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Societal Impact Statement

Bhutan is an ancient kingdom in the Himalayan range and one of the most rugged,

geodiverse, and mountainous agricultural countries in the world. Historically secluded

and geographically isolated, Bhutan is a hotspot for Himalayan agrobiodiversity

where small-scale agriculture supports the livelihoods of a large share of the resident

population. Here, Bhutanese maize agrobiodiversity is explored to unlock its adapta-

tion potential using genomics and participatory variety selection in combination with

climate research. We show that Bhutanese traditional farmers maintain a wealth of

diversity that may support the sustainable intensification of maize cropping in the

Himalayas and beyond.

Summary

• Bhutan, an ancient kingdom enshrouded in the Himalayas, hosts largely untapped

agrobiodiversity that may harness genetic variation useful for adaptation to local

climates and user needs.

• Here, we genotyped-by-sequencing 351 pooled samples of local maize (Zea mays

L.) landraces, the entire collection of the Bhutan National Gene Bank, comparing

their genomic diversity with maize from other countries in the Himalayan range.

We reconstructed the adaptation of Bhutanese maize to historical and projected

climates, identifying areas of future maladaptation. We then run a common garden

experiment involving local smallholder farmers in a participatory evaluation of

landraces' performance, aiming at the identification of quantitative trait nucleo-

tides (QTNs) contributing to adaptation, performance, and farmers' choice.

• We found that Bhutanese maize agrobiodiversity is unique in the Himalayan range,

and a locus on Chromosome 5 supports the differentiation of three distinct genetic

clusters. We found that a portion of current genomic diversity can be associated

with the Bhutanese landscape and that maize cultivation in the southwest of the

country may be negatively impacted by projected climates. We also found that

Bhutanese maize agrobiodiversity is large and may contribute to adaptation and
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improvement. A genome-wide association study identified 117 QTNs for climatic

adaptation, agronomic performance, and farmers' preferences.

• Our results show that Bhutanese maize landraces are a unique source of genetic

agrobiodiversity for local adaptation. We found that the integration of genomics,

climate science, and participatory methods can speed up the identification of

genetic factors contributing to the sustainable intensification of maize cultivation

in the Himalayas and beyond.
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1 | INTRODUCTION

Maize (Zea mays L.) is a very significant crop in global agricultural sys-

tems. In industrialized countries, it is largely used as livestock feed

and to produce goods including biofuels, sweeteners, and oil

(Ranum et al., 2014). It is characterized by high yield potential that is

expressed in optimal management conditions, including significant

water and fertilizer availability. Due to its high yield, it is particularly

attractive to farmers in areas with land scarcity and high population

pressure (Shiferaw et al., 2011) but is also a staple in the diets of mil-

lions of people in subsistence and smallholder farming systems of

Sub-Saharan Africa, Latin America, and South Asia (Grote et al., 2021).

Studies have shown that the climate crisis may severely impact maize

cultivation, especially in low-resilience farming systems (Omoyo

et al., 2015). Increased frequency and intensity of dry spells as well as

heavier-than-usual rainfall during crucial stages of growth and

development may result in substantially decreased maize yields

(Li et al., 2019). While some crop-climate model ensembles estimate a

moderate impact of a warming climate on maize yields, the increased

frequency of extreme events poses a threat especially in low-

resilience, low-input farming systems (Zhang et al., 2022). Recent pro-

jections show that maize yields may decrease by up to 24% in major

growing regions (Jägermeyr et al., 2021), a bleak perspective when

coupled with the two billion rise in the human population by 2050

predicted by the United Nations. To ensure food security, particularly

in emerging countries, maize breeding must act now to improve adap-

tation traits in a changing climate (Fróna et al., 2019).

Plant genetic resources (PGRs) including traditional farmer

varieties are crucial in maintaining the adaptability and evolvability of

crop gene pools, including resistance to pests, diseases, and abiotic

constraints (De Kort et al., 2021). Not only does allelic diversity in

PGRs provide the means to support adaptation to current cultivation

constraints, but it can also enable breeding to address future needs

(Acosta-Quezada et al., 2022; Caproni et al., 2023; Petropoulos

et al., 2019; Woldeyohannes et al., 2022). Landraces maintained in

farmer fields are selected for adaptation to local environments and

local farmer preferences through continued cycles of local planting,

harvesting, and selection over time (Bitocchi et al., 2015). Their allelic

diversity bears great potential for exploitation in breeding programs

and can now rapidly and effectively be disclosed thanks to modern

genomic tools that may unravel molecular mechanisms underlying

adaptation and agronomic performance (Corrado & Rao, 2017; Guan

et al., 2022).

Maize is truly a global crop, and thousands of maize PGRs are still

cultivated throughout the world. They bear adaptability to different

conditions and hold great value as a genetic resource for agronomic

and quality traits improvement, including resistance to biotic and

abiotic stresses (Böhm et al., 2014; Strigens et al., 2013). Archeologi-

cal and genetic studies show that Z. mays originated in Mexico

(Yang et al., 2023), and from there spread to the world following

different waves of human migration and commerce (Tenaillon &

Charcosset, 2011; Mir et al., 2013). The current maize global diversity

is very high and is contributed by its recent evolutionary history and

very dynamic genome (Grzybowski et al., 2023). Still, large maize

agrobiodiversity lies untapped in PGRs that are maintained in situ and

ex situ. Characterizing this diversity could further enrich the breeding

pool for local adaptation traits, shed light on maize history and

migration, and improve conservation strategies (McLean-Rodríguez

et al., 2021).

