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Abstract—The interest about Zero Touch Network and Service
Management (ZSM) is rapidly emerging. As defined by ETSI, the
ZSM architecture is based on a closed-loop/feedback control of
the network and the services. Such closed-loop control can be
based on the Boyd’s Observe Orient Decide and Act (OODA)
loop that matches some specific management functions such as
Data Collection, Data Analytics, Intelligence, Orchestration and
Control. An efficient implementation of such control loop allows
the network to timely adapt to changes and maintain the required
quality of service.

Many solutions for collecting network parameters (i.e., imple-
menting ZSM data collection) are proposed that fall under the
broad umbrella of network telemetry. An example is the Google
gRPC, that represented one of the first solutions to provide
a framework for data collection. Since then, the number of
available frameworks is proliferating. In this paper we propose
the utilisation of Apache Kafka as a framework for collecting
optical network parameters. Then, the paper goes beyond that
by proposing and showing how Apache Kafka can be effective
for supporting data exchange and management of whole ZSM
closed-loop.

Experimental evaluation results show that, even when a large
number of data are collected, the solution is scalable and the
time to disseminate the parameter values is short. Indeed, the
difference between the reception time and the generation time of
data is, on average, 40-50ms when about four thousand messages
are generated.

I. INTRODUCTION

Control systems are not novel in engineering. They are heav-
ily employed in many fields, such as mechanical engineering,
aerospace, electrical engineering. In general, a control system
consists of subsystems and processes (or plants) assembled
for the purpose of obtaining a desired output with desired
performance, given a specified input [1].

Control systems can be used to provide convenience by
changing the form of the input. For example, in a temperature
control system, the input is a position on a thermostat while
the output is heat. Thus, a convenient position input yields a
desired thermal output. In a network this could be represented
by the mapping between service Key Performance Indica-
tors (KPIs) or Service Level Agreement (SLA) and network
KPIs. Another advantage of a control system is the ability
to compensate for disturbances. For example, in an antenna
system that points in a commanded direction, the system itself
might measure the amount that a disturbance (e.g., winds)
has repositioned the antenna and then return the antenna to
the position commanded by the input. In this case the system

input does not change but its the autonomous system control
that repositions the antenna.

Control systems present two major configurations: open-
loop systems and closed-loop or feedback systems. Open-
loop systems do not correct for disturbances and are simply
commanded by the input. Closed-loop systems compensate for
disturbances by measuring the output response, feeding that
measurement back through a feedback path, and comparing
that response to the input at the summing junction. If there is
any difference between the two responses, the system drives
the plant, via the actuating signal, to make a correction.
Thus, closed-loop control systems make the systems more
autonomous.

Recently, many research projects and Standard Developing
Organisations (SDOs), such as ETSI, are aiming at applying
closed-loop control to communication networks for network
and service management, in particular. Among the motiva-
tions is the need for overcoming the traditional network
management, done in a silo-oriented way with very limited
automated interaction among those management silos. Another
one is the need for transformation from the old Operational
System Support (OSS) into a modern, autonomous network
management environment not anymore based on open-loop but
on closed-loop for providing Fault, Configuration, Account,
Performance and Security (FCAPS) Management. The main
objective is to provide a framework that enables zero-touch
automated network and service management (ZSM) in a
multivendor environment based on data-driven management
algorithms based, for example, on machine learning and arti-
ficial intelligence. Finally, another motivation is the support of
Intent-based Networking [2], [3] that is based on defining high
level policies for the network, translated to configuration by
underling systems. Morever, closed-loop control is proposed
also for the management and control of the 5G Radio Access
Network (RAN) in the O-RAN architecture [4].

To implement the closed-loop, ZSM can exploit the re-
search conducted in another ETSI initiative: the Experien-
tial Networked Intelligence (ENI) [5]. The ENI specifies an
architecture to enable closed-loop network operations and
management leveraging Artificial Intelligence and Machine
Learning (AI/ML). ENI can be deployed as an external AI/ML
entity, outside of an existing “Assisted System”.

This paper first overviews ZSM and current efforts in
network telemetry, with specific focus on optical networks.
Indeed, telemetry is an essential element for providing ZSM



with information about the network status. Then, the paper
focuses on how the Apache Kafka framework can be utilised
not only as an efficient data streaming service but also as the
overall framework underpinning the ZSM functional elements.
Finally, results on the Kafka scalability are provided.

