
Computer Networks 210 (2022) 108931

A
1
n

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

FPGA-accelerated SmartNIC for supporting 5G virtualized Radio Access
Network✩

Justine Cris Borromeo a,∗, Koteswararao Kondepu b, Nicola Andriolli c, Luca Valcarenghi a

a Scuola Superiore Sant’Anna, Via Moruzzi 1, 56124 Pisa, Italy
b Indian Institute of Technology Dharwad, Dharwad, Karnataka, India
c National Research Council of Italy (CNR-IEIIT), via Caruso 16, 56122, Pisa, Italy

A R T I C L E I N F O

Keywords:
Hardware Acceleration
Network function virtualization
OpenCL

A B S T R A C T

Disaggregated, virtualized, and open next-generation eNodeB (gNB) could bring several benefits to the Next
Generation Radio Access Network (NG-RAN) by enabling more market competition and customer choice, lower
equipment costs, and improved network performance. This can be achieved through gNB-central unit (CU)-
control plane (CP), gNB-CU-user plane (UP) and gNB-distributed unit (DU) separation, CU and DU function
virtualization, and zero touch RAN management and control. However, to achieve the performance required by
specific foreseen 5G usage scenarios (e.g., Ultra Reliable Low Latency Communications — URLLC), offloading
selected disaggregated gNB functions into an accelerated hardware becomes a necessity.

To this aim, this study proposes the implementation of 5G DU Low-PHY layer functions into an FPGA-
based SmartNIC exploiting the Open Computing Language (OpenCL) framework to facilitate the integration of
accelerated 5G functions within the mobile protocol stack. The proposed implementation is compared against
(i) a CPU-based OpenAirInterface implementation, and (ii) a GPU-based implementation of IFFT exploiting
clfft and cufft libraries. Experimental results show that the different optimization techniques implemented in
the proposed solution reduce the Low-PHY processing time and the use of FPGA resources. Moreover, the
GPU-based implementation of the cufft and the proposed FPGA-based implementation have a lower processing
time and power consumption compared to a CPU-based implementation for up to two cores. Finally, the
implementation in a SmartNIC reduces the delay added by the host-to-device communication through the
Peripheral Component Interconnect Express (PCIe) interface, considering both functional split options 2 and
7-1.
1. Introduction

5G architecture implements a very scalable and flexible network
technology that provides a resilient cloud-native mobile network with
end-to-end support for network slicing. It aims to support new services
based on three major usage scenarios, namely: (i) enhanced mobile
broadband (eMBB) supporting higher broadband access capabilities,
faster connections, and higher resolution; (ii) massive machine-type
communications (mMTC) for high density connections of low cost
and energy efficient IoT devices; and (iii) ultra-reliable low-latency
communications (URLLC), which support mission critical applications
requiring very low latency and high reliability [1].

✩ This work received funding from the ECSEL JU grant agreement No 876967. The JU receives support from the EU Horizon 2020 research and innovation
programme and the Italian Ministry of Education, University, and Research (MIUR), Italy. Intel University Program and Terasic Inc are gratefully acknowledged
for donating the FPGA hardware. This work is also partly supported by DST SERB Startup Research Grant (SRG-2021-001522).
∗ Corresponding author.
E-mail address: justinecris.borromeo@santannapisa.it (J.C. Borromeo).

With the constant evolution of 5G networks, Network Function
Virtualization (NFV) is explored to provide rapid and cost-effective de-
ployment, upgrade, and scaling of network services and functions in an
integrated fronthaul/backhaul network infrastructure [2]. NFV aims to
implement the following improvements: (i) decoupling software from
hardware, allowing separate timelines and maintenance for software
and hardware; (ii) flexible function deployment, where software and
hardware can perform different functions at various times; and (iii)
dynamic scaling of the Virtualized Network Function (VNF) perfor-
mance [3,4]. Virtualization prevents network service providers from
investing on expensive hardware components. It can also accelerate the
installation time, thereby providing faster services to customers.
vailable online 31 March 2022
389-1286/© 2022 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.comnet.2022.108931
Received 7 October 2021; Received in revised form 7 March 2022; Accepted 24 Ma
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

rch 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:justinecris.borromeo@santannapisa.it
https://doi.org/10.1016/j.comnet.2022.108931
https://doi.org/10.1016/j.comnet.2022.108931
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.108931&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computer Networks 210 (2022) 108931J.C. Borromeo et al.

N
r
m
O
o
d
v
a
e
v
i
s
g
s

—
E
m
D
R

d
t
P
P
c
g
s

N
a
t
t
a
i
i
e
a

t
F
t
f
o
e
h
e
t
o
F
a

Table 1
Bandwidth and one-way latency requirements of different functional split options.

Functional Required Downlink Required Uplink One-way
Split Capacity Capacity Latency

Option 2 4016 Mb/s 3024 Mb/s 1–10 ms
Option 7-1 9.2 Gb/s 60.4 Gb/s 250 μs
Option 7-2 9.8 Gb/s 15.2 Gb/s 250 μs
Option 8 157.3 Gb/s 157.3 Gb/s 250 μs

The concept of NFV also extends to the deployment of Radio Access
etworks (RAN) with the aim of a faster scaling to improve user expe-

ience as the network capacity grows, especially for IoT devices where
illions of devices are expected to be connected to the 5G network.
pen-source mobile platforms such as OpenAirInterface (OAI) [5] and
pen radio access network architectures like O-RAN [6] have been
eveloped, where mobile networks and equipment are software-driven,
irtualized, flexible, and energy-efficient. The Open RAN initiative is
lso part of the Telecom Infra Project (TIP) [7], which aims to accel-
rate innovation and commercialization in RAN domain with multi-
endor inter-operable products and solutions that are easy to integrate
n the operators’ network and are verified for different deployment
cenarios. TIP OpenRAN program supports the development of disag-
regated and interoperable 2G/3G/4G/5G NR RAN solutions based on
ervice provider requirements.

Thus, the 5G RAN is evolving towards the Next Generation RAN
NG-RAN) where disaggregated Evolved NodeBs (gNBs) are utilized.

ach gNB is composed of a Central Unit (CU) that is connected to one or
ore Distributed Units (DU) through the midhaul interface, and each
U is connected to one or more Radio Units (RU) that implements
adio Frequency (RF) functions using the fronthaul interface [8].

From the data center perspective, accelerated edge cloud micro
ata centers [9] featuring the integration and interconnection of Cen-
ral Processing Units (CPUs), Graphical Processing Units (GPUs), Field
rogrammable Gate Arrays (FPGAs), and the recently proposed Data
rocessing Units (DPUs) [10] are emerging. Thus, accelerated edge
loud micro data centers will play an important role in the disaggre-
ated and virtualized 5G RAN and beyond, bringing several benefits,
uch as reduced latency and power consumption [4].

