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Sensing expectation enables simultaneous
proprioception and contact detection in an
intelligent soft continuum robot

Peiyi Wang 1,2,3,4, Zhexin Xie 2,3,4, Wenci Xin 2,3, Zhiqiang Tang 2,3,
Xinhua Yang 1, Muralidharan Mohanakrishnan 2,3, Sheng Guo 1 &
Cecilia Laschi 2,3

A high-level perceptual model found in the human brain is essential to guide
robotic control when facing perception-intensive interactive tasks. Soft robots
with inherent softness may benefit from such mechanisms when interacting
with their surroundings. Here, we propose an expected-actual perception-
action loop and demonstrate themodel on a sensorized soft continuum robot.
By sensing and matching expected and actual shape (1.4% estimation error on
average), at each perception loop, our robot system rapidly (detection within
0.4 s) and robustly detects contact and distinguishes deformation sources,
whether external and internal actions are applied separately or simulta-
neously. We also show that our soft arm can accurately perceive contact
direction in both static and dynamic configurations (error below 10°),
even in interactive environments without vision. The potential of our
method are demonstrated in two experimental scenarios: learning to
autonomously navigate by touching the walls, and teaching and repeating
desired configurations of position and force through interaction with human
operators.

Human beings utilize their exteroceptive sensory system to dynami-
cally interact with environments, during which they use a high-level
perceptual model combining afferent sensory signals generated by
external sources and efferent signals corresponding to their actions to
guide sensory-guided movement control, as found in our brain
mechanisms1. Perception mechanisms are not strictly confined to the
interpretation of sensory information but anticipate the consequences
of self and external actions and distinguish them2,3. While anticipation-
based perceptual models have been realized in rigid robots4–6, imple-
menting these methods in soft robots will provide additional benefits
by overcoming the current perception challenges related to body
deformability and contribute to intelligent behavior in perception-
intensive environmental interaction tasks7,8. Although effective meth-
ods have been developed regarding soft robot low-level control and

force sensing9–11, high-level perception-action loops are still one of the
biggest challenges in soft robotics.

There are several challenges to implementing such high-level
perception-action loops in soft robots. First, the robot should be able
to clearly distinguish its deformations under external contacts from
those generated by their internal actuation. Perceiving external con-
tact can be achieved through direct sensor readings and indirect
models12. Tactile sensors directly display contact information in a set
area13–16, but multiple sensors need to be setup in multiple areas and
directions of interest. Indirect methods involves data-driven17–19,
mechanics-based model20–22, intrinsic force sensing10,23–26. Some of
these studies aim for precise locomotion of soft continuum robots, for
example, using residuals and errors for closed-loop position/force
control10,25,26. Others estimate and control contact force in given

Received: 27 November 2023

Accepted: 6 November 2024

Check for updates

1School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing, China. 2Department of Mechanical Engineering, National
University of Singapore, Singapore, Singapore. 3Advanced Robotics Centre, National University of Singapore, Singapore, Singapore. 4These authors con-
tributed equally: Peiyi Wang, Zhexin Xie. e-mail: shguo@bjtu.edu.cn; mpeclc@nus.edu.sg

Nature Communications |         (2024) 15:9978 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6010-6427
http://orcid.org/0000-0002-6010-6427
http://orcid.org/0000-0002-6010-6427
http://orcid.org/0000-0002-6010-6427
http://orcid.org/0000-0002-6010-6427
http://orcid.org/0000-0001-6994-6863
http://orcid.org/0000-0001-6994-6863
http://orcid.org/0000-0001-6994-6863
http://orcid.org/0000-0001-6994-6863
http://orcid.org/0000-0001-6994-6863
http://orcid.org/0000-0002-2582-8037
http://orcid.org/0000-0002-2582-8037
http://orcid.org/0000-0002-2582-8037
http://orcid.org/0000-0002-2582-8037
http://orcid.org/0000-0002-2582-8037
http://orcid.org/0000-0001-6555-9938
http://orcid.org/0000-0001-6555-9938
http://orcid.org/0000-0001-6555-9938
http://orcid.org/0000-0001-6555-9938
http://orcid.org/0000-0001-6555-9938
http://orcid.org/0009-0002-2325-7629
http://orcid.org/0009-0002-2325-7629
http://orcid.org/0009-0002-2325-7629
http://orcid.org/0009-0002-2325-7629
http://orcid.org/0009-0002-2325-7629
http://orcid.org/0000-0002-1234-9213
http://orcid.org/0000-0002-1234-9213
http://orcid.org/0000-0002-1234-9213
http://orcid.org/0000-0002-1234-9213
http://orcid.org/0000-0002-1234-9213
http://orcid.org/0000-0001-6746-9274
http://orcid.org/0000-0001-6746-9274
http://orcid.org/0000-0001-6746-9274
http://orcid.org/0000-0001-6746-9274
http://orcid.org/0000-0001-6746-9274
http://orcid.org/0000-0001-5248-1043
http://orcid.org/0000-0001-5248-1043
http://orcid.org/0000-0001-5248-1043
http://orcid.org/0000-0001-5248-1043
http://orcid.org/0000-0001-5248-1043
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54327-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54327-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54327-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54327-6&domain=pdf
mailto:shguo@bjtu.edu.cn
mailto:mpeclc@nus.edu.sg
www.nature.com/naturecommunications


particular interactive modes17,18,20–22. Neither of them achieves a quick
reaction to rapid, unexpected interactions, and local deformation of
the soft bodies in an unknown 3D environment. Second, amulti-modal
perception sensory system is necessary. Proprioceptive information
(strain, curvature or shape) in soft body is usually acquired through
external sensing equipment (motion capture27 and electromagnetic
equipment28) and integrated internal sensors (optic fibers29–31, hall
sensors32, carbon nanotubes12, piezoresistive33, electroluminescent
material34, eutectic Gallium-Indium (eGaIn)13,35, ionic liquid36,37, con-
ductive hydrogel38). Multiple specific sensors need to be integrated to
achieve multi-modal perception including external stimuli input38. A
deformable soft skin with liquid metal inside can detect strain and
contact simultaneously13,35. Due to good linearity between strain and
resistance, high softness, and stretchable properties, these sensors can
be integrated onto the surface of soft robot35,39.

