queue management (AQM) algorithms,
in [23] the CoDel (Controlled Delay) algorithm is success-
fully implemented and showcased on a P4 hardware switch.
Packets processed through the ingress pipeline are placed
in a queue within the traffic manager block. Subsequently,
in the egress pipeline, the CoDel algorithm is employed to
regulate queueing delay by selectively discarding packets.

C. EXISTING IN-NETWORK ML FUNCTIONS
While there is a current gap in strategies to seamlessly incor-
porate DNNs at wire-speed within programmable switches,
other machine learning techniques have been applied in
online functions within network devices. Some recent
research works in the literature have explored the potential
of in-network applications that leverage programmable data
planes to address this challenge. The main considered
machine learning algorithms embedded in the programmable
data plane pipelines are the DT, the RF, and the NN [24].
Concerning the latter, however, modified ASICs are mainly
used [25].

In [26], the authors propose a machine learning-based
method, based on DTs, for predicting heavy flows directly
within the switch. Given the limited memory and computa-
tion capabilities, the solution employs a packet processing
pipeline that utilizes pre-trained DT models for in-network
prediction, evaluated in BMv2 and in the Tofino ASIC.
Extending this approach to utilize a broader ensemble of

machine learning techniques, [27] introduces an approach
that incorporates the RF algorithm into a programmable
switch. Such integration makes the RF both configurable and
re-configurable in real-time, demonstrating the estimation
of flow-level stateful features, such as round-trip time and
bitrate for each network flow.
Another recent work [28] proposes a novel mapping

method of ML classification models to off-the-shelf switches.
However, the discussed approach only supports tree-based
classification models and classical model, such as SVM and
K-Means. Additionally, the proposed method adopts a hybrid
approach for ensemble models, running a small model on
a switch and a large model on the backend. Our approach,
on the other hand, enables the deployment of DNN with no
additional hardware.
A relevant work in the field in-network ML proposes

and deploys a comprehensive tool called Planter [5]. Planter
automatically maps different types of ML models, includ-
ing related datasets and training steps for the specific

network function, into a P4 code deployable on different
software/hardware backends, utilizing the state of the art
of the literature. Concerning DNN, Planter supports the P4
deployment of binary neural networks (BNNs).
Still in the context of binarized NNs, in [29] the authors

propose show how BNNs can be implemented as switch
functions at the network edge to classify packets at the
line speed of the switches. However, it is important to note
that this method is limited to the use of BNNs. In [30]
an NN layer splitting framework is discussed, allowing to
overcome small memory constraints when implementing NN
models in one switch. However, the solution is still limited
to the context of BNNs and involves multiple switches, e.g.,
requiring more hardware and potentially more sophisticated
network management tool.
Finally, a new hardware architecture for per-packet

ML in the data plane of network devices is introduced
in [31], namely Taurus. The proposed solution leverages
custom hardware based on a flexible, parallel-patterns
(MapReduce) abstraction to enable per-packet MapReduce
operations, which includes inference tasks executed at line
rate. Taurus adds new hardware components to existing
network devices, specifically implementing SIMD (Single
Instruction, Multiple Data) parallelism to support its per-
packet ML operations, e.g., multiplications, resulting in
additional hardware.

III. NETWORK-INLINE PROGRAMMABLE DNN
A. ARCHITECTURAL STRATEGIES TO INCLUDE DNNS
IN NETWORK FUNCTIONS
While solutions have been proposed to enable ML-driven
functions within the networks, resorting to DNN-based
algorithms is still challenging. This is because neural
networks require distributed and non-linear computations,
while algorithms such as decision trees or support vector
machines do not and are more easily implemented within
the available network functionalities. We have divided
the solutions to include DNNs in network functions
in four architectural approaches, which are depicted in
figure 1.