This paper proposes the implementation of an FPGA-based Smart-
IC to be installed in the edge cloud micro data center, near the
ntenna site where a DU is hosted or directly in the RU to accelerate
he gNB Low-PHY functions. Specifically, the offloaded functions are
he Inverse Fast Fourier Transform (IFFT) and the Cyclic Prefix (CP)
ddition of the Orthogonal Frequency Division Multiplexing (OFDM)
n downlink transmission. The considered function implementation
s based on the Open Computing Language (OpenCL) framework to
ase the integration with other mobile software functions that are not
ccelerated (e.g., exploiting the CPU).

The FPGA-based implementation is evaluated and compared with
he CPU-based Low-PHY of OpenAirInterface (OAI) [5] and GPU-based
FT/IFFT libraries (i.e., clfft [11] and cufft [12]) in terms of processing
ime and energy consumption. The experimental evaluation shows that
or large FFT/IFFT sizes (i.e., ≥ 2048), the FPGA-based implementation
utperforms the OAI Low-PHY implementation processed in a high-
nd single and dual core CPU and GPU-based clfft, but it shows a
igher processing time compared to GPU-based cufft. However, cufft
nergy consumption is high, while FPGA-based Low-PHY experiences
he lowest energy consumption. Moreover, the FPGA-based smartNIC
vercomes the host-to-device memory transfer bottleneck, thus making
PGA-based accelerators effective in providing deterministic latency
2

nd high processing capacity per Watt.
2. Considered 5G RAN Architecture

Different functional split options are currently under investigation
for the deployment of NG-RAN that distribute several functions be-
tween the RU, DU, and CU, resulting in different delay, jitter, and
capacity requirements. The split options that currently received most of
the attentions are Option 8, Option 7 (in particular Option 7-1, Option
7-2, and also Option 7.2x in O-RAN), and Option 2. They can be also
utilized in combination when RU, DU, and CU are deployed in different
devices and interconnected by fronthaul and midhaul interfaces [13–
16]. Table 1 shows the requirements of the interfaces (either fronthaul
or midhaul) connecting the network elements hosting the functions
based on the listed split options. As shown, lower layer functional
split options (i.e., option 7 and option 8) have higher fronthaul ca-
pacity and stricter one-way latency requirements due to the remote
implementation of the Hybrid Automatic Repeat Request (HARQ) [17].

3GPP Release-15 [18,19] also finalized the specification of the 5G
New Radio (5G NR), which supports operation with frequency bands
ranging from sub-1 GHz up to mmWave. Two operating frequency
ranges (FRs) have been defined: FR1: 450 MHz - 6 GHz (commonly
referred to as sub-6) and FR2: 24.25 GHz–52.6 GHz (also referred to
as millimeter wave). In FR1 and FR2, the maximum bandwidth is 100
MHz and 400 MHz, respectively, both being much larger than the
maximum LTE bandwidth of 20 MHz. Moreover, to support a wide
range of use-cases and application scenarios, 5G NR features flexible
subcarrier spacing, which can be obtained by

𝛥𝑓 = 2𝜇 × 15 kHz;𝜇 ∈ (−1, 0, 1, 2, 3, 4, 5) (1)

Also, the slot duration is scaled by a factor of 𝑇𝑠𝑙𝑜𝑡 = 2−𝜇 from
the transmission time interval of the LTE. This means that the slot
duration (𝑇𝑠𝑙𝑜𝑡), the cyclic prefix (CP) length, and the OFDM symbol
duration, (𝑇𝑂𝐹𝐷𝑀 = 1∕𝛥𝑓 ) reduces as the subcarrier spacing increases,
as illustrated in Fig. 1 [19]. In this case, the elaboration time needed
to perform FFT/IFFT and CP addition/removal is shorter when using
subcarrier frequencies higher than 15 kHz, which makes these functions
one of the best candidates for hardware acceleration.

The approach proposed in this paper accelerates the 5G gNB stack
Low-PHY functions in an FPGA-based SmartNIC. This work focuses on
a dual-split scenario where Option 8 is implemented in the fronthaul
interface, while two different functional split options are considered in
the midhaul (options 2 and 7-1). Fig. 2 shows the proposed hardware
offloading setup with two different scenarios distributing Packet Data
Convergence Protocol (PDCP) to Low-PHY functions within the DU and
CU using option 2 and 7-1 functional splits in the midhaul interface.
The RU hosts RF functions only (option 8 fronthaul functional split).
The DU and CU components are deployed in the edge cloud. In the
accelerated edge, the Low-PHY functions in the DU are offloaded onto
and accelerated by an FPGA using the OpenCL Framework.

The considered solution slightly differs from the approach currently
adopted for the O-RAN fronthaul, known as option 7.2x split. In that
case, as reported in [15], OFDM phase compensation, iFFT, CP ad-
dition, and digital beamforming functions in the downlink direction
reside in the O-RU. The remaining PHY functions, including resource
element mapping, precoding, layer mapping, modulation, scrambling,
rate matching and coding reside in the O-DU. By reducing the number
of functions hosted in the RU, the approach considered in this paper
features most of the advantages listed in [15] for split option 7.2x,
such as interoperability, advanced receivers and inter-cell coordination,
and future proofness. In addition, it even features lower RU complexity,
energy consumption, and cost at the expenses of transport bandwidth
scalability. Indeed, it scales with the number of antennas and not with
the number of streams, as in split option 7.2x. In addition, user data
transfer cannot be optimized to send only Physical Resource Blocks
(PRBs) that contain user data for the purpose of reducing transport
bandwidth, as in split option 7.2x. However, the proposed FPGA-based
implementation can be fully compatible with split option 7.2x because
it can be deployed in the RU and accelerate the RU functions listed in

split option 7.2x.



Computer Networks 210 (2022) 108931J.C. Borromeo et al.
Fig. 1. 5G New Radio Flexible Numerology.
Fig. 2. 5G RAN Architecture with proposed hardware offloading setup using Options
2 and 7-1 functional split.

Fig. 3. Low-PHY layer protocol to be implemented in hardware.

3. Considered Low-PHY Implementation

The Low-PHY functions implemented in the FPGA are shown in
Fig. 3 for both downlink and uplink directions. In the downlink di-
rection, IQ samples in the frequency domain consisting of 32 bits (16
bits for the real part and 16 bits for the complex part) are received
in the FPGA, which then performs the IFFT to convert the samples to
the time domain. The cyclic prefix (CP) is then inserted as a guard
interval to avoid inter-symbol interference (ISI). In the uplink direction,
IQ samples in the time domain are received with CP, then the FPGA
performs CP removal to take out the guard interval, and the FFT oper-
ation to convert the samples to the frequency domain. The CP insertion
(removal) is performed by adding (removing) redundant bytes before
each OFDM symbol. The number of added or removed CP samples is
shown in Table 2.