II. ZSM OVERVIEW

The Zero-touch Network and Service Management (ZSM),
proposed by ETSI [6], is among the emerging architectures for
autonomously operating and managing communications net-
works. Research papers and projects already reported studies
related to network management automation [7]. For example,
Deep Learning (DL) applications for various traffic control
aspects, such as network traffic classification, network flow
prediction, mobility prediction, Cognitive Radio Networks
(CRNs), and Self-Organized Networks (SONs) have been
proposed in [8]. A closed-loop solution for network slicing,
where traffic forecasting information is ingested by an ad-
mission control engine to maximize the number of granted
network slice requests while meeting the slice Service Level
Agreements (SLAs) guarantees, is presented in [9]. Forecast-
ing/predictive analytics has been proposed in [10] for scaling
5G core network resources by anticipating traffic load changes.
The approach is based on two Artificial Intelligence/Machine
Learning (AI/ML) techniques: Recursive Neural Networks
(RNN), more specifically Long Short-Term Memory (LSTM),
and Deep Neural Network (DNN). The results show that
forecast-based scalability mechanism outperforms threshold-
based solutions in terms of latency to react to traffic change.
In [11] a first demonstration of ROADM White Box aug-
mented with machine learning capabilities is demonstrated.
The white box includes various levels of disaggregation, NET-
CONF/YANG control, telemetry and spectrum-based advanced
monitoring functionalities.

However, in all the aforementioned papers all the control
loop functions are co-located or the delay in exchanging data
among the control loop functional elements is not taken into
account. One of the first studies taking into account the delay
introduced by the data collection is presented in [12]. There,
the time response of a Hybrid Forecast Framework (HFF)
running at the network edge or in the cloud is compared.
When running at the edge, the HFF exploits traditional time
series analysis prediction algorithms to minimize the utilized
resources and energy while it exploits AI/ML tools to make
predictions in the cloud. Results show that if the look ahead
time is long, cloud-based prediction is preferable because the
long look ahead time compensates for the higher time for
prediction, mainly due to data transfer.

Other architectures than the ZSM are proposed by stan-
dard developing organisations (SDOs): the TM Forum’s Open
Digital Framework (ODF) [13], MEF 3.0 Lifecycle Services
Orchestration (LSO) [14], Linux Foundation Platform for
Network Data Analytics (PNDA) [15], TM Forum Smart
(BPM) [16]. Even research projects are exploring solutions
that provide management automation. SLICENET [17] is a

5G-PPP phase II project that aims at designing and im-
plementing an E2E cognitive vertical-oriented 5G network
slicing framework. 5G-enabled Growth in Vertical Industries
(5Growth) [18] aims at empowering vertical industries such
as Industry 4.0, Transportation, and Energy with Artificial
Intelligence-driven automated 5G end-to-end solutions that
allow them to simultaneously achieve their respective key
performance targets.

In general, the ZSM shall provide means for the ordered
invocation of the phases of a closed-loop control. An example
is the closed-loop devised by J.R. Boyd, also known as the
OODA loop: the Observe, Orient, Decide, and Act. Thus, it
possible to find a mapping between management functions
and closed-loop steps: Data Collection contributes to Observe,
Analytics contributes to Orient, Intelligence contributes to
Decide, and Orchestration and Control contribute to the Act
steps as shown in Fig. 1.

Fig. 1. Mapping between ZSM architecture building blocks and closed loop
functions as in [6]

In the classical control engineering the performance of a
system that is controlled by a closed-loop depends on many
factors, such as the feedback that is applied. Typical key
performance indicators are the system time response and the
stability. In ZSM, because of the complexity of the utilized
functional elements, the performance depend not only on the
time it takes to execute each functional element of the control
loop but also on the time it takes to exchange data among
the functional elements. Such times impact the reaction time
of the system, that can be assimilated to the system response
time of the classical control engineering closed-loop.

III. TELEMETRY OVERVIEW

In general, network telemetry is ”...a technology for gaining
network insight and facilitating efficient and automated net-
work management...” [19]. As stated in [19], the elaboration
of network big data provides network operators with an op-
portunity to gain network insights and move towards network
autonomy. This evolution would probably lead to the reduction
of human labor, to a more efficient use of network resources,
and to provide better services more aligned with customer
requirements. However, with respect to the fast evolution of



data elaboration techniques, for example based on AI/ML, the
data collection (i.e., telemetry) is lagging behind in developing
efficient ways for extracting and translating network data into
useful information.

For what concerns optical networks, in the last five years,
there have been significant research activities related to teleme-
try and monitoring architectures and solutions. The main re-
search directions are based on telemetry protocols, platforms,
architectures, and novel disaggregated optical devices offering
open interfaces and hardware drivers for physical parameter
monitoring.