In architecture a), the switch or NIC, receive and match
selected packets/flows. These packets/flows are directed
towards an external device, such as an FPGA, where the
DNN is deployed. The result produced after neural network
inference is transmitted back to the switch/NIC through
internal interfaces (e.g., dedicated or SDN control plane
interfaces). In this design, packets my be stored within
dedicated buffers while awaiting prediction or classification,
or they can be immediately directed towards the external
device. In either scenario, the process of chaining devices
introduces several delays and lacks power efficiency as
it demands the operation of two devices, ideally at wire
speed.
In architecture b) the switch/NIC is enhanced to manage

both packet and metadata processing with the aim of
extracting DNN features during runtime. This relieves part of
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FIGURE 1. Strategies for the deployment of ML models at the Switch/NIC side. (a) the packet flow is directly sent to a co-located FPGA, which parses the data and runs a DNN.
(b) Hybrid strategy where packet features are extracted within the switch/NIC and sent to the DNN run on a GPU. (c) Switch embedding a GPU, actually non programmable within
the P4 environment (d) The ML model is deployed in the pipeline within the switch/NIC.

the computational burden from the external device, as feature
extraction stands out as a time and resource consuming
process, particularly when conducted through software-based
methods. This method is faster and more effective at the
data plane level where programmable parsers and a limited
amount of memory registers and counters are used [4].
The DNN processing is still delegated to a specialized
and external device, such as a GPU, while the switch/NIC
handles packet enforcement and deparser tasks. Once more,
the packets must be buffered as they await the outcome of
the DNN processing.
The recent efforts in embedding DNN processing in

network functionalities have resulted in architecture c),
where a GPU is co-located within the hardware switch. In
fact, novel switch and smart NIC platforms are encompassing
the embedding of a GPU dedicated to ML algorithms
in support of programmable ASIC devoted to network
functions. The main advantage is that the use of internal GPU
drastically speeds up the processing and detection workflow,
since the communication between the two modules is embed-
ded and optimized, relying on internal bus architecture. On
the other hand, relying on a GPU results in low energy
efficiency.
Finally, architecture d) illustrates the proposed solution,

where the entire pipeline, including the DNN function, is
offloaded into the programmable switch/NIC. This approach
eliminates the necessity for any additional devices. The
design incorporates parsers, feature extraction, and the DNN
macro-function operating at wire speed exploiting only
match-actions in LUTs. This configuration minimizes the
need for packet buffering and reduces latency, as the entire
process is executed using just one device. Moreover, the
influence of a programmable chipset in comparison to a
fixed-function ASIC is negligible [32]. The modular P4
design enables the acceleration of multiple network functions
within the same pipeline/device. As a result, supplementary
functions such as forwarding/steering and load balancing can
coexist seamlessly with the DNN-based in-network function.
Additionally, the proposed architecture integrates the ML

model directly into the pipeline, allowing for a more energy-
efficient operation, as the network hardware can be optimized
to execute these operations with lower power consumption
compared to a GPU setup.

B. CURRENT LIMITATIONS IN PROGRAMMABLE
SWITCHES
Nowadays the limitations in programmable switches are:
1) parallelizing the operation is either prevented or signif-
icantly restricted 2) hardware backends do not encompass
all the capabilities offered by the P4 language. This lim-
itation leads to latency performance that falls below the
optimal level. For instance, when examining the P4 DNN
implementation in software switches that maximizes the
potential of the P4 language, the intra-switch latency is
around one order of magnitude higher for standard pipelines
(e.g., forwarding and steering) [11]. This limitation arises
from the hardware vendors’ chipset design strategies, which
prioritize meeting network requirements, such as providing
fast memories for lookup tables, over adding computational
resources like ALUs. While the last architecture discussed in
the previous section is the only approach that enables the full
realization of in-network ML functionalities, deploying neu-
ral networks within the dataplane pipeline using conventional
methods remains unfeasible. DNNs are distributed archi-
tectures composed of interconnected primitives (artificial
neurons), which operate by iteratively performing elementary
mathematical tasks primarily involving multiply-accumulate
operations and nonlinear functions. As a positive feature,
DNNs exhibit a specific resilience to handle noisy inputs
and low-precision representation formats effectively when
subjected to appropriate training methods [33]. Therefore,
it’s not necessary to use high-resolution floating-point
numbers, and the associated computational overhead can
be circumvented by employing integers. Nonetheless, the
programmable ASIC pipelines in commercial P4 switches
do not currently offer support for floating-point operations
nor integer arithmetic [11]. The necessity for wirespeed
processing permits only specific operations, like flow table
matching, where variables are maintained in an integer
format. In current P4 switches the absence of multiply-
accumulate operations prevents the deployment of DNNs
even if the parameters are in an integer format. In [34] is
presented an implementation example of DNN, consisting
of two primary P4 stages: feature extraction and the DNN
function. The P4 language can be used to implement DNNs
by employing integer-based updates for neuron computations
and utilizing tree-based structures. However, due to the
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FIGURE 2. Deep neural network to lookup table distillation method. Integer-encoded
inputs are treated as a compound address for the LUT, whose entries encode the
corresponding outputs of the distilled DNN.

constraints imposed by limited parallelized computation
resources, the resulting performance capabilities are low.
The P4 codes can be successfully ported to a programmable
ASIC backend, specifically benefiting the feature extraction
stage. However, adapting the DNN function necessitates
a comprehensive remapping design, primarily focusing on
avoiding ALU-based operations.