The FFT/IFFT implementation is one of the key components, and
the most complex and computationally intensive module in Orthogonal
Frequency Division Multiplexing (OFDM). The FFT is an optimized
computation of the Discrete Fourier Transform (DFT), which can be
3

Table 2
Number of Cyclic Prefix samples with respect to the FFT/IFFT size.

FFT/IFFT size CP length

128 10
256 20
512 40
1024 80
2048 160

computed using the formula [20]:

𝑋(𝑘) =
𝑁−1
∑

𝑛=0
𝑥(𝑛)𝑊 𝑛𝑘

𝑁 ; 𝑘 = 0, 1,… , 𝑁 − 1 (2)

where 𝑋(𝑘) are the samples in frequency domain, 𝑥(𝑛) are the samples
in time domain, 𝑁 is the number of FFT/IFFT points, and 𝑊 𝑛𝑘

𝑁 is the
twiddle factor. The latter is computed as:

𝑊 𝑛𝑘
𝑁 = 𝑒−𝑗2𝑛𝑘𝜋∕𝑁 (3)

The computation of the FFT/IFFT can be divided into two parts: the
data reordering and the radix butterfly configuration. The order of the
samples of the FFT/IFFT input and output are different; the former is in
natural order, while the latter is in bit-reversed order. A data reordering
step is used to convert the input from the natural order to bit-reversed
order and vice versa.

Radix butterfly configuration decomposes the computation of the
FFT into different stages. The number of radix butterfly stages needed
to compute the FFT/IFFT is given as 𝑙𝑜𝑔𝑀 (𝑁), where 𝑁 is the FFT/IFFT
points, while 𝑀 represents the radix number. The higher the radix
number, the fewer the number of stages needed, balanced by a more
complex twiddle factor computation.

Fig. 4 shows a 16-point FFT computed in two ways: (a) 4 stages
(16-point) using Radix-2; and (b) 2 stages (16-point) using Radix-4. In
computational cost multiplication, the Radix-2 brings twiddle factors at
0◦ and 180◦, while Radix-4 has twiddle factors at angles 0◦, 90◦, 180◦,
and 270◦ [21]. However, as shown in Fig. 4, the former needs 4 stages,
while the latter only needs 2 stages to compute the 16-point FFT. In
computing the FFT with N-points (higher than 16), a combination of
Radix-4 and Radix-2 stages can be considered for implementation.

This paper focuses in implementing up to 2048 FFT/IFFT points; the
number of radix butterfly stages in each implementation is shown in
Fig. 5. We implemented a Radix-4 butterfly configuration on the first
few stages of FFT/IFFT points to achieve fewer computation stages,
then we added another Radix-2 butterfly configuration on the last stage
of 128, 512 and 2048-point FFT/IFFT.

4. OpenCL Framework

Low-PHY functions are implemented by using the OpenCL frame-
work [22], which can execute a kernel on an FPGA platform using



Computer Networks 210 (2022) 108931J.C. Borromeo et al.
Fig. 4. Radix Butterfly Configuration: (a) 16-point Radix-2 FFT, (b) 16-point Radix-4
FFT.

Fig. 5. Radix Butterfly Configuration of different FFT/IFFT points.

Fig. 6. OpenCL Platform model.

a software development kit (SDK) provided by Intel. This section in-
troduces the OpenCL programming language with some references to
the application of OpenCL in different scenarios (e.g., Block Ciphers
and Low-PHY). The specific software development kit used to program
OpenCL on Intel FPGAs is also discussed.

4.1. OpenCL Programming Language

OpenCL is a parallel computing application programming interface
(API) that is capable of executing a kernel on different platforms such
as CPUs, GPUs, and FPGAs [22]. It can write a single program and run
it on heterogeneous platforms. However, to maximize the performance
in each platform, different types of optimization techniques are imple-
mented. It can also support a parallel computing approach to enhance
application performance.

As shown in Fig. 6, the OpenCL platform always includes a single
host that acts as a master capable of interacting with one or more
4

OpenCL devices. The OpenCL device is where a stream of instructions is
executed. Such instructions are called kernel. OpenCL devices are called
Compute Devices (CDs) and they can be a CPU, GPU, DSP or FPGA.
Thus, OpenCL is suitable for the implementation of the considered DU,
where some functions are implemented in the FPGA and some others
are implemented in the CPU.

4.2. OpenCL Utilization Survey

Researchers are already exploiting OpenCL framework on FPGAs
for different applications, such as image processing (typically based on
convolutional neural networks) and cryptographic accelerators.

FPGA-based OpenCL implementations of block ciphers to achieve
high throughput and low energy consumption were investigated in
[23]. Nine different ISO standard block ciphers were compared with the
CPU-based implementations. Results show that the OpenCL implemen-
tation in FPGA achieves a higher throughput compared to the CPU in
8 different block ciphers aside from the Advanced Encryption Standard
(AES). The authors were also able to achieve an energy improvement by
22.78𝑥 compared to the pure software implementation of ISO standard
block ciphers.

The utilization of hardware acceleration on a virtualized Cloud-
RAN is a use case reported in [4] with the aim of leveraging resource
utilization for load balancing among different base stations to provide
cost reduction, high resource and spectrum utilization, and energy
efficient networks. One of the main issues addressed in this paper
concerns the computationally intensive signal processing tasks of the
physical layer (i.e., channel coding/decoding, FFT/IFFT). This research
motivates our work since the authors recommended to implement these
tasks in a dedicated CPU processor or on general-purpose layer 1 (L1)
accelerators.

The authors from [24] assess the suitability of employing OpenCL-
driven reconfigurable hardware in the context of 5G virtualized gNB
DU. Using a Terasic DE5-Net Development board with Intel Stratix V GX
FPGA, the authors focus on the implementation of the Low-PHY level
functionalities at the DU using the Option 7-1 functional split. Results
show that OpenCL has a better processing time when data sizes in-
crease (more than 2048 OFDM symbols) due to its pipelined approach.
However, the kernel implementation does not fit into the FPGA for
OFDM symbol size larger than 512. Another bottleneck presented in
this research is the data transfer and synchronization between the host
and the device memory, as well as reading and writing from/to global
and local memory inside the FPGA.

This paper focuses on a further optimized implementation compared
to the one proposed in [24], aimed to deploy kernels with more than
512 OFDM kernels in FPGA through OpenCL framework. Different
optimization techniques are utilized to further improve the processing
time and the FPGA area overhead. This paper is also an extended
version of [25], which includes the processing time of GPU-based IFFT
libraries, and proposes the use of kernel autorun through OpenCL
channels to reduce the data transfer between the device and the host.
With the use of OpenCL channels, IQ samples can either be received
from (sent through) one of the FPGA interfaces (QSFP for DE10-pro
FPGA).