The work in [20] is one of the first proposals of YANG
extensions for on-demand optical equipment data acquisition,
in the context of the IETF Abstraction and Control of TE
Networks (ACTN) virtual network models. The work in [21]
presents two architectural implementations of telemetry based
on partial and full disaggregation degrees, using the gRPC
Remote Procedure Calls (gRPC) framework, showing good
scalability performance and highlighting the effectiveness of
the gRPC framework, able to support efficient encoding and
native push streaming mode, more efficient with respect to
NETCONF-based notification mechanisms.

The study reported in [22] proposed the use of data analytics
platforms based on continuous monitoring of IPFIX protocol
observation points related to sliced optical network based on
the Spark platform. The work was extended in [23] to support
disaggregation and perform telemetry of data sourced by open
Optical Spectrum Analyzer (OSA) aiming at inferring optical
filter malfunctioning. Multi-layer extensions were covered
in [24].

Focusing on the optical device agent, the work in [25]
adopts an extended agent performing threshold-based teleme-
try streaming for network verification and data analytics. The
work in [26] proposes an online gRPC telemetry of physical
fiber parameters (i.e., bending) affecting coherent receiver
OSNR, combined with AI-based convolutional network.

A number of recent works report the implementation of
telemetry agents co-located with optical devices having high
frequency rates and resolutions [27]. For example, in [28]
it is proposed a power monitor blade with 400µs telemetry
streaming period and control plane using direct memory access
to support AI engines. In addition, the work reported in [29]
details an open disaggregated ROADM including filterless
add/drop module equipped with photodetector tap arrays with
gRPC telemetry servers including NETCONF notifications,
capable of 20Hz sample update frequency.

In the framework of multi-layer networks a combined per-
layer telemetry approach has been proposed in [30]. Authors
propose to combine optical telemetry related to lightpath
health with in-band telemetry (INT) of tributary flows handled
by a P4 switch, analyzing the benefits of a combined approach.
In the context of packet-switched layer in-band telemetry, a
preliminary evaluation of a Kafka-based monitoring system
handling INT values has been carried out in [31], proposing
an event-triggered mechanism to produce telemetry reports to
the Kakfa system from aggregate statistics related to specific

data plane flows.
The work in [32] exploits a telemetry-based workflow to

assign the proper transmission operational modes to transpon-
ders (including proprietary modes not disclosed explicitly to
the SDN controller) during connection provisioning in partial
disaggregation. The work evaluates also the impact of the
proposed telemetry workflow in a multi-layer network upon
soft failure recovery, affecting both the optical and the packet
switched layer.

Optical telemetry may be extended not only to support
isolated online network monitoring, but also to enrich data
correlation related to optical network security, such as online
video analytics [33]. Agile telemetry systems were also pro-
posed in the critical use case of disaster recovery, addressing
high reconfigurability. In particular the system is robust to
unstable control plane connectivity and failure recovery to
auxiliary low bandwidth network segments [34].

Although many studies are dealing with telemetry and some
of its issues, such as scalability for disaggregated optical
networks, other telemetry framework issues, such as reliability
and joint scalability/reliability, have not been fully addressed
yet. In addition, in the context of ZSM, how to provide a
common communication framework for data exchange among
the ZSM functional elements and their management has not
been fully investigated yet.

IV. KAFKA-BASED ZSM

This section presents the proposed Apache Kafka-based
communication infrastructure to support ZSM. First, it pro-
vides an overview of the Kafka features that make it suitable
for efficiently supporting communications among the ZSM
functional elements. Then, it presents how Kafka is utilized
for the Data Collection functional element. Finally, it presents
how Kafka can be the communication infrastructure to support
the whole ZSM.

A. Apache Kafka Overview

Apache Kafka [35] is an open-source distributed event
streaming platform. An event (also called record or message)
corresponds to a situation that happens and for which a
record shall be kept, such as a change in the amount of
traffic flowing through a card. The Apache Kafka architecture
offers a publish subscribe communication based on a persistent
storage. It provides a low latency, reliable communication,
hence it is employed in many fields. The core of this platform
is represented by the Kafka cluster. The cluster receives data
from the producers, that are used to send data from the events’
sources. Data are then stored into the cluster, which consists of
one or more entities, called brokers. Each broker has its own
storage, and it could be a physical machine, a virtual machine
or a container. Consumers are in charge of reading those
data by continuously polling them from the cluster. Every
consumer is independent from each other: they can read the
same event stream but at different points, and implement their
own application, that could be related to processing, displaying
dashboards, insights and so on. A key feature of Kafka is that



producers and consumers are decoupled. A producer does not
send data to a particular consumer, it just sends data to the
cluster within an abstraction called topic.