C. CASCADED LOOK UP TABLE DISTILLATION
To deploy DNN models in hardware pipelines without
arithmetic capabilities, we have conceived a strategy to distill
the knowledge of a trained and integer-quantized DNN into a
LUT, leveraging the constraint of integer-encoded variables
as an advantage. Figure 2 represents the core idea of our
distillation technique. Consider the case of a 2-input network
with integer-valued parameters, whose inputs are encoded in
n and m bits, respectively. To distill the network to a LUT,
the inputs are paired and treated as a compound address
with a bitwidth of n + m bits. The table is generated by
simply collecting the DNN outputs for all the possible input
configurations, which are 2(n+m). In the more general case
of a network with more than two inputs, all inputs can
be concatenated in a compound address in the same way.
With this method, the inference of an integer-quantized DNN
is reduced to a match-action on a flow table. The LUT
distillation method is lossless as the procedure considers
exhaustively all possible DNN outcomes, hence prediction
accuracy is not reduced after model transformation.
With respect to other table-based quantization strate-

gies [35], [36], [37], we rely on LUTs not to perform
multiplications at higher speed nor to accelerate the quantiza-
tion procedure, but to embed the whole DNN in it. However,
the LUT distillation method has some limitations: (i) memory
consumption grows exponentially with the number of bits
composing the input features, (ii) input features must be
encoded as integer and must avoid the floating-point type,
while hidden units can use the latter, and third (iii) the
number of output variables linearly affect the LUT size, i.e.,
if the DNN produces k outputs then k entries are added
in the LUT per input feature. Concerning the first point,
the keys (representing the quantized input features) for each
table share a fixed amount of memory (e.g., hundreds of
bits). This limitation can impact the size of the keys and the
maximum number of keys that can be defined in a table.
Moreover, as the space occupied by the keys increases, the
memory occupancy of the table also increases.

Still, this distillation method has stark advantages, first of
all being making DNNs deployable in hardware P4 switches.
Second, no constraint is set to the DNN complexity nor type:
this method can be applied to huge DNNs and even to other
Machine-Learning algorithms, given that the requirements on
inputs and outputs are met. Hence, if the constraints related
to the quantization of all possible inputs and outputs are
met, any ML method could theoretically be implemented.
Particularly, in networking scenarios, the quantization chal-
lenges may not be as pronounced as working with more
complex data types, e.g., images, allowing for greater
flexibility in the implementation of ML methods. Finally, to
increase the prediction accuracy [33] more complex DNN
can be trained without affecting the final inference time (one
match-action), with the drawback of increasing the training
and distillation times. Moreover, if a use case requires
periodical retraining of the neural model, this can be done
on a co-processor and applied by simply updating the LUT
entries.

D. DESIGN STRATEGIES
In practical cases, the need of a quantized DNN model is not
a stringent limitation: quantization methods produce models
with low or even negligible prediction accuracy loss [38]. On
the other hand, the exponential grow in memory requirements
with respect to the input features could prevent the use of
this method as most DNNs make use of more than a couple
of inputs. Consider a DNN with one 8-bit output and four
8-bit input features, the correspondent LUT entries would
be 232 corresponding to 4 Gbytes.
To circumvent this issue, and exploit the LUT distillation