4.3. Intel FPGA SDK for OpenCL

Intel FPGA SDK for OpenCL provides the necessary APIs and run-
time library to program the FPGAs attached to the PCIe interfaces,
very similarly to a GPU or any kind of hardware accelerators. The IP
cores needed for the communication between the FPGA, external DDR
memory, and PCIe, alongside with necessary PCIe and DMA drivers for
the communication between the host and the FPGA, are also provided
by the board manufacturers in a form of a Board Support Package
(BSP) [26].



Computer Networks 210 (2022) 108931J.C. Borromeo et al.
Fig. 7. Intel FPGA SDK for OpenCL flow; AOC is Intel FPGA SDK for OpenCL Offline
Compiler.

The flow of Intel FPGA SDK for OpenCL to compile the host code
and convert the kernel code to an FPGA bitstream is shown in Fig. 7.
The OpenCL kernel needs to be compiled offline using the Intel Altera
offline compiler (AOC), unlike CPUs and GPUs, due to long placement
and routing time in FPGAs. AOC converts the kernel code into a Verilog
code, which is the hardware description language for the FPGA. The
Verilog code is converted to an FPGA bitstream after placement and
routing. After compilation, the AOC generates the Altera Offline Com-
piler Object file (.𝑎𝑜𝑐𝑜) containing kernel and configuration information
required at runtime, Altera Offline Compiler Executable file (.𝑎𝑜𝑐𝑥)
(i.e., the hardware configuration file), and a kernel folder or subdirec-
tory that contains the information necessary to create the .𝑎𝑜𝑐𝑥 file,
including an area and timing report file for analysis. Note that LLVM
is a compiler and tool chain technology that is designed for an inter-
mediate code representation called LLVM Intermediate Representation
(IR) [27].

The host side can be programmed using 𝐶 or 𝐶 + + programming
language. The 𝐶∕𝐶 + + compiler compiles the host program and links
it to the Intel FPGA SDK using OpenCL runtime libraries. After com-
pilation, the host then runs the host application, which programs and
executes the hardware image into the FPGA. In our implementation,
the host is programmed using 𝐶 + + programming language.

5. Low-PHY Function Optimization using OpenCL

To optimize the OpenCL kernels for FPGA, two main strategies could
be considered, namely the improvement of the pipeline throughput
and the exploitation of data parallelism. Few procedures to improve
the FPGA-based implementation have been discussed in [9], such as
replicating a kernel pipeline to increase data parallelism and using
sliding windows to improve pipeline throughput. In the following we
provide a list of optimization techniques applicable in OpenCL to
further reduce the processing time of the Low-PHY function and reduce
the resource utilization in the FPGA.

5.1. Loop Unrolling

The loop unrolling command replicates the loop body multiple
times executing each loop iteration in a parallel manner [26]. In cases
where there are no loop-carried dependencies, the unrolling loops can
reduce the processing time of each ‘for’ loop implementation in the
FPGA. However, fully unrolling the loop iteration may also significantly
increase the resource utilization of the FPGA. A 𝑝𝑟𝑎𝑔𝑚𝑎 𝑢𝑛𝑟𝑜𝑙𝑙 (𝑁)
command is used by the compiler before the ‘for’ loop to unroll the
loop, resulting in an 𝑁 time speedup in the execution performance of
the loop.

5.2. Avoid Function Calling

Writing a separate function and calling it inside the main kernel
code is implemented as a separate circuit on the FPGA. This would
result in an additional use of FPGA resources since more routing
resources are needed to connect the function into the main kernel code.
5

To further minimize the use of FPGA resources, function calls should
be avoided in favor of using loops inside the kernel code, that are then
partially or fully unrolled depending on the availability of the FPGA
resources.

5.3. Matrix instead of Vector Representation

When performing arithmetic operations in an FPGA with large
number of components in an array, especially when implementing
FFT/IFFT with 2048 points, where arithmetic addition and twiddle
factor multiplication are computed on 4096 components with 16-bits
each. The computational complexity can be reduced by representing
these components as a matrix rather than a vector, especially when im-
plementing a nested for loop. Furthermore, lowering the computational
complexity of the arithmetic operation increases the kernel operating
frequency, resulting in a reduction of the processing time.

5.4. Maximizing Global Memory Bandwidth

The DE10-pro Terasic FPGA Board contains 2 banks of DDR4 mem-
ory with a bus width of 64 bits running at 2133 MHz (1066 MHz double
data-rate), which provides 34.1 GB/s of external memory bandwidth.
Since the memory controller on the FPGA runs at 1∕8 of the clock of the
external memory (i.e., 266 MHz), just 128 bytes per clock can saturate
the memory bandwidth. Increasing the memory transfer per clock
above the memory bandwidth increases the area overhead without
decreasing the memory transfer time. For the Low-PHY implementation
in FPGA, only 128 bytes of data are sent from the global to the local
memory per clock cycle to maximize the global memory bandwidth.

5.5. SmartNIC-based Implementation

The implementation of the DU with the considered split Option 2 in
the downlink direction is shown in Fig. 8(a). Here, it is assumed that
a Commercial Off-the-Shelf (COTS) server equipped with an FPGA is
utilized. The RLC, MAC, and High-PHY functions are implemented in a
CPU that receives the data from the CU (through a Network Interface
Card – NIC, such as a QSFP) where the PDCP layer is implemented.

After performing the High-PHY function, the IQ samples in the
frequency domain are sent from the CPU to the FPGA through the
CPU’s PCIe interface for Low-PHY elaboration in the FPGA. Finally, IQ
samples in the time domain are returned to the CPU, again through the
PCIe, and sent to the RU through another NIC (e.g., SFP+). However,
the data transfer and synchronization between the host and the device
memory becomes a bottleneck in this implementation scenario, due to
the contribution of the host-to-device transfer latency. Aside from the
host-to-device memory transfer, data transfer between FPGAs’ global
and local memory also adds to the FPGA-based Low-PHY processing
time. Compared to GPUs, where the memory bandwidth offered by
GDDR5X or HBM2 is in the order of hundreds of GB/s, FPGA boards
usually offer a much lower memory bandwidth (e.g., DDR4 with around
32 GB/s). The proposed solution is shown in Fig. 8(b). This implemen-
tation reduces the Low-PHY processing time since data are transferred
from the CPU to the FPGA through the PCIe interface only once. This
is possible by exploiting auto-run kernels and OpenCL channels. The
auto-run kernels allow to execute the processing in hardware without
interaction with the host and the global memory. Indeed, the host
starts the auto-run kernel that forwards the data to the NIC interface
(e.g., QSFP) of the FPGA after the Low-PHY implementation by means
of the I/O OpenCL channels.