Bhutan and Nepal are landlocked countries in the Himalayan

range, bordering the northeastern part of India where maize is culti-

vated all year round (Kandel & Shrestha, 2020; Katwal et al., 2013;

Mukerjee et al., 2018). In this region, maize landraces grow from

about 0 m above sea level (m.a.s.l.) to almost 3000 m.a.s.l., showing

high morphological diversity (Krishna et al., 2020; Prasanna, 2010).

Genetic studies using traditional molecular markers revealed the

distinctiveness of maize landraces in the Indian Himalayas compared

with the rest of the subcontinent (Prasanna, 2010), but the genetic

diversity of maize PGRs in this region remains significantly unex-

plored. Only recently, in 1974, Bhutan opened its borders to interna-

tional trade and research. A genomic characterization of Bhutanese

and Himalayan maize PGRs may allow to access gene pools that

have long been hidden and secluded in the pockets of Himalayan

mountains, shedding light on maize agrobiodiversity in the region.

In this study, we used DNA sequencing approaches to develop

single nucleotide polymorphism (SNP) markers on Bhutanese maize

landrace collection maintained at the Bhutan National Gene Bank

(BNGB), United States Department of Agriculture (USDA), and The
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International Maize and Wheat Improvement Center (CIMMYT) gene

banks. We incorporated accessions from the neighboring Nepal and

Indian Himalayas to compare their genetic relationship to a larger

geographic scale. Further, we assessed the agronomic and climatic

diversity and/or adaptation of Bhutanese germplasm in local farming.

We found that Bhutanese maize landraces are genetically distinct and

have allelic diversity with potential breeding value for climate adapt-

ability and agronomic traits. In addition, we identified accessions that

scored high on farmer appreciation. Our findings may contribute to

further utilization of these genetic resources in the development of

new maize varieties that may play a significant role in ensuring food

security in the region.

2 | MATERIALS AND METHODS

2.1 | Plant materials and DNA extraction

We gathered the entire collection of maize landraces from the BNGB,

totaling 351 accessions collected in the country between 2005 and

2017. We complemented this collection with five improved lines from

BNGB and six landrace accessions of Bhutanese origin conserved at

the USDA gene bank (USA). In addition, we obtained 39 accessions

from northeastern India representing the Indian Himalayas and

44 accessions from Nepal stored at the CIMMYT gene bank in

Texcoco, Mexico. Detailed information on the 445 accessions used in

this study is provided in Dataset S1. DNA extraction for the BNGB

plant materials was conducted in the BNGB molecular laboratories in

Thimphu, Bhutan. DNA of the remaining samples was extracted at the

Center of Plant Sciences in Pisa, Italy. The extraction protocol was the

same for all samples and aimed at capturing the diversity existing

within each landrace. Five seeds per accession were germinated in

rolled towels at a relative humidity of 50% and temperature of

22–25�C in the dark. Seedlings were pooled and total genomic DNA

was isolated using the GenElute™ Plant Genomic DNA kit (Sigma-

Aldrich, St. Louis, MO, USA) following the manufacturer's protocol.

Therefore, each DNA sample represents a pool of five individual

plants. Genomic DNA quality was evaluated in 1% agarose gel and

quantified using a spectrophotometer. DNA was sent to IGA Technol-

ogy Services (Udine, Italy) for library construction and sequencing.

2.2 | Sequencing and SNP calling

Double digest restriction-site associated DNA (ddRAD) libraries were

produced using a protocol optimized for maize using PstI and BstYI

restriction enzymes to obtain an optimal fragment size distribution

(Peterson et al., 2012). Targeted fragments were processed, and the

resulting libraries were quantified using Qubit 2.0 Fluorometer

(Invitrogen, Carlsbad, CA, USA) and the Bioanalyzer DNA assay (Agilent

Technologies, Santa Clara, CA, USA). The libraries were then processed

and sequenced with V4 chemistry paired end 125 bp mode on

HiSeq2500 instrument (Illumina, San Diego, CA). Raw reads were

de-multiplexed and checked for quality with FastQC (Andrews, 2010).

Because our samples were pooled, we called SNPs with a pooling-

aware method implemented in VarScan (Koboldt et al., 2009).

Briefly, the demultiplexed reads were filtered using bbduk of

BBMap v39.01 (https://sourceforge.net/projects/bbmap/) specifying

options qtrim = rl, trimq = 25, and minlen = 35) to eliminate low-

quality and short reads. The reads were mapped against the Maize B73

RefGen_v5 Genome, National Center for Biotechnology Information

(NCBI) Bio project PRJEB32225 (https://www.ncbi.nlm.nih.gov/

datasets/genome/GCF_902167145.1/) using BWA-mem v0.7.17

(https://github.com/lh3/bwa/releases/tag/v0.7.17) with default

parameters. The Samtools v0.1.19 (https://github.com/samtools/

samtools) was used for conversion to bam files with a minimum

mapping quality of 30 and the creation of a multi-bam pileup file.

The latter was then used to call variants with the mpileup2snp function

of VarScan v2.4.6 (https://github.com/dkoboldt/varscan/releases).

