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Abstract
In this paper, we investigate the relationship between individual rationality and price 
informative efficiency studying a prediction market model where agents repeat-
edly bet on the occurrence of a binary event following their subjective beliefs. We 
define individual rationality in terms of the amount of past observations used to 
update beliefs. In this way, a wide spectrum of rationality levels emerges, ranging 
from zero-intelligence to Bayesian learning. We show that the relationship between 
individual rationality and price informative efficiency is nonlinear and U-shaped. 
We argue that the results emerge from the particular interaction of two evolution-
ary forces operating at different levels: the market selection mechanism that moves 
wealth toward more accurate agents and the individual learning process that moves 
posterior probabilities over models depending on observed realizations.
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1 Introduction

Market efficiency is one of the most debated topics in the field of finance. Testing 
whether the efficient market hypothesis (Fama 1970; LeRoy 1989) holds, identify-
ing possible violations, and proposing theories to explain them have been occupy-
ing the research agendas of many financial economists and drove the development 
of the field of behavioral finance (see, e.g., Barberis and Thaler 2003; Hirshleifer 
2015). A widespread perspective is that market efficiency is a consequence of full 
information and rational expectations, with the equilibrium price identifying the 
efficient one. Hence, within this framework, the use of heuristics to form expecta-
tions moves away the equilibrium price from the efficient one (see, e.g., Barberis 
et al. 1998; Daniel et al. 1998; Bottazzi and Giachini 2022; Antico et al. 2024). It 
follows that, as we move further away from full rationality, the larger the loss in 
terms of market efficiency.

Such a simple connection between individual rationality and aggregate out-
comes, such as pricing and market efficiency, is not accurate. Indeed, simple fast 
and frugal rules may actually provide superior outcomes in complex environ-
ments (Gigerenzer and Brighton 2009; Gigerenzer and Gaissmaier 2011; Kirman 
2010; Mousavi et al. 2015). Gode and Sunder (1993) prove that a double-auction 
market composed by zero-intelligence agents respecting budget constraints pro-
duces efficiency results that match competitive equilibrium allocations. Giachini 
(2021) shows that, under heterogeneous and incorrect beliefs, the evolutionary 
market selection forces operating in an economy populated by agents following a 
simple trading rule (as in Bottazzi et al. 2018, 2019) can generate a pricing per-
formance more in line with efficient (fully rational) levels than the one obtained 
in an economy where agents inter-temporally maximize their utility (as in San-
droni 2000; Blume and Easley 2006, 2009). In heterogeneous agent models of 
financial markets, rational traders (fundamentalists) usually act as a price stabiliz-
ing force, while chartists tend to destabilize (Hommes 2006). However, Gardini 
et al. (2022) show that price destabilization always emerges when fundamental-
ists have a different perception of the fundamental price. In addition, Naimzada 
and Ricchiuti (2009) show that price destabilization also emerges in a model 
where only fundamentalists with different beliefs are active. At the same time, 
Naimzada and Ricchiuti (2014) show that belief heterogeneity can have a positive 
effect on price stability if the market maker adopts a multiplicative price setting 
mechanism. Such an ambiguous relationship between individual characteristics, 
market structure, and aggregate outcomes also emerges from the analysis of Bar-
gigli (2021), where an optimizing monopolistic market maker is assumed in an 
otherwise standard model à la Brock and Hommes (1998).

A general picture on the relationship between individual rationality and aggre-
gate outcomes is offered by Fehr and Tyran (2005). They report five ways in 
which markets can somehow compensate for deviations from full rationality at 
the individual level and eventually produce efficient aggregate outcomes. The first 
is aggregation: random individual deviations from rationality cancel out in the 
aggregate. The second is learning: agents learn from experience and eventually 
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become rational. The third concerns interaction rules and constraints: market 
structure and budget constraints (such as in Gode and Sunder 1993) let rational 
aggregate outcomes emerge from zero-intelligence agents. The fourth is market 
selection: in competitive markets, rational individuals gain wealth at the expenses 
of irrational individuals; hence, the latter ones are driven out of the market and 
do not influence prices. The fifth is the relative position in the curves of demand 
and supply: while irrational agents tend to hold extreme positions, rational indi-
viduals hold marginal ones; thus, prices reflect rational choices. In this paper, we 
merge the second, third, and fourth mechanism (learning, market interaction, and 
market selection) to show that the relationship between individual rationality and 
price informative efficiency (that is, market efficiency) is nonlinear and U-shaped.