Humans control the movements of their arms with high-level
perception-action loops that do not just rely on the sensory inputs, but
anticipate them. Expected sensory inputs are generated from internal
models before they are conveyed through receptors and then com-
pared with actual afferent signals1,2,40,41. With this expected-actual sig-
nals comparison, the perception-action loop is faster, and an
unexpected external stimulus is promptly detected. We propose a
similar expected-actual comparison method in soft robotics (see
Fig. 1B for a general framework of the method) and demonstrate the
perceptual model on a two-module rod-driven soft continuum robot
(RDSR) sensorized with eGaIn-based piecewise soft sensor (PSS) on its
surface (Fig. 1A). We firstly anticipate the robot’s deformation by
constructing the expected shape (ES) of the robot from the current
controller commands, via internal piecewise constant curvature
(PCC)11,42,43 model with three segments for each module (Fig. 2A,
mathematical models are presented in Supplementary Text S2), and
thenwe estimate the actual shape (AS) of the robot based on the actual
rod lengths inside the body and the sensory signals after executing the
command. Stable and precise feedback of rod lengths and sensor
strains exhibit good performance in posture proprioception of RDSR
(1.4% estimation error, on average). By comparing between ES and AS
at each perception loop, whether external stimuli and internal actua-
tion are applied separately or simultaneously when the mismatch

exceeds a set threshold, the robot can rapidly perceive external con-
tact (detection time within 0.4 s, direction error below 10°). This is a
way to distinguish deformation sources even if unexpected interac-
tions occur. Moreover, soft sensors offer good linearity, compatibility
with soft bodies, and enable multi-modal perception, including local
strains induced by actuation and stimuli, and tactile information
caused by direct touch.

In this study, the proprioceptive model incorporating rod lengths
and sensor strains is validated and generates the accurate configura-
tions of the sensorized RDSR under several actuations and loads. We
experimentally determine the threshold to identify the difference
between ES and AS. Then, the robot system presents the rapidity and
robustness of contact detection by interacting with different positions
and materials during dynamic motion. We also showed that the per-
ception system is able to perceive the contact direction in both static
and dynamic configurations, even in interactive environments without
vision. Finally,wedemonstrate thepotential of our systemandmethod
in two intensive interaction tasks (Fig. 1C): one for autonomous
exploration and navigation of mazes by detecting contacts with the
walls, and another for teaching and repeating tasks by interacting with
human operators.

Results
Perception performance
We fabricated and assembled a two-module RDSR with PSS (detailed
process seen in “The integration and fabrication process of RDSR with
PSS” section and supplementary materials (Figs. S1–S3)). Flexible rods
provide precisely known lengths inside the soft body compared with
cable and fluid actuation. The PSS, consisting of three pieces (1st, 2nd,
3rd piece), is integrated as close as possible to the corresponding rods.

Each module is virtually split into three segments by a virtual
constrained plane (VCP). Starting from base disk (BD) to the end disk
(ED), the first VCP locates between the 1st and 2nd piece of all PSS, and
the second VCP locates between the 2nd and 3rd piece (Fig. 2A). The
detailed implementation of expected-actual comparison method on
the sensorized RDSR is presented (Fig. 2B). The Expected Shape (ES) is
calculated from the actuation commands Lij, generated by the con-
troller (j-th flexible rod of i-th module (i = 1, 2, j = 1, 2, 3)). After
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Fig. 1 | An expected-actual comparison perception-action loop in soft robots.
A Overview of the sensorized rod-driven soft continuum robot (RDSR) and the
perceptionmethod. B A general framework for high-level perception-action loops.

C Demonstrations of perception-intensive environmental interaction tasks:
autonomous exploration and navigation of mazes by detecting contacts with the
walls, and teaching and repeating tasks by interacting with human operators.
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Fig. 2 | Detailed scheme of expected-actual comparison method on an RDSR
and the performance of soft sensors. A Proprioception model of the sensorized
RDSR. B Detailed implementation of the perception-action loop in the sensorized
RDSR. C Real-time changes in sensors and the perceived AS. Cases: (1) only
external contact applied, (2) only actuation applied, (3) external contact applied
after actuation. The real-shape image and perceived AS under case (1) are

presented in (i, ii). The results under cases (2) and (3) are shown as (iii, iv, v). All
sensor data are presented in (vi). D Tip position errors between perception and
camera under different loading, from 100 to 700 gf in 100gf intervals. E Data
distribution of the axial and norm distance between AS and ES under no-loading
conditions. The data are on the left of the box. Each box contains the data scale,
median, and mean value.
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executing the command, real-time sensing of Actual Shape (AS) is
estimated based on the equivalent length Likj for j-th flexible rod of k-th
segment of i-th module (k = 1, 2, 3, …, n). The kinematics of each seg-
ment is obtained based on the mapping relationships from actuation
space (length Likj) to configuration space (arc length Lcik, the angle of
bending plane ϕik, and the bending angle βik).

The equivalent length Likj for each segment is calculated from the
real rod length Lij inside the soft body and the sensor strain Sikj of each
piece of PSS (the “Equivalent length and actual shape (AS)” section,
Fig. S4).