method, a hierarchical structure composed of simple and
cascaded DNNs can be designed instead of a single DNN.
The workflow of this strategy is represented in Fig. 3. Input
features are paired and sent to a first batch of DNNs,
whose outputs are in turn paired and sent to a second layer
of DNNs. This is done recursively until the final output
is computed, forming a hierarchical architecture of simple
2-input neural networks. The compound structure can be
trained for the target task, and the LUT distillation method
is applied to each neural model forming a corresponding
structure of cascaded tables. Note that, the first step involving
a single and bigger DNN can be skipped and the hierarchical
structure of simpler and interconnected DNNs can be directly
designed instead. This is a shift in the design strategy, so the
hierarchical structure do not need to come from a bigger and
single DNN. Following the initial example with four 8-bit
inputs, with this technique the final model will have three
tables with 216 entries each, and a total memory usage of
192 kbytes, instead of 4 Gbytes. The cascaded method opens
the possibility to distill DNNs in LUTs even when several
inputs are present. More features will result in a deeper
hierarchy of tables, with a depth of �logx y�, where x is the
number of inputs per small DNN and y is the total number of
inputs.
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FIGURE 3. Cascaded LUT DNN design strategy. Instead of using a single and big DNN, input features are grouped in pairs and sent to separate DNNs, whose outputs are in
turn paired recursively until the final output. After training the single models are distilled into small 2-input LUTs.

FIGURE 4. P4 Parser. The table is generated by simply collecting the DNN outputs for all the input-pair combinations.

IV. P4 IMPLEMENTATION
To prove the effectiveness of our method in a real case
scenario, we have developed the LUT distillation method
with the P416 language, targeting a physical realization
within the tofino switch [39]. We have considered two
use-cases, i.e., Intrusion Detection System and IoT anomaly
classification, for in-network DNN processing, which are
described in Section V.
The developed P4 Program implements a parser and a

flow-table pipeline where, the former extracts the input
features for the machine learning algorithm and the latter
implements the LUT-distilled DNN. This same structure can
be easily extended to extract features from other headers that
might of interest in different ML tasks. For example, the
parser can be extended to extract GTP tunneling by adding a
specific check during the parsing of the UDP header, i.e., to
recognize the UDP port 2152. Thus, a parser that supports
multiple headers could be deployed on the same network
infrastructure.
The parser, depicted in Figure 4, serves as the initial

module in the pipeline. As packets progress through its
stages, the input features required for the cascaded LUT
DNN are extracted. The number of input features retrieved
during the parsing phase and the number of tables in the
pipeline are related to the number of DNNs and inputs
per elementary DNN, that you want to deploy in your
architecture. The features are sent to the pipeline, whose
tables resemble the architecture of interest. The LUTs

apply an exact match policy to the inputs and initialize
the custom metadata (i.e., local_metadata.*), which
encodes the output of intermediate stages to be used to
the following ones. The last table in the pipeline, gives the
prediction as an action, e.g., forwarding or dropping a packet.
The first stage of the parser is Parse Eth that extracts

the Ethernet header. Then, in case of IP packets, the
Parse IPv4 stage parses the IPv4 header and fills the
corresponding metadata fields with IP protocol (IP proto),
IP Time To Live (TTL) (s TTL). Subsequently, the packet
is sent to one of the Parse TCP/UDP stages where the
metadata fields are filled with the source and destination
TCP window advertisement (swin and dwin), source-to-
destination (s bytes) and destination-to-source transaction
bytes (d bytes).

A. PIPELINE DESIGN
We take as an example the case of a cascaded DNN with
6 input features, one output, and composed of 2-input
DNNs. The distilled architecture is composed of 5 tables
divided in three layers, as depicted in Figure 5(A). This
architecture is implemented in the P4 pipeline illustrated
in Fig. 5(B). After parsing, the packets are forwarded to
the pipeline and processed by LUT_1, LUT_2 and LUT_3
which support the actions set_meta. The flow rules
contained in these tables use the inputs as the key
parameter in the match policy. When a packet matches
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FIGURE 5. A) LUT distilled deep neural network B) P4 Pipeline.

a flow rule, the set_meta action initializes the associ-
ated local_metadata_lut_*. Then the packet passes
through the table LUT_Inter, which supports the actions
set_lut_meta. The flow rules in this table use the
local_metadata_lut_* as the key parameter in the
match policy and the action applied is set_lut_meta
action initializes local_metadata_lut_inter asso-
ciated with it. Finally, the packet reaches the table
LUT_Final, which supports the actions set_egress and
drop. The set_egress action is typically applied to
packets that match a forwarding flow rule, assigning the
output port through which the packet will be transmitted.
Meanwhile, the default drop action is applied to packets
that do not match any flow rules, resulting in the packet
being dropped.