In particular, we study a repeated prediction market model in discrete time where 
agents repeatedly bet on the occurrence of a binary stochastic event following the 
Kelly rule, i.e., they “bet their beliefs” (Beygelzimer et al. 2012; Bottazzi and Dindo 
2013; Kets et al. 2014; Bottazzi and Giachini 2017, 2019a, b). While agents follow 
the same investment behavior, they have heterogeneous beliefs that are generated 
by means of a learning process over two misspecified models: one optimist and one 
pessimist, that are agent-specific. In our framework model, misspecification rep-
resents the complexity of the environment in which agents operate: It captures the 
fact that in a complex world, the models agents have in mind are simplistic rep-
resentations of the true data generating process (Bottazzi et al. 2023). We assume 
that the learning protocol of each agent depends on the number n of previous data 
points (i.e., states of nature), it can observe to update conditional probabilities. Such 
a number, equal for each agent, represents the degree of individual rationality, since 
a low value of n means that agents are actually discarding observations to form their 
beliefs, while a large value of n means that agents use a lot of past observations to 
inform their choices. More precisely, in the extreme case n = 0 , agents do not learn 
and maintain the initial beliefs that the true probability can be obtained as the arith-
metic average of the two models. In the opposite case, n = ∞ , agents are Bayesian 
learners (the cornerstone of rational learning) and are able to asymptotically recog-
nize which one between the two models is the most accurate (Berk 1966). We study 
the emerging prices and we put into relationship the degree of rationality n with a 
measure of price informative efficiency. In particular, given the probabilistic nature 
of prediction market prices, the natural measure of price informative efficiency is 
the opposite of the average relative entropy of prices with respect to the true prob-
ability (see, e.g., Bottazzi and Giachini 2019b). Mixing analytical results with 
extensive numerical simulations in a setting where models are randomly assigned 
to agents, we observe a robust U-shaped relationship between individual rationality 
and average price informative efficiency. In line with the literature on fast and frugal 
heuristics, the zero-intelligence scenario presents performances that are close to the 
rational (Bayesian) one.

The key intuition driving our results is the interaction between two evolution-
ary forces, individual learning, and market selection, under the market interaction 
protocol. Indeed, following Blume and Easley (1993), Beygelzimer et  al. (2012), 
and Giachini (2021), the structure of subsequent interactions generates a form of 
Bayesian learning via market selection, where markets try to “learn” which agent 
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is the most accurate. That is, when the event occurs, the agents whose beliefs make 
them heavily bet on the occurrence of the event, will see their wealth increase at the 
expenses of those betting against the event. If the event does not occur, the opposite 
happens. Such a redistribution process let wealth concentrate in those agents that 
are the most correct on average. Moreover, given the particular structure of portfo-
lios, prices emerge as wealth-weighted convex combinations of individual beliefs. 
Thus, under the market learning metaphor, the agent’s wealth share resembles the 
probability that such an agent is the one with the most accurate model, while prices 
resemble the market estimates of the probabilities attached to states of nature. When 
agents keep their beliefs fixed, the evolutionary learning process performed by mar-
ket selection operates among models belonging to the same family with respect to 
the truth, since it follows an independent and identically distributed (i.i.d.) process. 
Thus, given this form of misspecification, the price informative efficiency results 
rather high. When agents start using the last (few) observations to update beliefs, 
they induce some spurious probabilistic structure in prices that are weakly related to 
the true data generating process. This mismatch results that detrimental for informa-
tive efficiency and selection cannot compensate for it. As agents start using a suf-
ficiently high number of last observations, they end up giving (almost) full weight 
to the model closest to the truth (in relative entropy) between the optimist and the 
pessimist one. Indeed, in the Bayesian limit, they eventually converge on the most 
accurate between the two. In that case, the evolutionary market selection process 
ends up, again, operating among models belonging to the same family with respect 
to the truth and high efficiency is restored.

Our paper is organized in the following way. In Sect. 2, we present a repeated pre-
diction market model, which is the general framework of our study, and the limited 
memory Bayesian learning, that is the key learning process of our investigation. In 
Sect. 3, we derive the price informative efficiency of a prediction market that we will 
employ as the performance measure for each degree of rationality investigated. In 
Sect. 4, we analytically explore our measure of price informative efficiency for three 
benchmark levels of rationality. In Sect. 5, we explore numerically the generic cases 
of different degrees of rationality. In Sect. 6, we present and discuss the results. Sec-
tion 7 concludes.

2  The model

Following Beygelzimer et  al. (2012), Kets et  al. (2014), Bottazzi and Giachini 
(2017, 2019a, 2019b), we study a repeated prediction market model in discrete time 
where N agents repeatedly bet on the occurrence of a binary event. The realization 
of the event at time t is indicated with the random variable st ∈ {1, 0} : st = 1 means 
that the event has occurred while st = 0 means that it has not occurred. The prob-
ability of observing the event is constant over time, that is Pr{st = 1} = �

∗ with 
�
∗ ∈ (0, 1) . The market is complete in the sense that two securities are available to 

wager in every period. The first security traded at time t pays 1 dollar if st = 1 and 0 
otherwise. The second security traded at time t, instead, pays 1 dollar if st = 0 and 
0 otherwise. Each agent i has an initial wealth equal to Wi