Computer Networks 210 (2022) 108931J.C. Borromeo et al.

6

t
t
m
o
p
a
I
t
t
a
O
i

i
c
D
P
c
f
1
a
i
V
o
c
i
1
H

6

P
d
i
t
i
(
f
m
k
5
I
i
o
u

t
i

Fig. 8. DU implementation scenarios: (a) COTS server equipped with FPGA; (b) FPGA-based SmartNIC implementation.
. Performance Evaluation

This section evaluates the impact of the different optimization
echniques on the processing time (i.e., the time required to process
he considered FFT size), the resource utilization (logic gates, DSP,
emory bits, RAM), and the maximum kernel operating frequency

f a Low-PHY function in FPGA using OpenCL framework. The best
erforming version is then assessed in terms of resource utilization
nd maximum kernel operating frequency by varying the number of
FFT points from 128 to 2048. Results of the FPGA-based Low-PHY in
erms of processing time and energy consumption are then compared
o a CPU-based Low-PHY implementation with OpenAirInterface, and
GPU-based implementation of clfft and cufft libraries. The clfft is an
penCL-based software library containing FFT functions [11]. The cufft

s a CUDA-based FFT library developed by NVIDIA [12].
As shown in Fig. 2, the RU hosts just the RF functions implemented

n an Ettus X310 Universal Software Radio Peripherals (USRPs) and is
onnected to the DU through a 10 Gbps optical Ethernet fronthaul. The
U and CU components are deployed in the edge cloud exploiting Dell
oweredge R740 servers. A midhaul link with 10/25 Gbps is used to
onnect the DU and the CU. In the accelerated edge, the DU Low-PHY
unctions are offloaded onto a DE10-pro development board with Stratix
0 FPGA, two 8 GB DDR4 memory modules and PCIe v3.0 with 16 slots
t 32 GB/s bandwidth [26]. The CPU-based implementation is executed
n an Intel Core i7-7700K@4.2 GHz and based on Intel Advanced
ector Extension 2 (AVX2), where arithmetic operations are performed
n 256-bit vectors to achieve better performance with floating point
alculations and data organization. The clfft and cufft are implemented
n an NVIDIA Tesla T4 GPU featuring 320 NVIDIA Turing tensor cores,
6 GB GDDR6 memory modules, and PCIe v3.0 with 16 slots [28].
ost-to-device transfer latency results are also detailed.

.1. Low-PHY Layer Optimization

Table 3 shows the performance of five implementations of the Low-
HY function of the 5G RAN with 128 IFFT points, considering the
ifferent optimization techniques discussed in Section 3.4. The five
mplementations exploit different optimization techniques available in
he considered Intel FPGA SDK for OpenCL: (i) version 1 features the
mplementation of IFFT and CP addition without any optimization;
ii) version 2 uses the loop unrolling method; (iii) version 3 removes
unction calls inside the main kernel code; (iv) version 4 implements a
atrix instead of a vector representation of the array to increase the

ernel frequency, thus reducing the computation time; (v) and version
is the same as version 4, but with the kernel code compiled by using

ntel FPGA SDK for OpenCL version 20.3, instead of the older 19.1 used
n the previous cases. The different versions are compared in terms
f processing time, utilization of logic gates, DSP utilization, memory
tilization, RAM utilization, and kernel operating frequency.

As shown in Table 3, the processing time decreases from 34.37 μs
o 23.5 μs when the loop is fully unrolled with the trade-off of an
ncreased utilization of logic gates (14% to 25%), DSP utilization (<1%
6

Table 3
OpenCL optimization result on 128 OFDM symbols.

Version 1 Version 2 Version 3 Version 4 Version 5

Processing time [μ𝑠] 34.37 23.5 23.45 21.4 15.43
Logic gate utilization 14% 25% 21% 19% 21%
DSP utilization <1% 5% 4% 3% 3%
Memory utilization 2% 2% 2% 3% 5%
RAM utilization 4% 6% 6% 7% 11%
Kernel frequency [MHz] 239.23 366.7 285.63 484.26 484.78

Table 4
FPGA resources and kernel operating frequency of Low-PHY layer functions with
different IFFT points.

128 256 512 1024 2048

Logic gate utilization 21% 26% 36% 51% 66%
DSP utilization 3% 3% 8% 14% 14%
Memory utilization 5% 6% 11% 15% 15%
RAM utilization 11% 13% 16% 23% 23%
Kernel frequency [MHz] 484.78 461.68 390.93 299.67 146.26

to 5%), and RAM utilization (4% to 6%). When function calling is
avoided in the implementation, there is a decrease of about 4% in the
utilization of logic elements. Using matrix representation on array of
components further decreases the processing time and the used logic
gates, and increases the kernel frequency by a factor of 1.7. The fastest
processing time, 15.43 μs, is achieved in implementation version 5 with
a utilization of 21% for logic gates, 3% for DSP, 5% for memory, 11%
for RAM, and the kernel operates at 484.78 MHz frequency, achieved
with Intel FPGA SDK for OpenCL version 20.3.

6.2. Hardware Performance

Considering the best performing version in Table 3, namely version
5, 5G Low-PHY functions with 128 up to 2048 IFFT points have been
implemented in FPGA using OpenCL framework. Results in terms of
utilization of logic gates, DSP utilization, memory utilization and RAM
utilization, and kernel operating frequency are shown in Table 4.

It can be noted that the use of hardware resources increases as the
IFFT points increase. This is because the size of the array increases and
more FPGA resources are needed to parallelize the IFFT and CP addition
computation. Also the kernel frequency decreases with increasing IFFT
points due to the increasing complexity, given by 𝑂(𝑁𝑙𝑜𝑔𝑁) with 𝑁
being the number of IFFT points.

6.3. Processing Time

Fig. 9 shows the processing time as a function of the IFFT size of 5G
low-PHY in OpenCL exploiting an FPGA, a CPU with a different number
of processing cores (from one to four), and in GPU with clfft and cufft
libraries. The open-source benchmark package Gearshifft [29] is used

to evaluate the processing performance of IFFT libraries in the GPU.



Computer Networks 210 (2022) 108931J.C. Borromeo et al.

T
a
c
c
f
c
a
p

F
i
a
i

s
l
i
R
i
f
f
i
I
g
a
f

Fig. 9. FPGA vs. CPU vs. GPU processing time.

The CPU-based processing time decreases for increasing CPU cores.
his is expected since multiple cores allow to run multiple processes
t the same time with greater ease compared to a single core, in-
reasing the performance when handling multiple tasks or demanding
omputations. Such processing time performance cannot be appreciated
or lower IFFT sizes (i.e., 128 and 256 IFFT points) due to the lower
omplexity, which can be handled by a single CPU core. However,
notable performance difference can be highlighted for 2048 IFFT

oints, where it takes around 6.38 μs only, to run the implementation
with 4 CPU cores, while it needs 31.84 μs with 1 CPU core. This is
because the computational effort for IFFT and CP addition is shared
among 4 CPU cores, resulting in an approximately four times lower
processing time.