V. RESULTS AND USE CASES DEMONSTRATIONS
In this section we describe the experimental demonstrations
that we run on a P4 switch APS Networks BF2556X-
1T, which has 48 interfaces ranging from 1 to 100Gbits.
The switch’s software configuration is based on the Open
Network Install Environment (ONIE). On top of ONIE, it
runs Linux Ubuntu 22.04, and P4 Studio SDE 9.7 is installed.
The performance of the P4 code was evaluated using the
P4 Studio application on a dedicated workstation with Intel
Xeon W-2223 8-core 3.60 GHz clock, 16 GB RAM.

A. DISTILLATION TECHNIQUE PERFORMANCE
The use of typical 32-bit floating point numbers in neural
networks presents a significant challenge when attempting to
transform these networks into LUTs. This challenge arises
because the precision and range of 32-bit floating point
numbers lead to an extremely large number of possible input-
output combinations, making the creation of a direct LUT
impractical due to memory constraints and computational
inefficiency. To address this, quantization methods become
essential. Quantization effectively reduces the precision of
the inputs and outputs, mapping them to a smaller set of val-
ues. This reduction in precision, while potentially introducing
some level of approximation error, significantly decreases the
size of the required LUT, making it a feasible approach for

certain applications. By quantizing the data, we can represent
neural network computations in a more compact, memory-
efficient manner, thus enabling the transformation of certain
operations within the network into a LUT format, which can
be advantageous for speeding up computations, particularly
in resource-constrained environments.
Specifically, we adopted a Quantization-Aware Training

strategy, in which loss due to quantization is counteracted
through an ad hoc training strategy [40]. Specifically, an
input quantizer qinput is introduced to define the way of
quantizing the incoming inputs. Hence, in our approach,
quantized layer computes the activation y as:

y = σ
(
f (w, qinput(x)) + b

)

with full precision weights w and input x, layer operation f ,
activation function σ , and bias b. We relied on the DoReFa
quantizers [41], since it provides a convenient way to flexibly
define the bitwidths for inputs.

VI. DEMONSTRATIONS
In this section, we present the results related to the DDoS and
traffic classification experiments. We implement 4 different
scenarios, considering different number of LUTs and input
features: 1 LUT with 2 features, 5 LUTs with 6 features,
and 7 LUTs with 8 features, as depicted in Fig. 6. Only
4,6, and 8 bits per input feature are considered to keep
the LUT size compliant with the Tofino, i.e., keeping the
maximum number of equivalent address bits for each LUT
≤ 16 in all experiments. A feature selection strategy has
been implemented in both use-cases, leveraging the ANOVA
F-value between labels and features.

A. USE CASE 1: CYBER SECURITY DDOS MITIGATOR
Concerning the DDoS mitigator experiment, the CSE-
CIC-IDS2018 dataset has been used [42]. This dataset,
developed by the Canadian Institute for Cybersecurity, is
a comprehensive dataset designed for the evaluation of
intrusion detection systems. It encompasses a wide range
of modern attack types, including DDoS, Web attacks, and
infiltration of the network from simulating real-world data.
Features that are not compliant with a P4 implementation
have been removed from the dataset, e.g., mean and standard
deviation extracted from traffic flows.
For our experiments, we considered 2 sub-use-cases: (i) a

binary classification problem, with the goal of distinguishing
between normal and malicious flows and (ii) a multiclass
classification problem, considering 4 classes: normal traffic,
DoS attacks-Hulk, DoS attacks-GoldenEye, and DDOS
attack-HOIC. The NN block, corresponding to a single LUT,
is composed of 4 fully-connected layers, with 256, 128,
32, ad 1 or 4 neurons for the last layer depending on the
classification task respectively. ReLU has been chosen as
activation function, and the architecture has been trained for
50 epochs using Adam as optimizer. Results for varying
bitwidths are sketched in Fig. 7.
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FIGURE 6. (a) The 2-input base neural network module, corresponding to a distilled LUT; (b) model architecture for stateful features; (c) model architecture for stateless
features; (d) model architecture for the combined features.

FIGURE 7. F1-scores on CSE-CIC-IDS2018 per varying bitwidths.