0
> 0 that becomes Wi

t
 at 
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the end of time t due to trading. The total initial wealth in the market is normalized 
to one, and all the available wealth is invested. Defining �i

t
 as the share of wealth 

invested by agent i at time t in the security paying 1 if st = 1 , agent i buys an amount 
Wi

t−1
�
i
t
∕P1,t of the first security and an amount Wi

t−1
(1 − �

i
t
)∕P2,t of the second secu-

rity, where P1,t and P2,t are the prices at time t of the two securities. Hence, the time-
line of events in each period t is as follows: at the beginning of the period each agent 
i has a wealth Wi

t−1
 from previous rounds; every agent decides how to allocate its 

wealth between the two securities; markets open and prices are set; the event is real-
ized and securities pay off. It follows that the wealth of agent i evolves according to

Prices are fixed in temporary equilibrium according to market clearing conditions 
and assuming unitary supply. Thus, we have

The total wealth in the market is one in every period, and we can simplify the nota-
tion defining Pt = P1,t and setting P2,t = 1 − Pt . In so doing and given the payoff 
structure of the securities, Pt can be interpreted as the probability the “market” 
assigns to the realization of the event at time t. Finally, we assume that agents fol-
low the Kelly rule to bet. That is, agent i invest in each security proportionally to the 
probability it assigns to the state in which the security pays out. In formal terms, we 
define �i

t
 the probability agent i assigns at the beginning of time t to the realization of 

the event st = 1 , such that Kelly betting simply means �i
t
= �

i
t
 . Alternatively, we may 

get the same investing behavior assuming that, in each period, agents myopically 
maximize their expected logarithmic utility under their subjective probabilities as in 
Bottazzi and Dindo (2013). We further assume that each agent i does not know the 
data generating process (i.e., �∗ ) and tries to learn it by means of two misspecified 
models. A model is a probability distribution (�, 1 − �) on {1, 0} and we assume that 
agent i relies on an optimist model, (�i

o
, 1 − �

i
o
) , and a pessimist model, (�i

p
, 1 − �

i
p
) . 

Those are obtained assuming 0 < 𝜋
i
p
< 𝜋

∗
< 𝜋

i
o
< 1 . Moreover, individual models 

are heterogeneous across the population: each agent has its own couple of optimistic 
and pessimist models.1 Agents attempt to learn the true probability �∗ by adopting a 
limited memory Bayesian approach. In the next paragraph, we provide a formaliza-
tion of such a learning process.

Limited memory Bayesian learning: Broadly speaking, we define the lim-
ited memory Bayesian learning as a form of Bayesian learning in which the agents 

(1)Wi
t
=

⎧
⎪⎨⎪⎩

Wi
t−1

�
i
t

P1,t

if st = 1,

Wi
t−1

1−�i
t

P2,t

if st = 0.

(2)P1,t =

N∑
i=1

�
i
t
Wi

t−1
and P2,t =

N∑
i=1

(1 − �
i
t
)Wi

t−1
.

1 At the technical level, we will produce such a form of heterogeneity randomly and uniformly drawing 
one optimistic and one pessimistic model for each agent.
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cannot store in their memory all the available information (i.e., previous realizations 
of the binary event) but only a limited amount.2 The informative set affects the way 
in which beliefs are computed and updated and this, in turn, affects the dynamics of 
wealth and prices.

In line with the literature on Bayesian learning (see e.g., (Epstein et  al. 2010; 
Beygelzimer et al. 2012; Massari 2020; Bottazzi et al. 2023), we assume that agents 
build their probabilistic predictions for the occurrence of the event at time t as a 
weighted average of the probabilities suggested by the two models. Moreover, since 
the individual probability of agent i at time t, �i

t
 , is now a function of its rationality 

level n, we make explicit such a dependence adding the superscript n. Hence, one 
has

where wi,n
t  is the probability agent i assigns at the end of time t to the optimist model 

to be the correct one given the observation of the last n realizations of the process 
{st} . Since there are only two models, it follows that the probability agent i assigns at 
the end of time t to the pessimist model to be true given the observation of the last n 
realizations of {st} is 1 − w

i,n
t  . To formally define the dynamics of such probabilities, 

we introduce the Bayesian posterior probability of the optimist model to be the true 
one given a prior w ∈ (0, 1) and the realization s ∈ {1, 0} . It reads

such that, calling �t,n = (st−n+1,… , st) , we have the recursive definition of the lim-
ited memory Bayesian posterior given the observation of �t,n , that is

with B0(�t−n,0) = w
i,n

0
 acting as initial prior. In what follows, we shall assume a non-

informative initial prior: wi,n

0
= 0.5 ∀i, n . Thus, the dynamics of wi,n

t  can be described 
as

The number n of previous observations used to update beliefs may be considered 
as a measure of rationality in the learning process. The case n = 0 represents zero-
intelligence learners. Indeed, in such a case, no learning occurs at all: the infor-
mation set is empty and the non-informative initial priors are never updated. As a 