Likj =
Lij 1 + Sikj

� �

P3
k = 1ð1 + SikjÞ

ð1Þ

By calculating the difference, defined as contact index ε
(ε =pES – pAS), between the tip positions of AS and ES, we obtain the
following information: the presence of external contact, the defor-
mation source (internal actuation or external contact), and the extent
or direction of contact. We set an index threshold ε0 to judge whether
external stimuli exist. If the norm or absolute axial value (||ε ||, | εx| ,
|εy| , |εz|) of ε is larger than the index threshold ε0, we identify the
deformation caused by external stimuli, detect the presence of
the contact and re-plan the next step of actuation before entering the
controller. Otherwise, there is no contact and the deformation is
generated by internal actuation. The controller continues to execute
the planned actuation. Besides, the presence of external contact can
be detected by directly analyzing whether the sensor’s value is within
the calibration range (Fig. S4).

The perception function and sensor performance are verified
through a one-module RDSRwith PSS. All sensors are calibrated before
starting testing. Results show that the sensor has good linearity with a
goodness of fit close to 1 (Fig. S4). Then, the perceived AS and sensor
response in real-time were demonstrated under three cases (Fig. 2C,
Movie 1): applying (1) only external stimuli without actuation, (2) only
actuation without stimuli, and (3) stimuli after actuation. For the first
case (Fig. 2Ci), the robot was in the initial configuration, and we arbi-
trarily applied external stimuli to the tip. For the second one
(Fig. 2Ciii), we manually set the target length of three flexible rods to
0.15m, 0.15m, and 0.16m, respectively. Afterward, arbitrary stimuli
were also applied to the actuated configuration, which is the third case
(Fig. 2Civ). The sensor data varies with different cases. Each embedded
sensor can respond to local deformation caused by internal actuation
and external stimuli individually or simultaneously (Fig. 2Cvi). The
perceivedAS (Fig. 2Cii, v) reflects the robot shape in real-timebasedon
the sensed deformation and current actuation length. Figure 2Cii
presents the perceived shape with case (1). The cyan and magenta
shape in Fig. 2Cv are estimated under cases (2) and (3), respectively.

Another test focuses on the accuracy of proprioceptive tip posi-
tion and determination of contact threshold ε0. Considering the
symmetric characteristic of a one-module RDSR, we did not take all
configurations over the workspace, and randomly generated 500
configurations based on the following parameters: arc length Lc that
ranges from0.155 to 0.165m, the angleϕ of bending plane that ranges
from 0 to 2π/3, and the bending angle β that ranges from 0 to π/3
(Fig. S5). We actuated these configurations with different tip load
conditions: no load, 100–700 gf (gram-force) in 100 gf intervals.
Among the tested loads, the maximum is 700gf, which is more than 4
times of the robot’s own weight (160 g). For each configuration and
each load condition, the perceived 3D tip position is obtained fromAS
and ES, which are estimated from the proposed perception method.
The real tip position is obtained from an RGB-D camera (RealSense
D435, 0.001mm resolution in image, 1mm resolution in depth). The
perception error is calculated from the tip positions of the perceived
shape (AS and ES) and RGB-D camera (Fig. 2D). The error on average of

AS ranges from 2.4mm to 3.2mm with respect to different tip loads.
The error percentage of AS, with and without load, is 1.4% and 2%
relative to the whole length (0.16m), respectively. The accuracy of the
perceived AS remains almost unchanged regardless of the increase in
tip load. However, as the load increases from 100 gf to 700gf, the
perceived error of ES increases from 2.4 to 18.7mm, and the percen-
tage changes from 1.4% to 11.7%. Therefore, the perceived AS achieves
better accuracy than ES due to the fact that PSS captures the local
deformation causedby tip loads in real-time. External loads or contacts
will magnify the difference between AS and ES, and even then, AS
achieves accurate perceptual precision.

Considering that the difference between AS and ES increases with
increasing the external contacts, contact index ε can be used to
identify whether the external load exists. To more precisely interpret
the contact information, theboundaryof the contact index ε should be
determined. The principle for obtaining the boundary value is to
evaluate the axial and normdistances of the contact index ε under no-
tip loading conditions. The experimental results without tip loads in
the perception accuracy test were used to determine the threshold of
the contact index ε. The calculated axial and norm distance between
the tip position of ES and AS are presented on the left side of the
boxplot (Fig. 2E). The distribution, scale, median, and mean values of
the data are displayed in the box. Different configurations have dif-
ferent distances. The axial distance ranges from −2 to 5mm and the
norm distance ranges from 0 to 5mm. As the distribution boxplot
shown, although the absolute distance is mostly lower than 3.5mm, in
order to ensure that the external contact can be detected, the upper
limit of the absolute distance of 5mm is determined as the index
threshold ε0. The robot is considered to be in contact with external
stimuli when the norm or absolute axial value (||ε ||, |εx| , |εy| , |εz|) of the
contact index ε is greater than the threshold ε0 = 5mm.

Proprioception and simultaneous contact detection
Two kinds of contact experiments, different body positions, and dif-
ferent material contacts, were carried out to demonstrate simulta-
neous proprioception and contact detection as well as its rapidity and
robustness.