In the results for the binary problem, reported in Fig. 7-(a),
we observe distinct trends for different configurations of
feature sets and LUTs as they relate to the F1-Score at
varying bit sizes. The blue line, representing the 2 features
with 1 LUT, maintains a consistent F1-Score across all
bitwidths (4-bit, 6-bit, and 8-bit), starting and ending at
≈80%. This consistency suggests that for tasks utilizing only
two features, the complexity of the information is low enough
that the benefits of increased data representation precision
(offered by a higher bitwidth) do not significantly impact
the model F1-Score.
In the configuration with 5 and 7 LUTs instead, there is

a noticeable upward trend as the bitwidth increases from
4-bit to 8-bit. Starting ≈87.5% (≈88.8%) for the 6 features
(8 features) scenario and ending at ≈91.7% (≈92.6%) for
the 6 features (8 features), it suggests that having a larger
bitwidth has a positive impact on the F1-Score when using
more features and LUTs. Notably, the performance gain
between the 6-bit and 8-bit representations for the more
complex configurations is more pronounced than the gain
between 4-bit and 6-bit.

In the results related to the multiclass problem, reported
in Fig. 7-(b), the blue line (2 features - 1 LUT) indicates a
stable F1-Score at approximately 72% across all bitwidths
tested (4-bit, 6-bit, and 8-bit). Again, the flat trend line
implies that in a multi-class context, increasing the bitwidth
does not enhance the model’s F1-Score. When the number
of features and LUTs increases, we observe an upward trend
in F1-Score as the bitwidth expands from 4-bit to 8-bit. Both
5-LUTs and 7-LUTs configurations start at an F1-Score of
approximately 82% for 4-bit and reach an F1-Score of 88%
for 8-bit. This suggests that in a multi-class problem with
more features, the system likely benefits from the increased
bitwidth allowing for more nuanced distinctions among the
multiple classes, leading to better classification performance.
To determine the best configuration from the results,

one must consider the trade-offs between the precision of
the model (as indicated by the F1-Score) and the memory
consumption (related to the bit size). For instance, if
computational resources are limited or if the application
necessitates rapid processing times, a lower bitwidth may
be more advantageous, particularly when the decrease in
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FIGURE 8. F1-scores on IoTID20 per varying bitwidths.

F1-Score is marginal. Conversely, for applications where
the utmost accuracy is critical, and there is a capacity for
greater computational load, opting for a higher bitwidth and
a more complex configuration, like the 8 features - 7 LUTs
setup, could be preferable despite the associated increase in
resource demands.

B. USE CASE 2: MALICIOUS ACTIVITY CLASSIFICATION
TASK IN IOT NETWORKS
To demonstrate the potential applications of the developed
approach, we have considered another experiment, identify-
ing anomalous activity across an IoT network. Specifically,
we have used the IoTID20 publicly available dataset [43].
Again, features incompatible with a P4 implementa-
tion have been excluded from the dataset. As in the
previous use-case, we have considered 2 sub-use-cases:
(i) a binary classification problem, with the goal of
distinguishing between normal and malicious flows and
(ii) a multiclass classification problem, considering 4
classes: normal, DoS, Scan, Man-In-The-Middle ARP
Spoofing.
The NN block, corresponding to a single LUT, is

composed of 6 fully-connected layers, with 512, 256, 128,
64, 32 and 1 or 4 neurons for the last layer depending on
the sub-use-case considered, respectively. ReLU has been
chosen as the activation function. The architecture has been
trained for 50 epochs using Adam as optimizer. Results are
depicted in Fig. 7.

In the binary results, reported in Fig. 8-(a), the model uti-
lizing only two features and a single Look-Up Table reaches
an F1-Score around 84% across all bitwidths from 4-bit to
8-bit. The flatness of the line suggests that for this simple
model, increasing the bitwidth does not significantly influ-
ence the predictive accuracy as measured by the F1-Score.
The orange dashed line represents a medium-complexity
system that processes six features with five Look-Up Tables.
Here, there is a slight upward trend from approximately 84%
at 4-bit to about 88% at 8-bit. This increase implies that the

additional precision afforded by a higher bitwidth contributes
to a better classification performance in this scenario.
The green dotted line indicates the most complex system
presented, with eight features managed by seven LUTs.
Starting with an F1-Score just below 88% at 4-bit, it ends
close to 92% at 8-bit, showing the benefit of utilizing higher
bitwidths.
Finally, results concerning the multiclass problem are

reported in Fig. 8-(b). Remarkably, the F1-Score for this
setup starts at approximately 43% for all bitwidths in
the 2 features - 1 LUT scenario, which is significantly
lower than the scores in other configurations. However,
when considering 6 (8) features we can observe an F1-
Score starting at around 80% (82%) and finishing at ≈83%
(≈84%). The F1-Score is noticeable smaller than the one
obtained in the binary classification, due to the more complex
nature of the multiclass problem.
As in the previous use-case, choosing the most suit-