(3)�
i,n
t

= w
i,n

t−1
�
i
o
+ (1 − w

i,n

t−1
)�i

p
,

(4)B(w, s) = s
w�i

o

w�i
o
+ (1 − w)�i

p

+ (1 − s)
w(1 − �

i
o
)

1 − w�i
o
− (1 − w)�p

,

(5)B
n(�t,n) = B(Bn−1

(
�t−1,n−1), st

)
,

(6)wi,n
t

=

⎧
⎪⎨⎪⎩

B(wi,n

t−1
, st) = w

i,n

t−1

�
st

𝜋
i
o

𝜋
i,n
t

+ (1 − st)
1−𝜋i

o

1−𝜋i,n
t

�
if t ≤ n,

B
n(𝜎t,n) if t > n,

0.5 if n = 0.

2 Bottazzi et al. (2023) introduce the idea of limited memory Bayesian learning focusing on the special 
case in which agents can use only the last realization of the data generating process.
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consequence, the predicting probability is constant over time: �i
t
= (�i

o
+ �

i
p
)∕2 ∀t . 

As n grows, agents use an increasing number of past observations to update their 
beliefs and approach the Bayesian case for n = ∞.

3  Learning performance, market selection, and informative 
efficiency

As previously highlighted and according to the literature (see, e.g., Arrow et al. 2008), 
in a prediction market prices can be thought as probability distributions. Hence, in 
line with the literature (Blume and Easley 2009; Bottazzi and Giachini 2019b; Dindo 
and Massari 2020), we choose the opposite of the average relative entropy of prices 
with respect to the truth as our measure of informative efficiency. In formal terms, 
given a distribution (�, 1 − �) , its relative entropy with respect to the true distribution 
(�∗, 1 − �

∗) is defined as

This quantity measures the amount of information lost when approximating 
(�∗, 1 − �

∗) with (�, 1 − �) . Hence, it is a measure of "how different" a distribu-
tion is with respect to another one. The relative entropy (also known as the Kull-
back Leibler divergence) is not a distance – it is not symmetric and it does not 
respect the triangular inequality – but it is always non-negative and reaches zero 
if and only if � = �

∗ . Hence, −D(�∗||�) can be considered a measure of similarity 
that increases as � gets “closer” to �∗ . Following the literature (Dindo and Mas-
sari 2020), in a dynamic setting where the distribution changes over time, that is 
{(�t, 1 − �t), t = 1, 2,…} , one should consider the infinite time average of the rela-
tive entropy. We define it as

Applying it to the sequence of prices generated by the prediction market and chang-
ing its sign, we obtain our measure of price informative efficiency. In particular, 
calling Pn the sequence of prices obtained from a prediction market where agents 
observe the last n realizations to build their beliefs, the informative efficiency of 
such an economy is

To characterize En , we exploit the fact that prediction market prices have a natu-
ral probabilistic interpretation and the market selection process resembles Bayesian 
learning (Beygelzimer et al. 2012; Giachini 2021). Hence, define

D(�∗||�) = �
∗ log

�
∗

�
+ (1 − �

∗) log
1 − �

∗

1 − �
.

(7)D(�∗||�) = lim
t→∞

1

t

t∑
�=1

(
�
∗ log

�
∗

�
�

+ (1 − �
∗) log

1 − �
∗

1 − �
�

)
.

(8)E
n = −D(�∗||Pn).
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such a quantity can be interpreted as the likelihood the market assigns to the particu-
lar sequence of states that have been realized up to time t. Along the same lines, we 
define the likelihood assigned to the realizations up to t by agent i as

Using Wi,n
t  to indicate the wealth at time t of agent i in an economy with rationality 

level n, its evolution can be rewritten as

Hence, from (9) and the market clearing condition (2), one has

and, iteratively substituting with (10), one obtains

Equation (11), together with equation (10), perfectly resembles one of the standard 
ways of representing the Bayesian learning process (see Massari 2017, 2020; Mari-
nacci and Massari 2019; Bottazzi et al. 2023). Thus, following the procedure used 
by Massari (2020) and Bottazzi et al. (2023), call Π

n

t
= maxi∈{1,…,N} Π

i,n
t  and jn,t one 

of the agents such that Πjn,t ,n

t = Π
n

t
 , in this way one has

Dividing on any side by the true likelihood Πt = (�∗)t1 (1 − �
∗)t−t1 (with t1 the num-

ber of times the event has occurred), taking logarithms, and multiplying on any side 
by −t−1 , it is

Taking the limit for t → ∞ and invoking Lemma A.1 of Bottazzi et al. (2023), under 
the assumption that the limits involved exist, one almost surely obtains3

(9)P
n
t
=

t∏
�=1

(
s
�
Pn
�
+ (1 − s

�
)(1 − Pn

�
)
)
,

Πi,n
t

=

t∏
�=1

(
s
�
�
i,n
�

+ (1 − s
�
)(1 − �

i,n
�
)
)
.