VarScan variants were filtered to retain loci with at least 75% genotype

information among all samples and a maximum observed heterozygos-

ity of 80%. We retained only high-quality (QUAL > 30.0) biallelic

SNPs. To further increase the quality of markers to be retained in the

downstream analyses, we focused on the allelic depth (AD) for each

marker. To this end, we set all allele calls supported by an AD lower

than 10 (i.e., one copy per each chromosome in the pool) as missing

data. We then performed a new round of filtering of markers with

missing data >20% and retained only samples with >80% data. Within-

pool heterozygous loci were used to compute a minor allele frequency

(MAF) for each accession. Finally, we selected markers with an MAF

(MAF > 0.01) to undergo diversity analyses. The diversity analyses and

genome-wide association study (GWAS) was run on SNP markers with

MAF > 0.01 while gradient forest (GF) analysis to estimate the vulnera-

bility of Bhutan maize to future climate was analyzed using MAF > 0.1

following Rhoné et al. (2020). Sequencing reads are available at NCBI

(https://www.ncbi.nlm.nih.gov) under BioProject PRJNA825653.

2.3 | Genetic diversity analyses

All analyses were conducted in R (R Core Team, 2021). We used a dis-

criminant analysis of the principal components (DAPCs) implemented

in R/adegenet (Jombart et al., 2010) to identify the presence of

genetic groups among Himalayan samples. The same package was

used to produce a neighbor-joining phylogeny and a principal compo-

nent analysis (PCA) on the SNPs dataset (MAF > 0.01). To assess the

genetic distance existing between the genetic clusters, pairwise Fst

values were estimated using R/hierfstat with the Weir and

Cockerham estimator (Weir & Cockerham, 1984). Thereafter, analyses

focused on accessions from Bhutan. R/OutFLANK (Whitlock &

Lotterhos, 2015) was used to identify candidate loci under selection

(i.e., outlier loci) among the different genetic groups in the country,

testing each against all the others, according to a false discovery rate

(q value) of 5% (Storey, 2003). Gene models and associated protein-

coding genes and gene functions were also searched within ±1 Mb of

the loci.
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2.4 | Spatial and bioclimatic characterization of
Bhutanese materials

GPS sampling locations of Bhutanese landraces were obtained from the

BNGB passport data. Sampling points were projected onto the map of

Bhutan using R/raster (Hijmans, 2015) and altitudes of sampling points

were derived using the Consortium of International Agricultural

Research Centers- Shuttle Radar Topography Mission (CGIAR SRTM)

database at 90 m resolution (Jarvis et al., 2008). All climate analyses

were restricted to the country shape of Bhutan. Historical climate data

was derived from fifth generation atmospheric reanalysis version

data (ERA5) released under the Copernicus Climate Change Service

(Hersbach et al., 2020), covering 30 years (1981–2010) at a spatial

resolution of 0.25�. Future climate projections were derived from daily

climate data extracted from a selection of models among the 38

available at two Representative Concentration Pathway (RCP), namely,

RCP 4.5 and RCP 8.5, at the horizons of 2050 and 2070. Multiple

General Circulation Models (GCM) share model parametrization, forcing

and validation data, which can lead to the potential issues of biases

in the mean and variance, overestimation of sample size, and the

possibility of false correlations (Altinsoy & Kurnaz, 2021; Ruane &

McDermid, 2017; Sanderson et al., 2015). To reduce these problems,

we chose seven models that demonstrated relative independence and

had better skills compared with historical observation data. By doing so,

we were able to select a subset of models that did not replicate each

other, ultimately reducing codependency and bias. The selected models

were used to prepare multi-model ensembles (MMEs) for future

projected climates with the same spatial resolution as historical data.

Historical and predicted future climate data were used to derive

19 biologically meaningful indicators and bioclimatic variables using

R/dismo (Hijmans et al., 2015). These 19 indicators describe seasonal

trends as well as limiting climatic factors for plants (Dataset S2).

Collinearity among the derived bioclimatic variables was measured

with functions implemented in R/BiodiversityR (Kindt & Coe, 2005).

For the following analyses, non-redundant bioclimatic variables with a

variance inflation factor (VIF) < 10 were the only used.

2.5 | Estimation of genomic offset to future
climate scenarios

A GF machine-learning tree-based approach was used to model the

distribution of Bhutanese maize landraces to historical climate using

R/gradientForest (Ellis & Smith, 2012). The GF model was trained

using non-collinear historical bioclimatic variables and eigenvectors of

a spatial weighting matrix (namely, Moran's eigenvector maps

[MEMs]) at sampling points as predictors and SNPs with MAF > 0.1 as

response variables. The model was built as a forest of 500 trees at

each SNP and was used to assess the mismatch between the genetic

composition we observed using historical bioclimatic variables as pre-

dictors and the expected genetic composition at future climate sce-

narios and horizons with a method derived from Caproni et al. (2023).

The genomic offset was estimated as the Euclidean distance between

the allelic turnover predicted using historical and projected climate

datasets (Fitzpatrick & Keller, 2015).

2.6 | Common garden experiment

A subset of 142 Bhutanese landraces collected from the BNGB was

grown in a common garden experiment to evaluate phenotypic

performance in a participatory research framework. The subset was

selected based on geographic representation from 17 out of 20 Dzong-

khags (districts), 98 out of 205 Gewogs (sub-districts) and the inclusion

of diverse vernacular names based on regional folk classification and

variety naming system (Dataset S1). Accessions were grown during

the cropping season of 2018 (from April to August) at the land of

Farm Machinery Corporation Limited (FMCL) based in Norzinthang in

Trashigang Dzongkhag, eastern Bhutan, which stands at an elevation

of 1004 m.a.s.l. The experiment was set up in an area of 0.05 acre.