For the first one, three different cases, namely tip contact (Fig. 3A,
Movie 2), body contact except for the sensor part (Fig. S6), and direct
sensor contact (Fig. 3,Movie 2), were tested. The robot is controlled by
three sets of sequential actuations (Fig. S7), respectively. Then, we set
obstacles to block the continuous motion of the RDSR. Figure 3 pre-
sents the results of tip contact. When the robot bends to the opposite
side of the obstacle in the first 10 s, the deformation is only generated
by the self-actuation as the perceived AS and ES nearly coincide, and
the contact index ε, including axial and normdistances, remains below
5mm.When the robot bends towards the obstacle, an external contact
is detected for a duration of approximately 12.5 s–15 s, as the normand
absolute axial value of ε is larger than 5mm. We can observe a clear
difference between AS and ES. The local deformation is caused by self-
actuation and external stimuli. Besides, the proprioceptive shape and
tip path are achieved, whether external stimuli are applied or not. The
same results were obtained in the second case (Fig. S6), including the
proprioceptive tip path, the norm, and the axial value of ε. The robot’s
contact with obstacles is detected from 4 s to 6 s. An obvious differ-
ence in tip path can be observed during this period. Another method
to detect direct stimuli on the sensor is shown in Fig. 3. The sensor S21
is in direct contact with the obstacle during movement. Hence, the
changes in sensor resistance are not only produced by the surface
tension of the soft body but also by the normal contact pressure. To
distinguish the calculation error caused by direct contact on the sen-
sor, we evaluated the resistance change of the sensors embedded on
the robot and showed that if not been directly contacted, the sensors’
resistance changes will not exceed 10% during regular actuation
(Fig. S4). While the effect on the sensors is negligible (<1%) when
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applied normal force is smaller than 10 gf (Fig. S8B, see Supplementary
Text S3 for more details) because resistance change smaller than 1%
only brings 2mm in ||ε || and 1.5mm in perception error (Fig. S9B, C),
the applied normal force (>16 gf) can be directly recognized once
resistance exceeds 10% of its initial value (Fig. S8B). Therefore, unex-
pected errors will only exist when the normal force applied directly on
the sensors is within the range of 10–16 gf (shown as red area in
Fig. S8Biii), which is very small and rarely seen during daily usage.
Thus, the external contact is detected once the change of sensor data
is larger than 0.15Ω (the initial value of S21 is 1.5Ω) (Fig. 3).

For the other one, we found that the robot can detect the tip
contact with obstacles of different stiffness (Young’s Modulus from
55 kPa to rigid) (Fig. 3, Movie 3). When given the same actuation,
although the final deviation of the robot tip decreases when the
stiffness of the touched obstacles increases, the norm value ||ε ||
of the contact index ε increases from 7.4mm when touching 55 kPa
obstacle to 9.7mmwhen touching rigid one. As a result, when setting

a threshold norm value ||ε0 || = 5mm, the detection of contact
with obstacles of different stiffness can be achieved within 0.4 s
and the corresponding force is under 44 gf, the higher stiffness, the
faster contact detection (See Supplementary Text S4 and Fig. S10 for
more details of contact detection on material with different
stiffness.).

Contact force and shape detection under a dark environment
We demonstrate the capabilities of the sensing expectation approach
in perceiving contact direction and the corresponding force in static
(Fig. 4A, Movie 4) configurations. External contacts from different
directions, ranging from 0 to 315° in intervals of 45°, are applied to the
tip in the initial configuration (Fig. 4Ai). We found that the perceived
shape after each contact is almost the same as the real one (Fig. 4Aii).
Calculating from contact index ε, the sensed direction in x- and y-axes
is compared with the real contact reflected from a multi-axis force
sensor (ATI nano 25). The results show that our approach senses the

Fig. 3 | Proprioception and simultaneous contact detection during motion.
Given the different sets of continuous control commands, the robot is blocked by
obstacles and actively perceives (A) tip contact detection and (B) sensor contact

detection.CThe experiment oncontactwithmaterial of varying softness, including
Ecoflex10 (Smooth-On, Inc. 55 kPa), Ecoflex30 (69 kPa), Dragonskin10 (151 kPa),
Dragonskin30 (593 kPa), and printed PLA (Rigid).
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contact direction in anaccurateway,with anaverage error of about 10°
(Fig. 4Aiii, iv). Besides, our handdrags the tip in the same configuration
to make it spin in a continuous circle (Fig. S11A, Movie 4). The pro-
posed method can quickly sense and calculate the contact index
(εx and εy), whose changing trend is the same as the real force (fx and
fy). On this basis, the relationship between contact index and force is
fitted (Fig. S11B). The goodness of these linear fits approaches 1. Con-
tact forces (fx and fy) can be estimated from the contact index (εx and
εy). In the dynamic configuration test experiment (Fig. 4B, Movie 4),
the robot initially performs a circle movement under predefined
bending commands (Fig. 4Bi). We then apply continuous contact to
make the tip move in a smaller circle with the same bending sequence
(Fig. 4Bii). The sensed contact index (εx and εy) shows thedirection and
force of the external contact. The deviation between the two paths
with and without contact is consistent with the distribution of the
estimated forces. The greater the contact force, the greater the
deviation (Fig. 4Biii). The average angle error of the perceived direc-
tion is kept below 10° compared to the real one (Fig. 4Biv). The same
results are obtained in another dynamic perception test where we
applied backward and forward contact during bending (Fig. S11C). The
above-mentioned perception of contact direction and force can be
achievednotonly at the tip but also anyposition along the soft bodyby
simply estimating the contact index at the corresponding point.

Wedemonstrate this functionality atmiddle position along the body in
both static and dynamic configurations (Fig. S12).

Furthermore, these capabilities are presented to perceive sur-
rounding shapes and interaction forces under ink (Fig. 4C). Our robot
reaches into the ink and detects the environmental structures around
the task area. Four different shapes of obstacles (convex, wave, flat,
and rough) are setup in this demonstration (Fig. 4Cii).With the input of
predefined commands, the robot explores the dark environments and
perceives and obtains the tip path from ES and AS respectively. The
former one reflects the outer boundaries of these obstacles and is
ideally considered a non-contact situation, while the latter one shows
their true contours and is a real-time perception of the actual state of
the robot (Fig. 4Ciii). Asmentioned previously, we compare AS and ES,
calculate the contact index ε (εx, εy, and εz), and identify the different
interaction information including direction andmagnitude (Fig. 4Civ).
Therefore, the force vector at each contact point is estimated based on
these indexes and the fitting results. We found that the force profile is
consistent with the obstacle contour (Fig. 4Cv).