Moreover, the processing time for the CPU-, GPU-, and FPGA-based
implementations increases as a function of the IFFT points. However,
just a small increase in the processing time (around 1 μs) occurs with
the FPGA-based implementation because of data parallelism with full
loop unrolling on the radix butterfly and CP addition computation.
The same happens with GPU-based implementation since it has more
parallel computing resources (320 Turing Tensor Cores and 2560 CUDA
Cores for NVIDIA Tesla T4) compared to a CPU. Also, GPU-based cufft
has a faster processing time compared to clfft, since cufft is based in
CUDA developed also by NVIDIA where the library is executed, better
matching the computing characteristics of the GPU and thus offering a
better performance.

In comparing the processing time of different implementations,
results show that the GPU-based implementation of the clfft library has
the longest processing time, making it less suited to be deployed in the
5G Low-PHY. CPU-based implementations (from 1 to 4 CPU cores) have
the shortest processing times up to 512 IFFT size. However, at 2048
IFFT points, the FPGA-based and GPU-based cufft implementations are
1.45𝑥 and 1.91𝑥 faster compared to the CPU-based implementation with
up to 2 CPU cores, respectively. The CPU-based Low-PHY implementa-
tion performs better at smaller IFFT sizes since it operates at a higher
clock frequency (i.e., 4.2 GHz) compared to GPU (i.e., 1.59 GHz) and
PGA (i.e., 480 MHz). However, when the computational complexity
ncreases (i.e., 𝑃>1024 IFFT points), the data parallelism of FPGA
nd the parallel computing resources of GPU outperforms CPU-based
mplementations.

Although the CPU-based implementation with 3 or 4 cores has a
horter processing time compared to FPGA-based Low-PHY and cufft
ibrary implementation in Tesla T4 GPU, these results are only possible
f there are no other 5G functions implemented in the CPU. With a 5G
AN testbed using a higher layer split (option 2), the DU does not only

mplement Low-PHY, but also processes the High-PHY, MAC, and RLC
unctions in the CPU. In this case, CPU resources are shared among
our different 5G functions, resulting in a longer processing time. This
s why implementing 5G LOW-PHY function in FPGA or offloading the
FFT implementation in GPU using cufft library can improve the overall
NB performance, since they can free some of the CPU cores (e.g., 2)
nd the free CPU cores can be exploited to perform the remaining RAN
unctions.
7

Fig. 10. Energy Usage per Low-PHY operation in FPGA, CPU, and GPU with different
IFFT points.

6.4. Energy Consumption

Fig. 10 shows the energy consumption per Low-PHY operation in
FPGA, single CPU core, and GPU (for both clfft and cufft). It is measured
as the energy consumed per Low-PHY operation, which is obtained by
multiplying the power consumption by the Low-PHY processing time
in each device. The energy consumption allows a fair comparison
among the different implementations because it is the product of power
consumption and processing time. Thus, low energy consumption can
be achieved by low power consumption or short processing time. The
s-tui [30] tool is used to measure the CPU power, while quartus_pow
(included in the de10_pro board support package) is used to estimate
the power dissipated in the FPGA, and the 𝑛𝑣𝑖𝑑𝑖𝑎−𝑠𝑚𝑖 command is used
to measure the power consumption in the GPU. As shown in Fig. 10,
the energy usage per operation increases as a function of the considered
IFFT points when using either FPGA, CPU, or GPU. Results also show
that the GPU-based clfft consumes the highest amount of energy per
operation, also due to the large processing time, as shown in Fig. 9,
making it the least optimal solution to be integrated into the 5G Low-
PHY. On the other hand, CPU-based implementation of Low-PHY has
the lowest energy consumption up to 512 IFFT size because of the
short processing time. However, at higher IFFT sizes, the FPGA-based
implementation has the lowest energy consumption (1.03𝑥 lower than
single-core CPU for 1024 IFFT size and 2.22𝑥 lower than single-core
CPU for 2048 IFFT size) followed by GPU-based cufft implementation.
In fact, the long processing time of the FPGA-based implementation (see
Fig. 9) is compensated by a low power consumption (see Fig. 11).

Also, implementing Low-PHY with more CPU cores further increases
the energy consumption. This means that, as the IFFT size increases,
offloading the Low-PHY function into the FPGA becomes more energy
efficient compared to processing them into the CPU or GPU (for both
clfft and cufft libraries).

The proposed solution is flexible. If the available fronthaul/midhaul
latency budget is large, an increased processing time can be traded for a
lower power consumption, provided that the fronthaul/midhaul latency
constraint is satisfied. Otherwise, the hardware guaranteeing the lowest
processing time shall be utilized.

6.5. FPGA-based SmartNIC Scenario

Fig. 12 shows the overall execution time of the Low-PHY imple-
mentation when a COTS server is equipped with an FPGA, i.e., the
scenario depicted in Fig. 8(a). In this implementation, although the
FPGA-based implementation of the 5G Low-PHY layer provides a faster
processing for larger IFFT sizes with lower energy consumption, the
host-to-device/device-to-host and off-chip to on-chip/on-chip to off-
chip memory transfer time is still a bottleneck. Indeed, writing to and
reading from memory (i.e., Write and Read in the figure) requires
more time than the kernel execution itself (i.e., Kernel in the figure),

especially for the 2048 IFFT size. However, the proposed smartNIC



Computer Networks 210 (2022) 108931J.C. Borromeo et al.
Fig. 11. Power Consumption of Low-PHY operation in FPGA, CPU, and GPU with
different IFFT Size.

Fig. 12. FPGA overall execution time.

implementation, depicted in Fig. 8(b), mitigates this issue because data
are directly sent to the RU through the QSFP interface after the IFFT
and CP addition execution, therefore just the data writing to the kernel
(i.e., Write) and the kernel processing time (i.e., Kernel) contribute
to the overall execution time for option 2 functional split. Thus, the
SmartNIC implementation reduces the processing time of about 54.33%
for the 128 IFFT size and of 53.08% for the 2048 IFFT size with respect
to the one achieved by the COTS server implementation.

Moreover, in case split Option 7-1 is implemented, where only
Low-PHY functions are implemented in the DU, while the upper layer
functions are implemented in the CU, the computation time can be
further reduced. Indeed, in this scenario IQ frequency domain samples
coming from the CU can be input directly to the FPGA-based smartNIC,
processed there, and the resulting IQ time domain samples can be sent
to the RU through another smartNIC QSFP output. Thus, in this scenario
also the time required to write the data to the kernel (i.e., Write in
Fig. 9) can be saved.