The dimension of each plot which consisted of one accession was

4.8 m2 (4 m � 1.2 m) with a spacing of 60 � 20 cm (60 cm between

row to row and 20 cm between plant to plant). Each plot was com-

prised of two rows, each consisting of 20 plants, to a total of 40 plants

per plot. Two locally improved varieties; Bhur Ashom 1 and Yangtsipa

were planted in six standard check plots across the field layout for

each replicate. In addition, they were planted at the experimental field

periphery acting as a buffer. Phenotypic traits were recorded on five

out of the 40 plants per plot, selected randomly with no more than

three plants in each row. To control variability and increase the reli-

ability of our findings, the experiment was run in two replications fol-

lowing a randomized complete block design.

A total of seven quantitative traits were recorded: plant height

(PH) in cm, ear height (EH) in cm, ear length (EL) in cm, the number of

kernel rows/ear (KRW), length of growing cycle (ELY), grain yield per

plant (GYP), and 100 kernel weight (HKW). Plant height was measured

from the ground level to the peduncle just above the flag leaf, regard-

less of tassel morphology. This was done after the milk stage when

the height maximum is near and/or complete. EH was measured from

the base of plants to the node of the topmost ear. To assess the

length of the growing cycle/earliness, we devised an earliness scale

(ELY) based on the percentage of tasseling and silking observed

between Days 80 and 90. Accessions were scored on a scale of 1 to 6

whereby, 1 = very early (100%), 2 = early (85%), 3 = intermediate

(50%), 4 = late (30%), 5 = very late (10%), and 6 = extremely late (0%).

Grain yield was calculated based on published guidelines (Bajo, 2004).

2.7 | Focus group discussions and participatory
evaluation of genetic materials

Twenty maize-growing farmers participated in the focus group

discussions (FGDs) and evaluation of the accessions. Farmers came

from five local Gewogs: Kanglung, Samkhar, Yangneer, Khamdang and

Bartsham. Khamdang is located in Trashiyangtse Dzongkhag while the

other four Gewogs are found in Trashigang Dzongkhag. These Gewogs

4 TAMANG ET AL.
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were selected for their nearness to the study site, accessibility, and

availability of farmers, and represent contrasting maize growing

ecologies of the eastern part of Bhutan where maize is mainly grown.

Trashiyangtse is mainly cool temperate to warm temperate while

Trashigang is warm temperate to dry subtropics. Participants were

selected maintaining gender balance and a number of participants

from each Gewog. Farmers from each Gewog were accompanied by

their respective Agriculture Extension staff who had experience in

guiding previous participatory research. FGDs were conducted before

field evaluations. For this task, farmers were divided into two main

groups based on gender to capture as much information as possible.

Participating farmers were asked to list down the maize traits that are

of interest to them based on their farming experience and knowledge.

The farmers were then tasked with assessing the 142 maize acces-

sions in the field. The participatory evaluation coincided with the seed

maturation of most accessions at a time when differences in phenol-

ogy were still visible. The 20 farmers and 6 Agriculture Extension Offi-

cials were organized into 5 groups comprising two groups of men

with 4–5 farmers per group and three groups of women with 3–5

members per group. One Agriculture Extension Officer was allocated

to each group to guide the farmers in this exercise. Groups then

moved into the field from random entry points and were asked to

evaluate each accession for their overall appreciation (OA) on a Likert

scale from 1 (very low) to 5 (very high). The scoring of each farmer for

each of the 142 accessions was independently recorded.

2.8 | Phenotypic data analysis and
association study

Phenotyping data was analyzed using R using custom scripts.

R/corrplot (Taiyun Wei et al., 2021) was used to study the correlation

among phenotypic traits. Graphs for quantitative data were generated

using R/ggplot2 (Wickham, 2016). A PCA was performed to estimate

the relative importance of different traits in capturing variation in the

collection and to establish the relationship among all variables under

study using R/Adegenet (Jombart et al., 2010). Analysis of variance

(ANOVA) was executed in R/Agricolae (Mendiburu, 2019) to examine

the impact of the randomized complete block design on trait

variation. Further, a linear mixed model was adopted and analyzed in

R using the package lme4 (Bates et al., 2015). The linear mixed model

was model = y �(1jgenotype) + (1jreplicate) + (1jreplicate: plot),

where y represents the vectorized trait data collected. Best linear

unbiased predictor (BLUP) values were generated and utilized in

downstream analysis. Heritability estimates and covariance estimates

were obtained from the mixed linear model. Narrow-sense heritability

(h2) was calculated as the ratio of the additive genetic variance to the

total phenotypic variance.

A GWAS was performed on phenotypic traits using BLUP values,

participatory evaluation traits, and bioclimatic variables. The GWAS

was run using a fixed and random Circulating Probability Unification

(FarmCPU) model (Liu et al., 2016) implemented in the package in

R/GAPIT (Lipka et al., 2012) using the first PC calculated on genotypic

data as a covariate. Marker-trait associations/quantitative trait nucle-

otides (QTNs) were defined when SNPs surpassed the significance

threshold of a false discovery rate of 0.05 based on Storey's method

(Storey & Tibshirani, 2003). GWAS results were plotted with the R

package qqman (Turner, 2018). The reported Manhattan plots display

a stringent Bonferroni threshold corresponding to a nominal p-value

of .05 to aid the identification of the most significant SNPs. GWAS

associations were compared with the output of outlier loci detection,

using LD measures as a reference framework. We searched for

potential candidate genes in the vicinity of genomic associations using

the Zm00001d.2 Filtered Gene Set from Maize B73 RefGen_v5

Genome, MaizeGDB (https://maizegdb.org/genome/assembly/Zm-

B73-REFERENCE-NAM-5.0).