able configuration requires balancing the model’s accuracy
(reflected by the F1-Score) with its resource demands
(influenced by bit size). For example, when computational
power is a bottleneck or when swift processing is essential,
selecting a lower bitwidth might be beneficial, especially
if it leads to only a slight reduction in F1-Score. On
the other hand, in situations where precision is paramount
and computational resources are not a limiting factor, it
would be advantageous to select a higher bitwidth and a
configuration with more complexity, such as the 8 features
- 7 LUTs arrangement, even though it might call for more
computational investment.

C. SWITCH: MEMORY RESOURCES AND LATENCY KPI
In order to demonstrate the advantages of the proposed
LUT distillation method on programmable devices, extensive
evaluations have been carried out on the Tofino 1 switch,
a commercially available ASIC-programmable P4 switch
equipped with 1, 10, 25, and 100 Gigabit Ethernet interfaces.
The P4 source code detailed in Section IV has been compiled

3564 VOLUME 5, 2024



TABLE 1. Programmable ASIC performance: latency and stages used as a function
of the model and number of flow rules per LUT.

and deployed on the switch. The Tofino switch has the
capability to provide up to 3.2 Tb/s forwarding capacity and
supports up to 12 programmable pipeline stages. All the
results hereafter shown are extracted from the P4 compiler
framework providing information on the compiled P4 code
resource placement and utilization within the programmable
ASIC hardware platform.
Table 1 reports the Tofino performance as a function

of the deployed model (1, 5, or 7-LUT model) and
number of flow-rules configured per LUT. For all employed
configurations, the results show the performance of the
models in terms of occupied number of stages and the
latency expressed in nanoseconds, measured by the Intel
P4 Insight [44] which provides a detailed evaluation of
memory occupancy and latency of P4 program. For these
measurements, the number of configured flow rules per table
has been doubled until the switch memory capacity was
exhausted.
The first part of the table reports the results for the 1-LUT

model, this is the one that achieves the lowest latency in
respect to all the other models. Even when the flow rules
used are 222, the number of occupied stages is 11 out of
12, the latency of the 1-LUT model is just 63 ns. This
is because, aside from the parser, just one match-action is
required to perform the inference of the whole DNN. The
minimum number of flow-rules configured for this model
is 216, corresponding to the case of 2 features with 8 bits
each. In this case the latency is 54 ns, and one just stage
is used, leaving a significant amount of resources free for
other functions.
The second part of Table 1 reports the results for the other

two models, i.e., the 5 LUT and 7 LUT ones. For these
models, at least two additional pipeline stages are needed
leading to increased latency between 81 and 136 ns. While
these models have consistently outperformed the prediction
accuracy of the 1-LUT model, as discussed in Sections VI-A
and VI-B, they require much more resources as testified by
the rapidly-growing number of stages as a function of the
number of flow rules per LUT.

VII. CONCLUSION
The integration of ML in network devices has attracted
attention over the past years, due to the potential benefits
it can bring. P4 programmable switches offer a way to
deliver networking operations at the data plane, saving
computational resources. However, the deployment of DNNs
into P4 pipelines has challenges that hamper their feasibility.
For this reason, in this paper, we have proposed a LUT
distillation method that transforms quantized DNN structures
into a simpler, cascaded architecture of flow tables, which
effectively function as LUTs. Our method ensures no loss
of information during this transformation and is adaptable
to DNNs of varying complexities.
The proposed approach was validated in two functional

use cases: cyber security DDoS mitigator and traffic classifi-
cation. Results indicate that performance varies with feature
set and bit size configurations. In both cases, configurations
with more features and a single LUT showed improved
performance with larger bit sizes.
In conclusion, this paper represents a significant step

towards the integration of advanced DNN capabilities into
programmable network devices. The obtained results pave
the way for further exploration and development of the
proposed approach. For future work, we plan to extend
the discussed method to other network functions, beyond
cybersecurity and traffic classification, to fully leverage the
potential of DNN in network management and security. A
study related to smartNIC is also planned. Additionally, a
refinement of the LUT distillation process to further optimize
the balance between computational efficiency and model
accuracy will be investigated. Finally, the scalability and
adaptability of this approach in larger, real-world network
environments will be a key area of focus.
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