(10)Wi,n
t

=
st�

i,n
t + (1 − st)(1 − �

i,n
t )

stP
n
t + (1 − st)(1 − Pn

t )
W

i,n

t−1
.

P
n
t
= P

n
t−1

N∑
i=1

W
i,n

t−1

(
st�

i,n
t

+ (1 − st)(1 − �
i,n
t
)
)

(11)P
n
t
=

N∑
i=1

W
i,n

0
Πi,n

t
.

W
jn,t ,n

0
Π

n

t
≤ P

n
t
≤ Π

n

t
.

−
1

t
logW

jn,t ,n

0
≥

1

t
log

Πt

P
n
t

−
1

t
log

Πt

Π
n

t

≥ 0.

3 Cf. Proposition 3.1 of Bottazzi et al. (2023).
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where i⋆
n
 indicates an agent whose (infinite time) average relative entropy equals the 

minimum level in the population. Finally, we can express the price informative effi-
ciency of a prediction market characterized by a rationality level n as

Notice that such a conclusion is a direct consequence of the evolutionary market 
selection dynamics taking place among heterogeneous agents. Indeed, the previ-
ous computations mirror the process of wealth reallocation operating in the mar-
ket. Wealth moves toward those who are able to make the best predictions, hence, 
asymptotically, only the agents who have the most accurate beliefs survive (see, e.g., 
Blume and Easley 2009; Beygelzimer et  al. 2012; Kets et  al. 2014; Bottazzi and 
Giachini 2019b). Such an accuracy is transmitted to prices that eventually are as 
accurate as the best agents in the market.

4  Mathematical exploration of specific cases

Although characterizing the average relative entropy of the agents is difficult for a 
generic n and we will rely on numerical exercises to do it, there are some specific (but 
significant) cases in which one can derive analytical results: n = 0, 1,∞.

In the case of zero-intelligence agents ( n = 0 ), for any agent i it is

almost surely, thus, one has

In the case n = 1 , agents use only the last realized state to update their weights from 
the initial prior. Hence, one has

that implies

0 = lim
t→∞

(
1

t
log

Πt

P
n
t

−
1

t
log

Πt

Π
n

t

)
= D(𝜋∗||Pn) − D(𝜋∗||𝜋i⋆

n
,n)

E
n = −D(𝜋∗||𝜋i⋆

n
,n).

D(�∗||�i,0) = D
(
�
∗||(�i

o
+ �

i
p
)∕2

)
,

E
0 = −D

(
𝜋
∗||(𝜋i⋆

0

o + 𝜋
i⋆
0

p )∕2
)
.

wi,1
t

=

⎧
⎪⎪⎨⎪⎪⎩

�
i
o

�i
o
+ �i

p

if st = 1,

1 − �
i
o

2 − �i
o
− �i

p

if st = 0,
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Hence, similarly to the case investigated in Bottazzi et  al. (2023), agents’ beliefs 
show a Markov structure. Invoking the Strong Law of Large Numbers, for any agent 
i one obtains, almost surely,

and this implies

If n = ∞ , then agents are Bayesians. Thus, according to Proposition 3.1 of Bot-
tazzi et al. (2023), agents are asymptotically as accurate as the most accurate model 
between the optimist and the pessimist one. Hence, one generically and almost 
surely has

and this directly implies that

As one can notice, our measure of price informative efficiency changes significantly 
in the three cases. Moreover, ranking the different economies with respect to such a 
quantity can be difficult, since it may depend on the assumptions on the number of 
agents, the value of the true probability, and the distribution of models in the popu-
lation. Hence, to provide some reference points, we investigate some special and 
opposite case.

�
i,1
t

=

⎧
⎪⎨⎪⎩

(�i
o
)2+(�i

p
)2

�i
o
+�i

p

if st−1 = 1,

(1−�i
o
)�i

o
+(1−�i

p
)�i

p

2−�i
o
−�i

p

if st−1 = 0.

D(�∗||�i,1) =

�
∗D

(
�
∗
|||||
|||||
(�i

o
)2 + (�i

p
)2

�i
o
+ �i

p

)
+ (1 − �

∗)D

(
�
∗
|||||
|||||
(1 − �

i
o
)�i

o
+ (1 − �

i
p
)�i

p

2 − �i
o
− �i

p

)

E
1 = − 𝜋

∗D

⎛
⎜⎜⎝
𝜋
∗ �� (𝜋

i⋆
1

o )
2 + (𝜋

i⋆
1

p )
2

𝜋
i⋆
1

o + 𝜋
i⋆
1

p

⎞
⎟⎟⎠

− (1 − 𝜋
∗)D

⎛⎜⎜⎝
𝜋
∗ �� (1 − 𝜋

i⋆
1

o )𝜋
i⋆
1

o + (1 − 𝜋
i⋆
1

p )𝜋
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4.1  Very large versus single‑agent economies