Automatic exploration and navigation of mazes
Detection of interactions with the environment improves the intelli-
gent behavior of soft robots in exploration and manipulation. Our
proposed high-level perception-action loops, on the one hand, obtain

0 15 30 45 60

Convex Wave Flat Rough

Fig. 4 | Perception of contact direction, force, and shape. The capabilities in
perceiving contact direction and force in static (A) and dynamic (B) configurations.
C Detection and perception experiments under ink. (i) Experimental setup. (ii) The

image of a real shape under the ink. (iii) Detected shapes with and without the
proposed EPmethod. (iv) Contact index εx and εy along x- and y-axes. (v) Perceived
contact force profiles and vectors.
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the accurate proprioception-based closed-loop motion control (Sup-
plementary Text S6, Movie 5), and on the other hand, tunes the
actuation strategy based on simultaneous contact detection. Its first
experimental scenario is the autonomous exploration of a maze by
detecting contactwith themazewalls.Without loss of generality, three
different kinds ofmazes are tested, including a simpler labyrinthwith a
single continuous path (Fig. S17, Movie 6), a circular maze with mul-
tiple intersections (Fig. 5, Movie 7), and a standard maze (Fig. S21,
Movie 8). The end-effector of the soft robot is inserted into the channel
of mazes. Initially, we set a general motion direction and a forward
step. The robot will automatically explore and navigate in the maze by
touching thewalls, updating target points, searching for the right path,
and finding the exit.

Before exploring a maze with multiple intersections and obsta-
cles, a simpler labyrinth with a single continuous path is tested
(Fig. S17, Movie 6). A control algorithm is proposed to automatically
explore this maze (Fig. S18). Each target position is adjusted
according to the contact index ε and the current perceived AS
position. Based on the predefined general update rule that sets the
motion direction and the forward step, the controller generates
the next target position. Afterward, the robot can reach that through
the proprioception-based closed-loop motion control. If ||ε ||, |εx| ,
and |εy| exceed the contact threshold, the controller will readjust the
target potion and repeat the motion control. The whole exploration
process, including the targets, and the perceived tip of ES and AS, is
presented in Fig. S17D. The corresponding contact index provides
feedback on the interaction information between the tip and the wall
(Fig. S17C).

After successfully exploring the right path and exit of a simpler
labyrinth, the same idea is adapted to finish a much more complex
one, a circular maze, but with more challenges to address. It requires
the soft robot to find each right exit, identify thewall along radial and
tangential directions, adjust general motion rules, record correct
path points, and repeat them. Our robot addresses these challenges
and makes its way out of a more complex maze (Fig. 5, Movie 7). The
control algorithm is modified from the one applied in the simpler
labyrinth. Two control blocks are added to find each right exit and
change the general motion rules based on the identified wall
(Fig. S19). Figure 5B presents the final right-searched path and its
relative location in the maze. The coordinates denoted in xm-om-ym
plane and the corresponding ||ε ||, εx, and εy are recorded (Fig. 5c).
Our robot automatically explores and successfully navigates the
maze within the threshold ε0 of the contact index. The updated
targets and the perceived tip position from ES and AS are recorded.
Their relative position in the maze is displayed in Fig. 5F. Calculating
the difference between the ES and AS tip, the corresponding ||ε ||, εx,
and εy interprets the interaction information between the robot and
the environment (Fig. 5D). The key points of the exploration include
proprioceptive position, collision detection on the radial and tan-
gential wall, and direction of the decision movement (counter-
clockwise or clockwise). Figure 5G displays the detailed exploration
process. The related ||ε ||, εx, and εy are presented in Fig. 5E. Detailed
process descriptions are presented in the “Motion control based on
proprioception and contact” section. The robot follows the
exploration principle until it gets out of the maze. All actuation
lengths, throughout the whole exploration process (Fig. S20A), are
generated from the optimization-based method (Fig. S14, Supple-
mentary Text S5). All of them serve two purposes. One is used to
approach the updated target points. Another is used to touch the
wall. The former is recorded and repeated (Fig. S20B) to achieve
movement along the right path in themaze (Fig. 5A–C). Furthermore,
the automatic exploration and navigation in a standard maze were
also carried out (Movie 8). The robot detects the walls on the left and
on the direction of movement, updates the target position by itself,
and automatically moves along the maze channel. The exploring

process and experimental results (Fig. S21, Supplementary Text S7)
are similar to the circular maze. Detailed descriptions are included in
Supplementary Text S7.

Teaching and repeating tasks
Different control strategies are applied to realize the second experi-
mental scenario, which is teaching and repeating tasks. A human
operator can manually teach the robot to perform the required task,
and the robot repeats the recorded actions and completes the taught
behavior. Initially, the principle for teaching and repeating the desired
configuration is explained and demonstrated in detail (the “Motion
control based on proprioception and contact” section). And the
interaction force between the human operator and robot is also tested
and compared.