Another bottleneck of implementing OpenCL in FPGA is the writing
to and reading from the global memory, which is the DDR4 RAM of the
FPGA development board. Since data are sent to the global memory
from the host through the PCIe interface, they have to be forwarded
first to the local memory inside the FPGA for the IFFT and CP Addition
processing. To further reduce the overall processing time of the FPGA-
based Low-PHY, OpenCL host pipes [31] can be utilized to have a direct
communication between the host and the kernel running in the FPGA.
This solution bypasses the latency contributed by the global to local
memory transfer inside the FPGA. However, this implementation is left
as a future work since host pipes are supported by Arria 10 GX FPGAs
only.

7. Conclusion

This paper proposed the implementation of the Low-PHY functions
of a disaggregated gNB distributed unit (DU) in an FPGA-accelerated
8

SmartNIC. The proposed Low-PHY implementation has been compared
against the CPU-based implementation of Low-PHY utilized by Ope-
nAirInterface running in a CPU with 1 to 4 cores and with clfft and
cufft libraries running in a GPU.

Results showed that for low IFFT size the FPGA-based and GPU-
based cufft implementations experience a higher processing time com-
pared to the CPU-based implementation. However, at 2048 IFFT points,
the FPGA-based Low-PHY function and GPU-based cufft can free up to
2 CPU cores thanks to a 1.45𝑥 and a 1.91𝑥 processing time reduction,
respectively. The GPU-based implementation showed a higher energy
consumption than the FPGA-based one. The FPGA-based implementa-
tion also showed the lowest energy usage per operation. Finally, the uti-
lization of the FPGA-based SmartNIC avoided the latency contributed
by the host-to-device/device-to-host and off-chip to on-chip/on-chip to
off-chip memory transfer.

Although OpenCL provides an easy integration of the Low-PHY
with other 5G functions implemented in the CPU, there are still some
improvements to be addressed in future works. One is the utilization
of host pipes for direct communication between the host and kernel
running in the FPGA. The implementation of Low-PHY into the RU
using a lower layer split (7.2x used by O-RAN) will also be considered
in an SoC FPGA to further reduce the processing time, since the CPU
and the FPGA share the same memory. Finally, the FPGA-based Low-
PHY will be integrated with the other 5G protocol stack implemented
by OpenAirInterface to analyze the overall gNB performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] A. Ghosh, A. Maeder, M. Baker, D. Chandramouli, 5G evolution: A view
on 5G cellular technology beyond 3GPP release 15, IEEE Access 7 (2019)
127639–127651.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network
function virtualization: State-of-the-art and research challenges, IEEE Commun.
Surv. Tutor. 18 (1) (2016) 236–262.

[3] Technical Specification Group Radio Access Network, Study on New Radio Access
Technology; Radio Access Architecture and Interfaces, Technical Report (TR)
38.801, 3GPP, 2017, Version 2.0.0.

[4] Network Functions Virtualization; Acceleration Technologies; Report on
Acceleration Technologies & Use Cases, v1.1.1, ETSI GS NVF-IFA 001.

[5] OpenAirInterface | 5G software alliance for democratising wireless innovation,
2021, https://openairinterface.org/ (Last accessed: 2021-07-19).

[6] O-RAN alliance, 2021, https://www.o-ran.org/ (Last accessed: 2021-07-21).
[7] A new approach to building and deploying telecom network infrastructure, 2021,

https://telecominfraproject.com/?section=access (Last accessed: 2021-20-04).
[8] F. Civerchia, K. Kondepu, F. Giannone, S. Doddikrinda, P. Castoldi, L.

Valcarenghi, Encapsulation techniques and traffic characterisation of an ethernet-
based 5G fronthaul, in: 20𝑡ℎ International Conference on Transparent Optical
Networks (ICTON), 2018, http://dx.doi.org/10.1109/ICTON.2018.8473737.

[9] J.C. Borromeo, K. Kondepu, N. Andriolli, L. Valcarenghi, An overview of hard-
ware acceleration techniques for 5G functions, in: 22𝑛𝑑 International Conference
on Transparent Optical Networks (ICTON), 2020, http://dx.doi.org/10.1109/
ICTON51198.2020.9203242.

[10] NVIDIA DPUS, 2021, https://www.nvidia.com/en-us/networking/products/data-
processing-unit/ (Last accessed: 2021-07-19).

[11] Clfft, 2021, https://github.com/clMathLibraries/clFFT (Last accessed: 2021-07-
19).

[12] Cufft, 2021, https://docs.nvidia.com/cuda/cufft/index.html (Last accessed:
2021-07-19).

[13] L.M.P. Larsen, A. Checko, H.L. Christiansen, A survey of the functional splits
proposed for 5G mobile crosshaul networks, IEEE Commun. Surv. Tutor. 21 (1)
(2019) 146–172.

[14] ITU-T, 5G wireless fronthauls requirements in a passive optical network context,
2020, ITU-T G.Sup66 (09/2020).

[15] O-RAN Fronthaul Working Group, Control, User and Synchronization Plane
Specification, O-RAN.WG4.CUS.0-v07.00 Version 1.0, 2021.

[16] Huber suhner functional split, 2022, https://www.hubersuhner.com/
en/documents-repository/technologies/pdf/fiber-optics-documents/5g-
fundamentals-functional-split-overview (Last accessed: 2022-01-10).

http://refhub.elsevier.com/S1389-1286(22)00118-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb1
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb2
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb3
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb4
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb4
https://openairinterface.org/
https://www.o-ran.org/
https://telecominfraproject.com/?section=access
http://dx.doi.org/10.1109/ICTON.2018.8473737
http://dx.doi.org/10.1109/ICTON51198.2020.9203242
http://dx.doi.org/10.1109/ICTON51198.2020.9203242
http://dx.doi.org/10.1109/ICTON51198.2020.9203242
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://github.com/clMathLibraries/clFFT
https://docs.nvidia.com/cuda/cufft/index.html
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb13
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb14
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb15
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb15
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/fiber-optics-documents/5g-fundamentals-functional-split-overview
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/fiber-optics-documents/5g-fundamentals-functional-split-overview
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/fiber-optics-documents/5g-fundamentals-functional-split-overview
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/fiber-optics-documents/5g-fundamentals-functional-split-overview
https://www.hubersuhner.com/en/documents-repository/technologies/pdf/fiber-optics-documents/5g-fundamentals-functional-split-overview


Computer Networks 210 (2022) 108931J.C. Borromeo et al.
[17] Common Public Radio Interface: eCPRI Interface Specification, Version 2.0, 2019.
[18] 3GPP, 3GPP TR 38.912 v15.0.0 (2018-06): Study on new radio (NR) access

technology (release 15), (38.912) 3GPP, 2018, Version 15.0.0.
[19] J.K. Chaudhary, A. Kumar, J. Bartelt, G. Fettweis, C-RAN employing xRAN

functional split: Complexity analysis for 5G nr remote radio unit, in: 2019
European Conference on Networks and Communications (EuCNC), 2019, pp.
580–585, http://dx.doi.org/10.1109/EuCNC.2019.8801953.