Here, we consider two extreme cases. The first case is the one in which N is so 
large that any combination of the optimist and the pessimist model can be found 
in the population. Under such an assumption, there exist an agent i such that 
(�i

o
+ �

i
p
)∕2 = �

∗ . That implies E0 = 0 : with zero-intelligence agents, such an econ-
omy reaches the maximum possible level of price informative efficiency. Along the 
same lines, in the case n → ∞ we have that there exists an agent i such that either 
�
i
o
 or �i

p
 is very close to �∗ . Thus, E∞ ≃ 0 : the economy approaches the maximum 

level of price informative efficiency also with Bayesian agents. In the Markovian 
case n = 1 , in order to reach the maximal efficiency performance, there exists an 
agent i such that

Notice that the system of equations has solution if and only if �i
o
= �

i
p
 . Thus, assum-

ing that there exists an agent such that �i
o
≃ �

∗ ≃ �
i
p
 , one can obtain E1 ≃ 0 . These 

simple computations show that, in an extremely large population where any combi-
nation of optimist and pessimist model can be found, we expect the price informa-
tive performances to converge to full efficiency. At the same time, it is worth to 
notice that, while in the zero-intelligence economy, it is enough to have one agent 
whose models are correct on average, in the Bayesian economy, there exists an agent 
with one between the optimist and the pessimist model (almost) correct and in the 
Markovian economy, there exists an agent with both the optimist and the pessimist 
model (almost) correct.

The opposite extreme case is the one in which there is a single agent in the 
economy. Looking at the efficiency measures, one immediately notices that, 
depending on the relative positions of the pessimist and optimist models with 
respect to the truth, several possible scenarios are possible. Hence, we assume 
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Fig. 1  Expected price 
informative efficiency for 
�
∗ ∈ [0.015, 0.985] and 

n ∈ {0, 1,∞} in the case N = 1
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that �1
p
 and �1

o
 are randomly drawn from uniform distributions over, respectively, 

(0.01, �∗ − 0.001) and (�∗ + 0.001, 0.99) . In this way, we can obtain a measure of 
average performance looking at the expected price informative efficiency for dif-
ferent values of �∗ and n. To do that, we numerically evaluate

for �∗ ∈ [0.015, 0.985] and n ∈ {0, 1,∞} . We report the results in Fig.  1. As one 
can notice, a stable ranking among the three economies does not appear. For 
extreme values of �∗ exploiting more information–that is, letting the agents be more 
rational–produces an advantage in price informative efficiency on average. This is 
expected: as �∗ approaches the boundaries, drawing a model very close to the truth 
becomes more likely. This benefits Bayesian learning and disadvantages zero-intel-
ligence: while a Bayesian learner selects an (almost) correct model, a zero-intelli-
gence agent continuously mixes an (almost) correct model with a (possibly heav-
ily) incorrect one. The situation is rather different for values of �∗ around 0.5. In 
such a case, a non-linear pattern appears: The zero-intelligence economy is the most 
efficient (on average), the Bayesian economy occupies the second position, and the 
Markovian one shows the worst performance. The use of little information, as in 
n = 1 , produces the best result in the average price informative efficiency only in a 
narrow region at the left of �∗ = 0.2 . Overall, it appears to show rather stable aver-
age efficiency levels across the support of �∗.

The analysis presented here highlights that, on the one hand, we should expect 
an increase in price informative efficiency as the number of agents populating 
the economy grows. On the other hand, when N is small, a U-shaped relationship 
emerges for values of �∗ around 0.5 but vanishes as we move toward the bounda-
ries. Indeed, a non-stable ranking among different levels of n can be observed. 
This consideration, however, is based on the special case in which a single agent 
populates the economy. Hence, in such a case, the market selection mechanism 
has been shut down. This may have an effect on the relative performances since, 
as mentioned above, for generic cases, it is more “likely” to have an agent with 
the average model (almost) correct or with one (almost) correct model than find-
ing an agent with both models (almost) correct. Such a difference should emerge 
when N is sufficiently large (but not too large): The evolutionary wealth dynam-
ics taking place among heterogeneous agents should let a U-shaped relationship 
between the level of rationality n and the price informative efficiency emerge for 
a wider set of true probabilities. We test for such a conjecture in the next section 
by means of numerical exercises.