Furthermore, our soft robot is mounted on top of a manikin lying
horizontally to test the teaching and repeating function in a massage
task (Fig. 6Ai). Ten desired positions ranging from p1 to p10 aremarked
in green on the manikin surface (Fig. 6Aii). Two additional sensors Re

and Rs are attached near the tip, tomanually control the pushing force
between the manikin and the robot, which is monitored by a uniaxial
force sensor placed along the z-axis (Fig. 6Aiii). The control algorithm
for this task (Fig. S24), which adds pushing force monitor and control,
ismodified from that for the uniaxial demonstration test (Fig. S22). The
process of teaching the robot to move to the desired configuration of
position and force is manual (Movie 11). Firstly, the human operator
takes the end-effector and moves it to the desired position in the x-y
plane. Then, the Re sensor is pressed to adjust the configuration and
increases the pushing force to the desired level. Afterward, we release
the Re sensor and press the Rs sensor to decrease that force (Fig. 6Bii).
Finally, we move the robot to the next marker and adjust the force
using the same process as above. The real-time change in force sensor
is used to manually monitor the pushing force (Fig. 6Bi). The human
operator can view this force, and adjust through the Re and Rs sensors.
The detailed process of force tuning at desired positions p2 and p7 is
shownaroundmoments t1 and t2 during the teaching period (Fig. 6Bii).
Our controller memorizes all satisfactory actuation, tip positions, and
forces based on the control algorithm (Fig. S24). All data are rear-
ranged together in equal time intervals (Fig. S25). Then, we apply the
sequential actuation to repeat the recorded position and force
(Movie 12). The repeated configurations are almost the same as the
taught ones at desired positions p2 and p7 around t1 and t2
(Fig. 6Biii, iv). Tip positions are obtained from the perceived AS. The
recorded and repeated 3D trajectories are almost consistent
and reach all target markers (Fig. 6C). The axial and norm position
errors are calculated, by comparing repeated and recorded ones,
with a maximum of less than 6mm (Fig. S25B). In particular, the
maximum position error for all the target markers is less than
0.0045m (Fig. 6D). Similarly, the taught forces at each marker are
repeated very well, with maximum force errors less than 0.6N
(Fig. 6E). The profile of the repeated force is nearly identical to that
of the recorded force during teaching (Fig. S25C). Notably, the
maximum active pushing force is about 8 N, which is difficult to
achieve in soft robots.

Discussion
In this study, we propose a high-level perception-action method
involving ES and AS and demonstrate how this method can be used to
advance the intelligent behavior of soft robots. Our robot perceives its
shape in the 3D environment with precise, coherent, and stable
references from soft-bodied actuation rods and real-time deformation
sensing from soft sensors. AS is estimated from the equivalent length
Likj for each segment, which is calculated from the current rod length
Lij inside the soft body and the ratio of each piece relative to each PSS
(the “Equivalent length and actual shape (AS)” section). This hybrid
mapping that combines rod length and sensor strain is advantageous
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Fig. 5 | Soft robots automatically explore and navigate a circular maze.
A Photograph of the experimental setup for maze exploration. The maze is
designed with multiple intersections and barrier walls. The end-effector of the soft
robot is inserted into the channel to touch the wall and find a pathway. B Top view
of the successful right path and its relative position in the maze. Each right way-
point is determined from the exploration process. The robot will record and repeat
them after finishing the process. C Tip coordinates and the corresponding norm, x,

and y-axis value of εwhen the robotmoves along the right path.D The norm, x, and
y-axis value of ε throughout the automatic exploration process. E Partial enlarged
view of the norm, x and y-axis value of ε from 130 to 200 s. F Display of the whole
exploration process including updated target point, perceived ES and AS position,
and their relative location in the maze. G Partial enlarged view of the exploration
process from 130 to 200 s.
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compared to direct mapping from sensor strain to length. We can
avoid mapping errors caused by the fabrication and calibration of the
PSS. Global environmental perturbations like temperature, oxidation
of liquid metal, and hysteresis bring deviations in sensor resistance,
but the equivalent length Likjwill not produce large errors.Ourmethod
and robot system can robustly distinguish between internal and
external interactions, and rapidly achieve posture proprioception and
contact detection. On this basis, our soft robot successfully realizes
autonomous exploration and navigation in mazes by touching walls,
and it is taught to repeat the desired configuration of positions and
forces with the guidance of a human operator. Although we can face
variable changes in internal actuation, external loads, and surrounding
environments, adapting to these scenarios due to internal defects and
external damage remains a great challenge for our expected-

perception methods and systems. There is still a need to develop
soft skin sensors with higher performance to perceive the presence
and position of these defects and damages.

Our perception method, inspired by human brain mechanisms,
shows how to dynamically distinguish between local deformation
generated by internal actuation and those generated by external sti-
muli in a rapid and robust way. It is a general method that can be
applied to realize the intelligent behavior of any soft robot. The main
process is to calculate the expected perception (EP), built from a copy
of motor command and internal models, and interpret the sensory
feedback fromsensors. Visentin et al.44 preliminarily identifiedexternal
contact through a mismatch between expected and measured posi-
tions but with only static force sensing and only comparison by the
position of one point. Currently, the PCC-based forwardmodel acts as

Fig. 6 | Teaching and repeating test on a manikin. The human operator teaches
the robot to move to the desired configuration of position and force. Then, the
robot repeats them. A Experimental setup for manikins and soft robots. (i) Over-
view of the setup. The manikin is lying horizontally, and the soft robot is mounted
on top of it. (ii) Top view of the manikin with desired positions. The desired points
are marked in green. The robot moves sequentially from p1 to p10. (iii) A detailed
setup image of the sensors controlling and measuring the desired force. A uniaxial
force sensor is mounted vertically to measure the pushing force between the

manikin and the robot. Two soft sensors Re and Rs are attached near the tip
to control the magnitude of the force. B Teaching the robot to move to the
marked position in the manikin and apply the desired pushing force to it. (i)
the real-time sensor data including force, Re, and Rs sensors during the teaching
period. (ii-iii) the sensor data and robot configurations at moment of t1 and t2.
C The tip trajectories in the x-y plane during teaching and repeating.D Tip position
errors at all targetmarkers after repeating. E The repeated and taught force at each
marker.