3 | RESULTS

3.1 | Maize diversity in the Himalayan regions
reflects geographic diversity

The genotyping-by-sequencing of 445 Himalayan maize accessions,

including 357 landraces from Bhutan, produced more than 1.36 Bn

Illumina paired-ended reads. Reads were aligned to the maize refer-

ence genome resulting in 47,364 high-quality SNP markers distributed

on the entire genome. Maize landraces in the Himalayas are cultivated

as open-pollinated varieties, meaning that some degree of genotypic

variation among individual plants belonging to the same accession/

landrace is expected. In this study, we pooled five plants for each

accession to capture the maximal genetic makeup of our core collec-

tion. This required further filtering of the SNP set to be used to

describe the diversity in the collection (Dataset S3). The sample with

the highest number of heterozygous SNPs was at 50% and the lowest

at 2% of the total (Dataset S3). On average, the within-pool minor

allele frequency (MAF) was 0.22, approximately one in five. There is a

general trend whereby samples with a higher number of heterozygous

loci also had higher MAF (Figure S1). The filtered set of SNPs to be

used in analyses downstream was comprised of 27,198 genome-wide

markers.

Maize landraces included in this study were collected from the

entire geographic span of the Himalayas, from 21.1 to 34� latitude

and from 72.7 to 92.1� longitude (Figure 1a,b). To summarize maize

diversity across the landscape, we conducted a DAPC that unveiled

four genetic clusters best describing the allelic frequencies across the

Himalayas (Figure S2). Clusters 1, 2, and 3 grouped accessions from

Bhutan, while Cluster 4 grouped accessions originating from Nepal

and India (Figure 1a). Within Bhutan, the three genetic clusters were

influenced by geography, Cluster 2 being mostly found in the south-

ern foothills to the southwest, while Clusters 3 and 1 being more

characteristic of the East and the highlands of the country (Figure 1b).

A PCA computed on SNP data shows that Bhutan accessions are sep-

arated from India and Nepal (Figure S3). The first four principal com-

ponents were considered based on a screen plot (Figure S4), PC1 and

PC2 show the clearest separation between the clusters (Figure S5).
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PC1 and PC2 explained 6.76% and 3.76% of the variance, respec-

tively, reporting overall low structure (Figure S3).

We then focused on the group of Bhutanese accessions. Pairwise

Fst distances were rather low between Bhutanese clusters, the most

reciprocally isolated being Clusters 1 and 3 (Fst = 0.073) (Dataset S4).

Most accessions in Clusters 1 and 3 were sampled from eastern

Bhutan, spatially closer than Cluster 2 with any of them (Figure 1b).

We explored the presence of outlier loci, putatively under selection,

comparing each genetic with the rest samples. Thirty-one outliers

were detected from Cluster 2, 18 of which were observed on Chro-

mosome 5 (Figure 1c; Dataset S5), some of which mapped in regions

harboring several annotated genes (Dataset S6). There were no outlier

loci observed in Clusters 1 and 3.

3.2 | Bioclimatic characterization of Bhutanese
maize landraces in a changing climate

A correlation analysis between bioclimatic variables and altitude in

Bhutanese maize sampling points showed a moderate positive correla-

tion with variables that measure the range between maximum and

minimum temperatures including bio2 (diurnal range), bio4 (seasonal

temperature change in a year), and bio7 (range in the warmest and

coldest month (Figure S6; Dataset S2). Meaning that the the tempera-

ture range expands with rising altitude. Nevertheless, we note that

accessions in this study grow in highly heterogeneous altitudes. These

variables also show a negative correlation with all precipitation vari-

ables bio12 to bio19. All precipitation variables were negatively corre-

lated with altitude, following the south–north altitudinal gradient in

the country going from the southern foothills to the greater Hima-

layas. Temperature-related variables bio6 (lowest temperature of the

coldest month), bio9 (average temperature of the driest quarter), and

bio11 (average temperature of the coldest quarter) showed a strong

positive correlation with annual precipitation variable bio12 (average

total rainfall in a year).

To assess the adaptability of Bhutan maize landraces to future

climate-projected scenarios, we developed a GF model using historical

climate and MEMs as predictors and 13,469 SNPs (MAF > 0.1) as

response variables. We found that the change in the allelic turnover in

the maize collection was best predicted by MEM1, describing the

spatial distribution, followed by precipitation seasonality (bio15)

(Figure 2a). The GF model was then used to estimate climate-driven

genomic variation across the landscape (Figure 2b,c). Among the SNPs

tested as response variables, about 50% (n = 6815) were predicted by

the model (with R2 > 0). Based on the current landscape-genome rela-

tions modeled through GF, we estimated the expected genomic com-

position at different RCP scenarios and horizons. We then derived the

future maize genomic offset as the difference between the current

genetic variation and the genetic variation that would be needed

under a changed climate for each of the tested scenarios. At all

RCP-horizon combinations, we observed the highest offset in the

southwestern Bhutan, where genetic Cluster 2 is mostly found

(Figure 2d; Figure S7).