Kafka uses the concept of topic as a flow of related events.
It acts as a logical log file, that is handled by the cluster.
New messages of a topic are appended to this log, and one
or more consumers can independently read from it at different
positions. More specifically, a topic is split into one or more
partitions, which are distributed among the brokers in the
cluster. This is the main concept that allows Kafka to handle
heavy data loads, since messages are distributed across the
available partitions, and data can be consumed in parallel from
them. Those partitions are practically logs, thus messages sent
to the same partition belonging to the same topic follows a
strict ordering. Conversely, a topic split in multiple partitions
cannot preserve the global ordering, thus messages requiring
to be ordered have to be sent to the same partition. In addition,
Kafka offers mechanisms to replicate partitions across the
other brokers. This natively provides a way of overcoming
brokers’ failures, since partitions that were handled by the
failed brokers are automatically replaced by the others that
have a copy of the unreachable partitions. It offers also pro-
cessing capabilities through Kafka Streams, which applies both
stateless and stateful operations on the cluster’s topics. Streams
applications acts as a producer and as a consumer at the same
time, thus they feature the same producer/consumer horizontal
scalability by processing in parallel from multiple topics’
partitions. Building upon the aforementioned features, Kafka
can offer low latency, resiliency, scalability and flexibility, that
make it suitable for implementing the ZSM Data Collection
function.

B. Kafka-based Optical Network Data Collection

This section focuses on a Kafka-based data collec-
tion/telemetry for optical networks. This framework was orig-
inally proposed in [36]. The proposed framework exploits the
built-in scalability and reliability of Kafka to go beyond the
traditional monitoring systems. As per Kakfa implementation,
monitoring messages are exchanged in a publish subscribe
fashion by simple text messages that can be formatted ac-
cording to desired models without requiring specific protocol
for message exchange. Specifically, the framework is mainly
based on Apache Kafka, Kafka Streams, and Telegraf. Telegraf
is a low-memory footprint plugin driven agent capable of
collecting data from multiple sources and sending them to
multiple destinations. Telegraf output plugins allow both a
flexible deployment and a size configurable local buffer for
retaining metrics in case the cluster is not reachable. Kafka
producer is one of the available Telegraf output plugins. In
the proposed framework the Telegraf output plugin collects
data from a local testbed composed of several optical devices.
Those metrics are sent to a unique topic, called OpticalNet-
work, and distributed in a three broker cluster. The cluster
is configured to fully manage a single broker failure. On top
of that, a management topic is used to distribute commands
to the Kafka Streams applications, that filter metrics from

OpticalNetwork per lighpath. More specifically, every time a
new lightpath is set up in the network, a new topic is created
and all the metrics coming from all the devices involved go
within.

C. Kafka as a Communication Infrastructure for ZSM

Because of the ZSM functional element complexity and
their distributed nature, ZSM time response depends not only
on the actions taken to control the system but also on the
execution time of each functional element and their interaction
(mainly communication) time. Thus, Apache Kafka appears as
an effective solution to provide ZSM with a communication
framework for data exchange among the ZSM functional
elements and their management.

Moreover, because ZSM has potentially unlimited appli-
cations (e.g. optical networks, SDN networks, mobile net-
works), it is not possible to consider any possible condition
and consecutive reactions a priori. Thus, a ZSM framework
should be capable of growing and scaling out considering
always more complex scenarios, along with its responsibility
of managing the network. For this reason, a modular approach
is fundamental: new components and functionalities have to
be tested without affecting the working configuration. Apache
Kafka perfectly fits this scenario. Thanks to its publish-
subscribe pattern, the same data that an active module in the
ZSM is ingesting can be consumed by another one for testing
purpose.

V. PERFORMANCE EVALUATION

This section reports some initial evaluation on the conver-
gence time of the proposed Kafka-based solution of the ZSM
Data Collection functional element. The convergence time is
defined as the time required to deliver a message from a
producer to a consumer (i.e.,end-to-end latency experienced
by the messages).

A. Evaluation Scenario

The evaluation is based on the cloud deployment depicted
in Figure 2.

The three Kafka Streams application (e.g., Stream App1, 2,
3) run in three Ubuntu 18.04 physical machines, with 4 Intel
CPUs @1.5GHz, 4GB of RAM and 1GB of JVM committed
memory.