�
∗−0.001

∫

0.01

0.99

∫

�∗+0.001

E
n

(�∗ − 0.011)(0.989 − �∗)
d�1

o
d�1

p
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5  Numerical exploration of generic cases

To test the relationship between rationality level and price informative efficiency by 
means of numerical simulations, we proceed in the following way. We fix �∗ = 0.5 
and, for each level of N ∈ {50, 100, 150} , we randomly draw N pairs of pessimist 
and optimist model probabilities from their respective supports, (0,�∗) and (�∗, 1) 
(one pair per each agent). Then, the dynamics in eq. (6) are evolved for T = 10000 
time steps for every agent and for every n = 1, 2… , 20 . We record the average rela-
tive entropy of each agent and select the smallest one. The negative of such a quan-
tity is an estimate of the price informative efficiency along that trajectory.4 We add 
to those quantities the price informative efficiency levels computed analytically for 
the cases n = 0 and n = ∞ . The procedure is repeated for MC = 250 independent 
replicas such that, averaging over the runs, we can get rid of the variability induced 
by the random choice of models and obtain an estimate of the average price informa-
tive efficiency. In Fig. 2, we report the results of such an exercise, surrounding the 

Fig. 2  Montecarlo estimates of 
the average price informative 
efficiency as a function of the 
number of previous data points 
observed n for N = 50, 100, 150 . 
Dashed lines represent 95% con-
fidence bounds. The symbol ∞ 
on the horizontal axis indicates 
the Bayesian case

Fig. 3  Montecarlo estimates of the average price informative efficiency as a function of the number of 
previous data points observed n for N = 50, 100, 150 . Left: �∗ = 0.2 . Right: �∗ = 0.8 . Dashed lines rep-
resent 95% confidence bounds. The symbol ∞ on the horizontal axis indicates the Bayesian case

4 Extensive numerical simulations show that the chosen value of T is sufficient to obtain reliable esti-
mates.
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estimates with 95% confidence bounds. The estimated average price informative effi-
ciency in the Bayesian case is added as the last point and indicated by ∞ on the hori-
zontal axis. An asymmetrical U-shaped pattern clearly emerges. The highest average 
price informative efficiency levels are showed in the case of zero-intelligence and 
full rationality, with the estimates in the two cases resulting not significantly differ-
ent. Considering n = 1 , one notices a drop in average efficiency and the decreasing 
pattern continues until it reaches its lowest point around n = 10 . Afterward average 
efficiency starts to climb up. As expected, we notice an improvement in performance 
as the number of agents N increases. Comparing Fig. 2 with Fig. 1, one notices that 
the average efficiency levels reached here are much higher than those recorded for 
� ∗= 0.5 in the single-agent economy for any rationality level considered. That is a 
direct consequence of the selection process operated by the market.

To check for the robustness of the findings, we repeat the exercise consider-
ing � = 0.2 and �∗ = 0.8 . The results are shown in Fig.  3. We observe the same 
U-shaped pattern and the tendency of average efficiency to grow with N, but some 
differences need to be highlighted. For �∗ = 0.8 , the rate of convergence appears 
higher than the case �∗ = 0.5 . Moreover, the degree of efficiency seems to be higher 
than before for the vast majority of n considered and the minimum level appears to 
be reached around n = 5 . In the case �∗ = 0.2 , we increase the number of rational-
ity levels to 40. Indeed, the U-shaped pattern needs more data points to emerge, 
with the minimum level of average efficiency reached between n = 10 and n = 20 , 
Moreover, the convergence toward full rationality levels appears slower and the 
number of agents matters more than the previous cases. Comparing Fig.  3 with 
Fig. 1, we observe the effect of market selection as mentioned above. Indeed, with 
N = 1 and �∗ = 0.8 , we have that full rationality outperforms zero-intelligence and 
Markov beliefs. With N = 1 and �∗ = 0.2 , we observe that zero-intelligence and 
Markov beliefs present the best performances, while full rationality falls behind. 
Here, instead, full rationality and zero-intelligence deliver high and almost identi-
cal efficiency performances. The partial use of past information, instead, produces 
a marked drop in efficiency, especially when we pass from n = 0 to n = 1 . This is in 

Fig. 4  Montecarlo estimates of the average price informative efficiency as a function of the number of 
previous data points observed n for N = 50, 100, 150 . Left: �∗ = 0.05 . Right: �∗ = 0.95 Dashed lines 
represent 95% confidence bounds. The symbol ∞ on the horizontal axis indicates the Bayesian case
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line with the intuition suggested in advance about the contribution of interaction and 
selection in widening the region where the U-shaped relationship is observed.

We further explore the relationship between n and (average) En investigating its 
behavior for values of �∗ close to the boundaries. As previously mentioned, for 
�
∗
→ 0 or �∗

→ 1 , one of the two models becomes (almost) correct, thus, misspeci-
fication basically disappears, Bayesian learning is favored and zero-intelligence is 
at a disadvantage. As a consequence, in those cases, the U-shaped relationship may 
disappear. In Fig.  4, we repeat the numerical exercise considering �∗ = 0.05 and 
�
∗ = 0.95 . As one can notice, while the U-shaped relation still holds for �∗ = 0.05 , 

it breaks down for �∗ = 0.95 . This is particularly evident in the case N = 50 . Indeed, 
as N grows, the estimates flatten out, showing a slightly increasing behavior. Inter-
estingly, a hint of U-shaped behavior reappears in the case N = 100 ; however, it 
does not seem very significant. This final exercise, while proving that the relation 
can fall short when we are close to a certain or impossible event, provides further 
support to our intuition on the effect of interaction and selection: the direct com-
parison between Figs. 1 and 4 in the case �∗ = 0.05 confirms that market selection 
contributes to generate the U-shaped relationship.