3.3 | Phenotypic and farmer participatory
characterization of Bhutanese landraces

Phenotypic traits were measured in a replicate common garden exper-

iment on a subset of the BNGB materials. The ANOVA statistical

model incorporated genotype, replication, and spatial blocking factors

to assess their influence on the phenotypic trait variation. Significant

differences were observed for all factors across some traits including

plant height (PH), ear height (EH), earliness (ELY), grain yield per plant

(GYP), and ear length (EL) (Dataset S7). This analysis prompted the

adoption of a mixed linear model to further explore and account for

the sources of variability in the studied traits. Among the covariance

components, the genotype covariance exhibited the highest value for

all traits (Dataset S8). The estimated narrow-sense heritability (ℎ2) ran-

ged from 0.4 (hundred kernel weight [HKW]) to 0.7 (earliness [ELY]).

The coefficient of genetic variation (CVG) for EH and PH was 22% and

12%, respectively (Dataset S8). The BLUPs were employed in subse-

quent analysis.

Although the traits showed a wide variation, the distribution of

all traits was normal (Figure S8; Dataset S8). A correlation between

traits exhibited a high positive correlation of EH with PH (Figure S9).

ELY was positively correlated with PH, EH, and EL. KRW and HKW

had a negative correlation. A PCA on phenotypic traits did not

reveal the existence of any structure within the core collection based

on either of the DAPC clusters observed with genotypic data

(Figure S10).

Farmers participating in FGDs highlighted preferred traits for

maize cultivation (Dataset S9). Participatory field evaluations further

captured gender differences in these preferences. The OA of geno-

types score between men and women was significantly different

(p < .0001) as revealed by a paired t-test (Figure S11). This is ascribed

to the fact that men and women, in some instances, value traits

differently when performing their selection (Dataset S9). Only women

F IGURE 1 Geographic distribution and genetic clustering of Himalayan maize. (a) Collection points across Bhutan, India, and Nepal.
(b) Enlarged map showing accessions from Bhutan. The longitude and latitude values in WGS84 EPSG:4326 degrees are reported on the x-axis
and y-axis, respectively. Samples without global positioning system (GPS) coordinates are not shown. The sampling area is reported in shades
representing altitude according to the bar on the side (meters above sea level, the color scale is the same in panels a and b). Colors represent each
sample's genetic discriminant analysis of principal components (DAPCs) clusters (1–4). The location of the common garden experiment is shown
with a red diamond. (c) Plots show outlier loci (highlighted in red) based on fixation index (FST) distribution (y-axis) across all chromosomes (x-
axis). Outlier loci were selected based on values of q-value of 0.05 and He > 0.1. DAPC Clusters 1 and 3 are not shown.
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highlighted their preferences for varieties with ease of shelling, sug-

gesting their role in post-harvest activities. Men preferred varieties

with delayed senescence of stalks to provide fodder for the animals

throughout the cropping season. From the discussion, we garnered

that farmers' preferences/selection are driven by observation of quan-

titative traits including plant height, kernel color, ear length/ear size,

and earliness. This was confirmed by the quantitative analysis of OA

scores which showed a positive correlation with PH, EL, KRW, HKW,

and GYP (Figure S9).

The top 50 accessions according to farmers' evaluation were

selected from the genotypes subjected to participatory evaluation

(Dataset S10). Farmers' evaluations were combined with phenotypic

data to prioritize genetic materials for the potential for local adapta-

tion. From the phenotypic data collected, we selected accessions with

F IGURE 2 Bioclimatic and spatial diversity explain genomic variation in the distribution of Bhutanese maize landraces. (a) Ranked accuracy
importance of the bioclimatic and spatial variables based on the gradient forest (GF) model. Bioclimatic variables (bio) include temperature (temp)
and precipitation (prec). Spatial variables are based on Moran's eigenvector maps (MEMs). (b) Biplot of the biological space, represented by
principal components of the transformed grid with an RGB (red, green, blue) color palette relative to its first three dimensions. (c) GF-transformed
bioclimatic variables across Bhutan. Colors based on bioclimatic-genetic space in (b). (d) Genomic offset based on Representative Concentration
Pathways (RCPs) 8.5 ensemble climate projections at the horizon of 2070. The color scale indicates the magnitude of the mismatch between
current and projected climate-driven turnover in allele frequencies. The location of the common garden experiment is shown with a yellow
diamond in (c) and (d).
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desirable trait values guided by the FGD findings: an intermediate

plant height of 125–190 cm, an early to intermediate maturity time,

an ear length (EL) of 10 cm and above, a grain yield of above 6 g per

ear, and 100 kernel weight (HKW) of more than 10 g. Yellow or

orange kernel colors were also selected. Based on these criteria, a

total of 30 accessions could be identified (Dataset S11). We then

superimposed 50 accessions that ranked highly from farmer participa-

tory evaluation with 30 accessions that ranked highly based on

F IGURE 3 Genome-wide association
study using single nucleotide
polymorphism (SNP) markers derived
from Bhutan maize landraces. The panels
show Manhattan plots for (a) bioclimatic
variable bio8 (mean temperature of the
wettest quarter) (b) bioclimatic variable
bio15 (precipitation seasonality)
(c) phenotypic traits plant height (PH) and

(d) ear height (EH). The Manhattan plots
report individual SNPs across all
chromosomes (x-axis) and -log10 p-value
of each SNP association (y-axis). The
horizontal lines represent a stringent
Bonferroni threshold for a nominal
p-value of .05.
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agronomic trait data. Fourteen accessions overlapped between these

two methods of evaluation (highlighted in Dataset S1). Although

farmers selected accessions based on phenotypic traits, their OA is

also guided by traditional knowledge not captured in the phenotypic

data and reinforces the need to integrate these two approaches of

variety selection.