Article https://doi.org/10.1038/s41467-024-54327-6

Nature Communications |         (2024) 15:9978 9

www.nature.com/naturecommunications


the internal model to predict the deformation. Some other models
such as the mechanics-based model45–48 or learning-based model12,49,50

can also act as internal models to describe soft robots. The choice of
different models requires a trade-off between model accuracy and
computational efficiency. We provide a perception framework in soft
robotics that is different from the conventional frameworks that focus
on how to achieve the predefined target, such as PD-like controllers for
shape regulation and tracking51, learning-based9, or model-based
controller10 for force/position tracking. These works use the residual
or errors between target and real measurement, target and model
calculation, or model calculation and real measurement to optimize
and update the actuation strategy to reach the predefined goals. In our
research, we do not analyze quantitatively the computational cost in
comparisonwith othermethods.We just present the capabilities of the
EP-based approach for soft robot proprioception and simultaneous
contact detection. Based on the error comparison between the
expected state and the actual state, we can distinguish the body
deformation in soft robots caused by internal actuation from those
generated by external contact. It should be noted that the EP-based
controller applied in rigid robots is less computationally demanding
and more energy efficient when compared to a standard predictive
controller4,5, which will favor the mechanics-based model control in
soft robots.

The contact index ε is experimentally obtained from the differ-
ence between ES and AS of the one-module RDSR and varies due to
different configurations. The precision of thematch and comparison is
dependent on the threshold ε0. If the threshold is too large, wewill not
detect external stimuli, even if the robot has a large extent of contact
with the environment. Contrarily, the stimuli will be falsely detected
due to signal noise or model accuracy. The upper limit of the absolute
distance range is determined as the threshold ε0 to ensure that
external contact is detected. This threshold is not affected by the
number of modules, since the kinematics are identical for each mod-
ule, and are calculated from the actuation length and sensor data.
Apart from comparing the contact index ε, external stimuli can also be
detected when the sensor resistance exceeds 10% of its initial value.
But, in this case, the position feedback from the perceived AS is not
accurate (Fig. 3B). Currently, we cannot resolve the inaccurate position
feedback due to direct contact with sensors. We can easily and fast
recognize direct contact when it happens. After that, we stop the robot
and replan a new configuration to avoid direct contact. To completely
resolve this problem, the first method is to use machine learning to
decouple the effect of the strains caused by normal force and
stretching. The second approach is to propose another model to
identify and exclude some sensors that are in direct contact with
external stimuli and estimate the robot shape based on the remaining
sensors.

A similar capability, namely simultaneous localization and map-
ping (SLAM) without vision and lidar sensors, is achieved through the
proposed RDSR and perception method. Autonomous navigation of
mazes demonstrates the ability of the soft robot to explore the
environment. We do not need specific sensors at the tip for intelligent
control compared with traditional approaches (tactile sensors at the
tip for contact detection and bending sensors for shape sensing).
Meantime, the perceivedAS feeds back the current position regardless
of whether external contact occurs. By benefiting from these, our
robot actively and automatically interacts with external environments,
detects contact, and constructs the surface contours of terrain and
objects. It has great potential for applications including, but not lim-
ited to maze exploration, such as shape detection through lateral
scanning52,53, and organ geometry estimation based on joint-level force
sensing10. One more thing to note is that, as shown in Fig. S19 and
Movie 7, the robot touches the wall from step 6, to avoid an infinite
loop in the first circular channel. A properly adjusted step size can also
avoid the same.

Methods
The integration and fabrication process of RDSR with PSS
The RDSR and PSS are fabricated separately by using silicone molding
technology (Fig. S3). For RDSR54, the flexible rods (NiTi alloy) and 3D-
printed disks are first assembled. The silicone tube, as an outer sheath,
hosts the NiTi rod and helps to decrease the viscous friction between
the rod and the soft body. Three rods are evenly located in the cir-
cumferential direction,fixed to the enddiskby the lock ring, and freely
slide through the base disk and silicone tube. A 3D-printed core plug
keeps the equal distance constraint between the base and end disk.
These molds are sprayed with a release agent for easier demolding.
Then, the assembled parts are put into the 3D-printed shell mold, with
threads for string fiber, and silicone rubber (Silicone 0030, Ecoflex,
Smooth-on Inc.) is poured into the mold. Once completely cured, the
silicone-based body is removed from the shell mold, and Kevlar string
is twined along the threads. For PSS, silicone rubber is poured into the
bottom mold with a protruding structure to form a bottom layer with
microchannels.Meanwhile, silicone rubber is poured into the topmold
and cured under 50 °C for 5–6min. Then, the completely cured bot-
tom layer is put above the top layer to form a PSS substrate with sealed
microchannels. After the two layers have cured together, cut off the
excess top layer. The conductive eGaIn is injected into each channel,
and copper wires are inserted at both ends. Sil-Poxy is used to seal the
channel and prevent eGaIn from oxidation. Finally, the soft body of
RDSR is shortened from L0 to L′0 by vertically pressing the base disk.
TheunstretchedPSS is thenglued to the shortenedbody surfaceby Sil-
Poxy. Each PSS is close enough to the corresponding actuation rod for
each module. When the soft body and PSS are glued together, we
release the pressing force and restore the original length of the RDSR.
The initial state of the PSS is stretched and can capture bidirectional
strain changes. The detailed comparisons and studies of multi-modal
sensory soft robot systems are listed in the Table S155–57.