6  Discussion of results

The economic mechanism that underlies our results can be understood considering 
the interplay of two evolutionary forces under the market interaction protocol. On 
the one hand, there is market selection: the wealth reallocation process emerging 
from the market interaction among agents. On the other hand, there is learning: the 
posterior probability reallocation process operated by each agent over the two mod-
els. When N = 1 , the first force is absent, while, when n = 0 the second force is 
absent (agents’ beliefs are constant).

In the single-agent economy, the U-shaped relationship is observed when �∗ 
shows values around 0.5: averaging a pessimist and an optimist model or select-
ing the best model is, on average, more advantageous than changing mixture with 
respect to the last observation. Indeed, in the case, n = 1 individual probabilistic pre-
dictions follow a Markov process and this imposes a Markovian probabilistic struc-
ture in prices which is not present in the true data generating process. Such a spuri-
ous probabilistic structure is what generates the difference in the “likelihood to have 
an agent with (almost) correct beliefs” mentioned at the end of Sect. 4.

When the number of agents in the economy is larger than one, the two forces 
interact with each other. A first notable outcome is the increase of average efficiency 
for any rationality level considered with respect to the single-agent economy. Indeed, 
the expansion in heterogeneity together with the selection process operated by mar-
kets results beneficial. This is particularly evident in the zero-intelligence case, 
where the action of the market interaction (that is, the structure) is quite effective 
in selecting the best combination of models and, given the high number of different 
combinations, efficiency results high. As agents start to use information to update 
beliefs, efficiency plummets. As noted above, incorporating the last (few) data points 
introduces some spurious structure in agents’ beliefs which is only weakly related 
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to the true characteristics of the data generating process. Selection interferes with 
that, since the inferior performance of using few observations to learn with respect 
to zero-intelligence appears for values of �∗ that do not generate the same relative 
outcome in the single-agent case. That is, the positive effect generated by market 
selection in the zero-intelligence case may not be equally large when agents use lit-
tle information. A reason for that is the fact that, while in the zero-intelligence case, 
market selection operates over models belonging to the same family with respect 
to the truth, when n is low selection operates over models belonging to a differ-
ent family with respect to the true one. For instance, in the case, n = 1 it operates 
over Markovian models, while the true process is i.i.d.. As agents start using a suf-
ficiently high amount of past observations to learn, they approach Bayesian learning: 
They give (almost) full posterior probability to the most accurate model between the 
optimist one and the pessimist one. Hence, in such a case, the two forces are aligned: 
Agents select the best model they have, while the market selects the best agent. 
Hence, market selection ends up operating again over models belonging to the same 
family of the true one. Prices converge to the most accurate model in the set of all 
the models used by agents, and this is reflected by the high level of informative effi-
ciency achieved in such a case.

As the number of agents becomes very large, individual learning does not matter 
anymore. Indeed, there exist an agent with (almost) correct beliefs for any value of n 
that accrues all the wealth and lets the market be efficient.

7  Conclusions

In this paper, we study how the price informative efficiency relates to individual 
rationality in learning in a simple prediction market model populated by heterogene-
ous Kelly traders and characterized by model misspecification. The prediction mar-
ket framework allows for a straightforward interpretation of prices as probability. 
Thus, one can measure price informative efficiency in terms of the opposite of the 
average relative entropy of prices.

At the individual level, agents build their conditional probabilities combining 
heterogeneous optimist and pessimist models by means of weights that are updated 
using the last observations. If agents discard all the available information and never 
update their initial guesses, we obtain zero-intelligence agents. At the opposite 
extreme, agents use all the available information and follow Bayesian learning, the 
cornerstone of rational learning. Gradually increasing the number of past realiza-
tions the agents use, we can vary agents’ rationality level and observe the conse-
quences on price informative efficiency.

Using a mix of mathematical and computational techniques, our analysis reveals 
that a robust U-shaped relationship emerges between the two quantities. Moreo-
ver, the zero-intelligence economy reaches average efficiency levels that match 
those reached in the fully rational Bayesian case. Contrasting our results with two 
extreme cases, we argue that our results are driven by the interplay of two evolution-
ary forces: the market selection mechanism that moves wealth toward more accurate 
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agents and the individual learning process that moves posterior probabilities over 
models depending on observed realization.

Our framework and our analysis can be extended along several dimensions. For 
instance, an interesting possible research avenue for expanding our analysis might be 
considering weighted averages in the learning process. Memory process approaches, 
long-term or short-term oriented, might produce unexpected positive effects in 
terms of market efficiency performances.5
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