3.4 | Genomic associations with climate, traits, and
farmers' preference

A GWAS was performed focusing on phenotypic data and bioclimatic

data relative to the sampling origin of accessions (Figure 3;

Figure S12; Dataset S12). The GWAS yielded strong association

signals as evidenced by model fits reported by QQ plots (Figure S13).

GWAS based on bioclimatic data revealed a total of 110 putative

QTNs, 24 of which were common among bioclimatic variables

(Dataset S13). This redundancy is expected as some bioclimatic vari-

ables are derived from the same underlying parameters (Dataset S2),

for instance, a QTN at 223.1 Mb on Chromosome (chr) 5 was common

across five temperature-related bioclimatic variables including bio1, 5,

8, 10, and 11. We assessed genomic associations with altitude and 11

QTNs were associated with altitude 29.7 Mb on chr1, 9.5 Mb on chr2,

93.4 Mb on chr2, 240.4 Mb on chr4, 223.1 Mb on chr5, 174.5 Mb on

chr6, 171.3 Mb on chr7, 179 Mb on chr8, 75.2 Mb on chr9, 117 Mb

on chr10, and 144.9 Mb on chr10. There were 5 QTNs associated

with bio8 and 13 QTNs with bio15 which were among the most

important climatic drivers of the GF model (Figure 3a,b; Dataset S13).

Further, we identified QTNs associated with bioclimatic traits and

also determined outlier loci for DAPC Cluster 2 (Dataset S13). Two

loci on Chromosome 5 at 148.2 Mb were associated with variables

bio12 and bio19 and 150.5 Mb associated with bio15 were identified.

For phenotypic trait data, 11 unique QTNs surpassed a multiple

testing corrected significance threshold (Dataset S14). There were six

QTNs associated with PH, four for EH, and one for ELY.

4 | DISCUSSION

Maize is one of the most important staples for hundreds of millions of

smallholder farmers in Asia (Mir et al., 2013). Although a pre-

Columbian arrival of maize in Asia is a suggestive hypothesis, there is

no definitive genetic or archeological evidence supporting it. Maize

cobs are depicted in sculptures in Indian temples dated around

the 13th century (Johannessen & Parker, 1989), and maize

illustrations appeared in Chinese literature only since the 1500s

(Uchibayashi, 2005), which is compatible with a post-Columbian intro-

duction. It is widely accepted that the introduction of maize into India

precedes that of China, and from there it spread throughout Asia.

Understanding maize post-domestication movement may contribute

to the identification of alleles not considered in breeding programs or

conservation (Mir et al., 2013). In these regards, the Himalayan region

is very interesting for historical and bioclimatic reasons. We report

that Bhutanese maize landraces are genetically distinct from acces-

sions in the neighboring Nepal and India (Figure 1a,b), suggesting the

presence of unique alleles possibly driven by ecological adaptation

(Schluter & Conte, 2009) and/or unique traditional practices. The

introduction of maize alongside other commodities into the Bhutan

region may have been facilitated by Buddhist missionaries who trav-

eled across the Himalayas from the 8th century onwards (Meinert &

Sørensen, 2020; Thapa, 1966).

When approaching the study of genotypic diversity in traditional

landraces, which are cultivated as open-pollinated varieties, we opted

to pool five plants for each accession. The objective of this strategy

was to increase the chances to capture all the diversity available at

the landraces level; the downside being an increased complexity in

the effort to accurately detect alleles in bulked samples. Effective

methods for SNP calling in pooled samples have been developed on

genotyping array platforms (Arca et al., 2021), enabling the characteri-

zation of large pools of maize landraces (Arca et al., 2023). In our case,

we used sequencing read counts for each allele at a given genomic

position factoring in base quality, mapping quality, and read depth to

weigh on the representativeness of each marker using VarScan

(Koboldt et al., 2009). Additionally, we computed within-pool MAF

finding that on average, heterozygous allele calls had a one-to-five

ration of polymorphism. For each sample and marker, we cannot

determine whether the MAF is contributed by heterozygous individ-

uals or rather by a mix of different homozygote genotypes in the pool.

However, we can assume that in the long range any segregating locus

within a landrace will adjust to a Hardy–Weinberg equilibrium in the

absence of forces of evolution. This equilibrium will be broken for

those loci that are under selection for local adaptation to either agro-

nomic performance and/or farmer preference.

We found three genetic clusters within the Bhutanese germ-

plasm. Most accessions in Clusters 1 and 3 were from eastern Bhutan,

while Cluster 2 was mostly from southwestern Bhutan (Figure 1b).

Although genetic distance based on Fst among these subpopulations

suggests a minimal degree of genetic differentiation, we identified

outlier loci among them (Figure 1c). These QTNs harbor putative

genes (Dataset S6) that could be further explored. For instance, outlier

loci in Cluster 2 also a QTN harbors gene models including polyamine

oxidase9 an enzyme that has been shown to impact leaf elongation

and overall plant growth in maize (Alberto Rodríguez et al., 2009),

protochlorophyllide reductase1 an enzyme that promotes tocopherol

(Vitamin E) accumulation in both leaves and kernels of maize (Zhan

et al., 2019), and arogenate dehydrogenase1 which is involved in kernel

protein metabolism; specifically tyrosine and phenylalanine (Holding

et al., 2010) and germin-like protein26 (glp26), glp-like proteins play a

crucial role in pathogen resistance (Mao et al., 2022). It is possible

that the differentiation among genetic clusters is partially contributed

by selection for loci conferring traits that are relevant for local

adaptation.