Equivalent length and actual shape (AS)
The rod length Lij inside the soft body for each module is definitely
known to us according to the feedback of the servo motor, but the
equivalent length Likj for k-th segment of i-th module is hard to
determine directly. Each branch has one PSS mounting near the
actuation rod of the corresponding module. The sensed strain of PSS
in real-time reflects the deformation generated by the actuation and
external stimuli. Without prior knowledge of the internal or external
factors, such as actuation or tip load, we can estimate the robot con-
figuration or tip position after obtaining the equivalent length Likj.
Considering that the PSS is attached closely to the actuation rod, the
ratio of the sensor length lesikj to the total length of each skin is the
same as the ratio of the equivalent length Likj to the rod length Lij.
The ratio wikj is estimated firstly as follows:

wikj =
lesikj
lesij

=
lesikjP3

k = 1
lesikj

=
les0ikj ð1 + Sikj ÞP3

k = 1
les0ikj ð1 + Sikj Þ

=
les0ikj ð1 + Sikj Þ

les0ikj

P3

k = 1
ð1 + Sikj Þ

=
ð1 + Sikj ÞP3

k = 1
ð1 + Sikj Þ

ð2Þ

Then, the equivalent length Likj is estimated by the following.

Likj =wikjLij , ð3Þ

where lesikj and εikj are the real-time length and strain of the j-th sensor
on the k-th segment of the i-th module. les0ikj is the initial length of
each piece. Since the fabricated channel length and the initial straight
state of each sensor are the same, the length les0ikj of all sensors is the
same. Therefore, the ratio wikj is only related to the sensor strain εikj.

There is no coupling effect between modules for a one-module
RDSR. The above formula (3) can be directly used to obtain the
equivalent variable length Likj. The strong coupling effect should be
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considered for a two-, or multiple-module RDSR. Taking a two-module
RDSR as an example to explain how to obtain equivalent variable
length Likj. The total length of flexible rods connected with 1st module
is L11, L12, L13. The total length of flexible rods connected with 2nd
module is L21, L22, L23. Firstly, the coupled length L21-1, L22-1, L23-1 in the
1st module of the 2nd module flexible rod is estimated. Then, we
obtain the rod length embedded in the 2ndmodule by subtracting the
coupled length L21-1, L22-1, L23-1 in the 1st module from the total length
L21, L22, L23 of the 2nd module. Finally, combined with sensor data on
the 2ndmodule, we can obtain the equivalent variable length L2kj from
Eq. (3). Thus, the Actual Shape (AS) for a two-module RDSR is calcu-
lated. The coupled kinematics for multiple modules is presented in
Supplementary Text S2.

Contact detection and force estimation
For each perception and control loop, ES will be predicted based on
the future rod length Lij, and AS is estimated from the equivalent
length Likj. Both perceived shapes are calculated from the same kine-
matics model (Supplementary Text S2). Then, the contact index ε is
calculated as ε =pES –pAS (εx, εy, εz), which is the difference between
the tip positions of AS and ES. If ||ε||, | εx| , |εy| , or |εz| > ε0 (defined as
5mm in the “Perception Performance” section), we identify the pre-
sence of external contact and also estimate the direction anddegree of
this contact. The contact direction in the x-y plane are sensed
as: θsensed = tan

�1εy=εx . The magnitude of εx, εy, εz represents the
degree of contact. Besides, we calibrate the relationship between the
difference (εx, εy) in tip position and the contact force (fx, fy), respec-
tively (Fig. S11B). Then, the force can be estimated by
f x =8:39εx � 0:004, and f y = 10:25εy � 0:005.

Motion control based on proprioception and contact
Regarding the exploration and navigation of the circular maze. The
control and motion process, in other words, is like our left hand tou-
ches the left side after each step to see if there is a wall or an exit. If we
find an exit, we go in. If we find it to be a wall, we continuously move
forward. If we contact thewall while in amoving direction, we turn and
change the direction of movement. For example, after reaching a tar-
get point, the robot tries to move a little distance along the radial
direction. If external contact is detected (||ε||, |εx| , or |εy| > 5mm), the
next target is updated clockwise, as the previous one, and the robot
moves to the next (Fig. 5Gi, ii). If not, the next target is updated based
on the current perceived position (Fig. 5Giii, iv). If the robot makes
contact with the wall whilemoving forward to the next target for three
consecutive loops, an obstacle in the tangential direction is detected
(Fig. 5Gv, vi, vii). The robot goes back to the starting point of these
three loops andplans the next target counterclockwise (Fig. 5Gviii). On
this basis, the presence of multi-directional walls is identified in real-
time. We use the difference or contact index to adjust the target and
find the exit (Fig. S19A–C, F).

Regarding the teaching and repeating tasks. The motion control
principle is to monitor and control the absolute contact index ε to be
less than 5mm(Fig. S22). A uniaxial demonstration test is conducted to
display the process (Fig. S23A,Movie 9). During the test, a humanhand
pulls and pushes the robot tip along the y-axis (Fig. S23Ai). Local
deformations are generated when external forces are applied, and the
norm and axial value of the contact index ε increase.When the index is
larger than 5mm, the controller actuates the robot todecrease themto
less than 5mm (Fig. S23Aiii). Each teaching point, including proprio-
ceptive position, and actuation, will be recorded. Afterward, the robot
repeats the taught behavior by applying the recorded actuations
(Fig. S23Aii). At the same time, the tip position is obtained from the
perceived AS of each repeated configuration. Then, the repeated
position error |dpy| is calculated between the repeated and recorded
points (represented by the blue bar in Fig. S23Aiii), with a maximum
error of less than 0.007m. Additionally, a uniaxial force sensor

(DYMH-103, DAYSENSOR Ltd., Anhui, China) is setup along the y-axis
(Fig. S23Biii), to measure the applied force between the robot and the
human hand while teaching. To compare the interaction force, the
human hand slightly and slowly pulls the tip along the y-axis, with and
without teaching (Fig. S23Bi, ii, Movie 10). The robot moves with the
movement of the human hand, and the force is maintained around
0.6N with teaching. Inversely, the force increases with the displace-
ment by up to 3N (Fig. S23Biv). The teaching and repeating in our soft
robot can be realized with a small repeating error and a low
interaction force.

Data availability
All data are available in the main text or the supplementary materials.
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