[20] J.W. Cooley, J.W. Tukey, An Algorithm for the Machine Calculation of Complex
Fourier Series, in: Mathematic of Computation, 1965, pp. 297–301.

[21] G. Polat, S. Ozturk, M. Yakut, Design and implementation of 256-point radix-4
100 gbit/s fft algorithm into FPGA for high-speed applications, ETRI J. 37 (4)
(2015) 667–676.

[22] A. Munshi, B.R. Gaster, T.G. Mattson, J. Fung, D. Ginsburg, OpenCL:
Programming Guide, Addison-Wesley, 2011.

[23] A. Barenghi, M. Madaschi, N. Mainardi, G. Pelosi, Opencl HLS based design
of FPGA accelerators for cryptographic primitives, in: Intern. Conf.E on High
Performance Computing Simulation (HPCS), 2018, pp. 634–641, http://dx.doi.
org/10.1109/HPCS.2018.00105.

[24] F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu, P. Castoldi, L. Val-
carenghi, Is opencl driven reconfigurable hardware suitable for virtualising 5g
infrastructure? IEEE Trans. Netw. Serv. Manage. 17 (2) (2020) 849–863.

[25] J.C. Borromeo, K. Kondepu, N. Andriolli, L. Valcarenghi, Experimental evaluation
of 5G vRAN function implementation in an accelerated edge cloud, in: 2021
European Conference on Optical Communication (ECOC), 2021.

[26] Intel Corporation, Intel FPGA SDK from opencl pro edition: Program-
ming guide, 2021, https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf (last accessed
2021-07-21).

[27] The LLVM compiler infrastructure project, 2022, https://llvm.org/ (Accessed:
March 7, 2022).

[28] NVIDIA Tesla T4, 2021, https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf (Last accessed: 2021-07-
21).

[29] P. Steinbach, M. Werner, Gearshifft - the FFT benchmark suite for heterogeneous
platforms, 2017, CoRR abs/1702.00629 arXiv:1702.00629 URL http://arxiv.org/
abs/1702.00629.

[30] The stress terminal UI: s-tui, 2021, https://github.com/amanusk/s-tui (Last
accessed: 2021-07-21).

[31] Intel, Opencl host pipe design example, 2021, https://www.intel.com/content/
www/us/en/programmable/support/support-resources/design-examples/design-
software/opencl/host-pipe.html (Last accessed: 2021-07-21).

Justine Cris Borromeo received his BS Electronics Engi-
neering degree at Mindanao State University- Iligan Institute
of Technology in 2015, and the MS Electronics Engineering
at Ateneo de Manila University in 2019. He is currently
a Ph.D student in Emerging Digital Technologies at Scuola
Superiore Sant’Anna, Pisa. His research interests includes
radio access networks in 5G technologies, and FPGA and
GPU-based hardware acceleration.
9

Koteswararao Kondepu is an Assistant Professor at In-
dia Institute of Technology Dharwad, Dharwad, India. He
obtained his Ph.D. degree in Computer Science and Engi-
neering from Institute for Advanced Studies Lucca (IMT),
Italy in July 2012. His research interests are 5G, optical
networks design, energy-efficient schemes in communication
networks, and sparse sensor networks.

Nicola Andriolli received the Laurea degree in telecommu-
nications engineering from the University of Pisa in 2002,
and the Diploma and Ph.D. degrees from Scuola Superiore
Sant’Anna, Pisa, in 2003 and 2006, respectively. He was a
Visiting Student at DTU, Copenhagen, Denmark and a Guest
Researcher at NICT, Tokyo, Japan. In 2007-2019 he was
an Assistant Professor at Scuola Superiore Sant’Anna. Since
2019 he is a Researcher at CNR-IEIIT.

He has a background in the design and the performance
analysis of optical circuit-switched and packet-switched net-
works and nodes. His research interests have extended to
photonic integration technologies for telecom, datacom and
computing applications, working in the field of optical pro-
cessing, optical interconnection network architectures and
scheduling. Recently he has been investigating integrated
transceivers, frequency comb generators, and architectures
and subsystems for photonic neural networks. He authored
more than 180 publications in international journals and
conferences, contributed to one IETF RFC, and filed 11
patents.

Luca Valcarenghi is an Associate Professor at the Scuola
Superiore Sant’Anna of Pisa, Italy, since 2014. He published
almost three hundred papers (source Google Scholar, May
2020) in International Journals and Conference Proceedings.
Dr. Valcarenghi received a Fulbright Research Scholar Fel-
lowship in 2009 and a JSPS Invitation Fellowship Program
for Research in Japan (Long Term) in 2013. His main
research interests are optical networks design, analysis,
and optimization; communication networks reliability; en-
ergy efficiency in communications networks; optical access
networks; zero touch network and service management;
experiential networked intelligence; 5G technologies and
beyond.

http://refhub.elsevier.com/S1389-1286(22)00118-9/sb17
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb18
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb18
http://dx.doi.org/10.1109/EuCNC.2019.8801953
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb20
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb21
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb22
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb22
http://dx.doi.org/10.1109/HPCS.2018.00105
http://dx.doi.org/10.1109/HPCS.2018.00105
http://dx.doi.org/10.1109/HPCS.2018.00105
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb24
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb25
http://refhub.elsevier.com/S1389-1286(22)00118-9/sb25
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://llvm.org/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
http://abs/1702.00629
http://arxiv.org/abs/1702.00629
http://arxiv.org/abs/1702.00629
http://arxiv.org/abs/1702.00629
http://arxiv.org/abs/1702.00629
https://github.com/amanusk/s-tui
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/host-pipe.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/host-pipe.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/host-pipe.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/host-pipe.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/host-pipe.html

	FPGA-accelerated SmartNIC for supporting 5G virtualized Radio Access Network
	Introduction
	Considered 5G RAN Architecture
	Considered Low-PHY Implementation
	OpenCL Framework
	OpenCL Programming Language
	OpenCL Utilization Survey
	Intel FPGA SDK for OpenCL

	Low-PHY Function Optimization using OpenCL
	Loop Unrolling
	Avoid Function Calling
	Matrix instead of Vector Representation
	Maximizing Global Memory Bandwidth
	SmartNIC-based Implementation

	Performance Evaluation
	Low-PHY Layer Optimization
	Hardware Performance
	Processing Time
	Energy Consumption
	FPGA-based SmartNIC Scenario

	Conclusion
	Declaration of competing interest
	References