Then, two Ubuntu 18.04 servers (e.g., Producer Server1
and Producer Server2), equipped with 16 AMD Epyc 7262
CPUs @3.2GHz and 64GB of RAM, have been used to run
the Python-based Kafka producers.

Another Ubuntu 18.04 server (e.g., Consumer Server),
equipped with 32 Intel Xeon Gold 6244 CPUs @3.60GHz and
64GB of RAM, has been used to run the Kafka consumers to
consume, in parallel, the messages received over the different
topics.

A Windows physical machine (e.g., GUI), equipped with 2
Intel Core i5 @3.1GHz and 8GB of RAM, has been used (i)
to run the Telegraf producer, using the python-based driver as
input plugin to retrieve the data from real optical devices, (ii)



to execute an instance of the influxDB time-series database
and to run the Grafana-based GUI.

Inside a cloud EXS environment, represented with grey
background in the figure, the Kafka cluster, consisting of three
Ubuntu 18.04 virtual machines (e.g., Broker1, Broker2 and
Broker3), with 4 Intel Xeon CPUs @2.3GHz and 8GB of
RAM, each running the Kafka broker along with a Zookeeper
instance, have been deployed. All of them have 1GB of JVM
committed memory. Finally, an other Ubuntu 18.04 virtual
machine (e.g., KtoDB), with 4 Intel Xeon CPUs @2.3GHz
and 8GB of RAM, has been adopted to receive all the metrics
and to inject this data to the time-series influxDB database.

All the considered servers are interconnected using a dedi-
cated L2 Ethernet network at 1 Gbps.

GUI

Broker1 Broker2 Broker3

Producer 

Server1

Producer 

Server2

Consumer 

Server

Streams

App2

Streams

App1

Streams

App3

KtoDB

ESX Environment

Fig. 2. Experimental testbed considered for the performance assessment.

B. Results

To validate the performance of the system in terms of con-
vergence time, a scenario consisting of ten consumer groups
active and thirty-two producers generating 3920 messages/s
is considered. The consumer groups are subscribed to all
the active Kafka topics. An additional consumer group and
three additional producers, connected only to the Management
topic, are utilised for our performance evaluation. Both the
consumers and the producers are running in the same machine
to preserve the time synchronization, adopting the same clock
reference. The producers send messages over the Management
Kafka topic, including the generation timestamp, related to
the following elements of a partially disaggregated optical
netywork: xPonder nodes that control the optical cards of an
optical white box and report the metrics related to the optical
ports of all the controlled cards; Optical Line System (OLS)
agents reporting metrics related to all the controlled amplifiers
spread over the different optical links. At the consumer side,
subscribed to the Management topic, the elapsed time is
computed considering the difference between the reception
time and the generation time, contained within the received
message.

To evaluate the system performance each producer generates
ten messages per second (i.e., one message each 100ms) to
one of three partitions, resulting to an aggregate rate of thirty

messages per second. The consumer group, consists of three
consumers, connected to the three partitions, receiving all the
generated messages in parallel. The test has been repeated
ten times, collecting the performance per partition (i.e., per
broker) considering six hundred messages (i.e., test duration
of sixty seconds). No message loss has been detected in all
the executed tests. Figure 3 shows the distribution of the end-
to-end latency respectively collected for partition0, partition1
and partition2.

The three distributions are quite similar, with around the
90% of the samples in the range 20-140ms, average end-to-end
latency 53.88ms, 53.48ms, 53.92ms respectively for partition0,
partition1 and partition2 and confidence interval at 95% in the
range 4.85ms and 5.32ms.
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Fig. 3. End-to-End latency distribution for the messages handled by the three
configured partitions.

Obtained results show that the transmission of the messages
through the Kafka cluster will produce an additional average
delay of around 50ms on the communication among producer
(i.e., network device) and consumer (i.e., the collector) with
no difference regarding the traversed broker.

VI. CONCLUSION

Zero Touch Network and Service Management (ZSM) is
based on a closed-loop control of the network and of the
services. ZSM closed-loop control consists of Data Collec-
tion, Data Analytics, Intelligence, Orchestration and Control
functions.

This paper proposed the utilisation of Apache Kafka as a
framework for implementing the Data Collection function of
a ZSM applied to an optical network. Moreover, the paper
proposed how Apache Kafka can be effective for supporting
data exchange and management of the whole ZSM closed-
loop.

Experimental evaluation results show that, even when a
large number of data are collected, the solution is scalable and
the time to disseminate the parameter values is short. Indeed,
the difference between the reception time and the generation
time of data is, on average, 40-50ms when about four thousand
messages are generated.
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