The highest genetic distance was observed between two clusters

in eastern Bhutan, suggesting a combination of factors driving

selection. In the eastern districts of Bhutan (Dzongkhags), maize plays

a crucial role in household food security as high slopes pose

10 TAMANG ET AL.
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challenges for irrigated rice farming. The difficult terrain may have

likely impacted seed exchange, a phenomenon previously described in

Nepal (Bajracharya et al., 2010). However, as farmers have adopted

the cultivation of improved varieties, active community seed exchange

programs have also been adopted (Wangmo et al., 2018). The FGDs

we conducted in eastern Bhutan showed that farmers select for spe-

cific traits, and consequently impact allele frequencies on locally culti-

vated materials. This selection may also be influenced by the

cultivation of maize in Butans' heterogenous agroecologies. In which

case, farmers select for different phenotypic traits depending on the

microclimate and prevailing vulnerabilities. Indeed, in the women

FGD, farmers explained the rationale behind some of the preferences

based on the region (Dataset S9). Some farmers prioritized plants of

intermediate plant height with ear placement in the middle to with-

stand lodging caused by strong winds and bring convenience to daily

field activities. In the high altitude, early maturing varieties were prior-

itized to escape frost damage. In the lower elevation areas, farmers

showed a preference for varieties that could resist pests and diseases.

We then explored the genomic loci associated with quantitative

traits informing farmer preferences using a small common garden

experiment. Arguably, our experimental design suffers several limita-

tions, including being run in just 1 year in one location, and may not

be generalized beyond the observations done in this study. However,

our characterization data still gives a peek at the agronomic diversity

existing in the Bhutan allele pool and its potential for incorporation

into breeding programs. We identified several putative loci associated

with phenotypic traits in our experiment (Dataset S14). Among them,

plant height, ear height, and earliness are highly heritable polygenic

traits with crucial roles for both environmental adaptation (Abendroth

et al., 2021; Sandhu & Dhillon, 2021) and yield (Peiffer et al., 2014).

Maize is particularly prone to temperature and rainfall stress

(Mulungu & Ng'ombe, 2019). The extent of cultivation of maize land-

races in Bhutan is shrinking in favor of improved varieties as evidenced

in our FGD (results not shown), a trend equally observed across the

globe (Fenzi & Couix, 2021). Maize landraces have the potential to

sustainably address current and future challenges affecting production

(Guzzon et al., 2021). We employed GWAS to identify genomic loci

associated with climate variables. Variable bio15 ranked highly in pre-

dicting the GF model and was associated with several putative loci

including a QTN on Chromosome 2 at 15.3 Mb that harbors calcium-

dependent protein kinase 5, a gene that plays a crucial role in plants'

response to abiotic stresses (Liu et al., 2021). For bio8, we identified

an associated QTN on Chromosome 7 at 170.3 Mb harboring Cysteine

proteases8 and 9, cysteine proteases play a major role in plant growth

and development, senescence, and immunity (Li et al., 2021). We did

not find any overlap between QTNs associated with bioclimatic and

phenotypic traits within this study. Nonetheless, it is plausible that any

QTNs/loci related to environmental adaptation might align to pheno-

typic traits that are selected in certain pedoclimatic conditions

(Caproni et al., 2023). Indeed, several bioclimatic-associated QTNs

identified in our study correspond to genomic regions identified for

agronomic traits in previous studies (Mural et al., 2022). The overlap-

ping phenotypic associated traits included several aspects of plant

performance, including flowering time, inflorescence, seed composi-

tion, and vegetative traits (Dataset S13).

GF predictive models can significantly improve the ability to

detect areas that are likely to be vulnerable (Rhoné et al., 2020;

Caproni et al., 2023). The distribution of maize landrace diversity we

observe today may suffer under future climate scenarios. Our analysis

suggests that predicted variations in patterns of rain and temperature

are likely to have impacts in the districts of southwestern Bhutan; in

particular, the strongest offset is predicted for Samtse, Chukha,

Dagana, Tsirang, and Sarpang. These districts, although not in the

major maize production areas as in the east, are a source of unique

maize agrobiodiversity identified in Cluster 2 (Figure 2c); three geno-

types sourced from these regions were among the 14 top accessions

prioritized by both farmers and with agronomic trait data evaluation

(Dataset S1). We believe that further germplasm collection efforts,

especially in these areas should be prioritized; future breeding

efforts, targeting local adaptation, will benefit the availability of a

larger, comprehensive Bhutanese collection of maize diversity that

today may be at risk; such germplasm wealth will cushion Bhutanese

smallholder farmers against future climate scenarios in Bhutan.

4.1 | Conclusion

Overall, our findings provide a glimpse of the genetic composition of

Bhutan's maize landrace germplasm which is divergent from the

neighboring Indian and Nepal Himalayas. Within Bhutan, there is an

indication of an existing selection process as occasioned by the sub-

clustering. The landrace germplasm is relatively recent as it was

collected between 2005 and 2017. Without mitigation, farm landrace

diversity will continue to dwindle because of different factors

including changing cropping systems amidst the climate crisis. Thus,

improved strategies must be adopted to mitigate prevailing vulnerabil-

ities by utilizing this resource.

Our study involved farmers' knowledge in selecting their pre-

ferred varieties and then using this information to filter accessions by

agronomic traits. By integrating traditional knowledge and quantita-

tive data, we were able to prioritize varieties of interest. The acces-

sions selected could be aptly used in breeding programs with higher

chances of adoption by farmers. Further integration of genomic and

climatic data provides information that adds to the robustness of

breeding programs particularly for climate adaptation.
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