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Abstract — In recent years, radar technology has attracted a new wave of interest due to unprecedented low-power 

potential and its inherent low privacy concerns compared to camera systems. In particular, a radar-based object and 

material recognition encloses a great potential for assistive technology in healthcare scenarios, such as prosthetic hands. 

In this study, we aimed to explore such potential via offline and online recognition achieved by deep learning techniques. 

Twenty different targets were explored, including objects from daily life activity as well as biological tissue (i.e., human 

hand). Feasibility was confirmed by the offline and online recognition accuracies (achieving 94% and 89% correct 

classifications in the best case scenario respectively), and promising insights are offered in regard to the number of 

radars needed for such task. Remarkably, for the first time it was shown that a radar-based, real-time correct 

differentiation between human tissue and inanimate objects. We believe these results pave the way for an easy-to-

integrate solution with wide potential benefit in industrial automation technology and novel innovative human-machine 

interfaces, particularly in the prosthetic field context. 

 

Index Terms — Radar system, object recognition, Deep learning, material recognition, prosthetic hand. 

 

I.  INTRODUCTION 

In recent years, radar technology has attracted a new wave of 

interest due to unprecedented low-power potential and its inherent 

limited privacy concerns compared to camera systems. Such interest 

is confirmed by the vast amount of radar-based research recently 

published, particularly for human-centered applications such as 

human gesture/activity recognition, vital sign monitoring, and 

collision avoidance in automotive applications [1], [2], [3], [4], [5], 

[6], [7], [8]. The use of radars for the recognition of objects and 

materials is also gaining interests as it opens for a wide variety of 

applications. Automatic radar-based object sorting was proved 

possible for inspection processes in industrial scenario, to detect 

unwanted materials in a product while preserving the sealed packages 

[9]. Moreover, objects, body parts and transparent materials 

recognition was demonstrated possible for various applications, 

involving human-machine interactions in wearable systems or in 

industrial settings, both with known and unknown target material [10]. 

Here, Yeo et Al. used the radar prototype proprietary system Soli by 

Google ATAP [11], designed for smartphone embedded human-

machine interactions, particularly for miniature and precise finger 

gestures aimed to navigate and control graphical and virtual interfaces. 

Recognition accuracies as high as 97% were shown via a random 

forest classification algorithm.  

Object and material recognition encloses a great potential also for 

assistive technology in healthcare scenarios, such as prosthetic hands, 

the ultimate focus of our research group. Indeed, an understanding of 

the environment via exteroceptive sensors is imperative to enable 

more autonomous robotic hands [12], [13], [14]. The recognition of 
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the target object material while holding it during a grasp task could 

provide important information for implementing automatic grip force 

modulation. In this context, radars are particularly appealing for their 

easiness of integration in a wearable system (low-power and low 

computational demands), peculiar measurement features (sensitive to 

different materials and density, invariance to illumination conditions) 

and the limited privacy risks. The feasibility of using easily embedded 

low-power radars to recognize object shape and material in order to 

select the correct grasp on a robotic hand during the dynamic reaching 

phase was confirmed by our recent study [15] on a publicly released 

dataset [16]. Outcomes proved promising, albeit achieved with 

objects exhibiting only two types of materials and five different 

shapes. In this study, we aimed to further assess such radar-based 

object recognition capabilities with a larger target set, inspired by 

daily life activity and varying between different materials and shapes. 

Our object recognition system showed remarkable accuracies for both 

offline and online assessments achieving 94% and 89% correct 

classifications in the best-case scenario respectively, confirming once 

more the potential of radar technology for prosthetic applications. 

II. MATERIALS AND METHODS 

A. Experimental setup  
We aimed to investigate the use of low-power, millimeter-accurate 

radars for the recognition of different objects. In particular, our choice 

was set on the commercial pulse-coherent radar A121 (Acconeer, 

Sweden),  which combines <0.1W power consumption, 2.5mm 

precision, large field-of-view of 65×53 degrees, with integrated 

TX/RX antennas in a 29mm2 compact package and cost ≈10€.  
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Acconeer's radar is already widely used in innovative use cases such 

as gesture control, obstacle detection, surface classification, parking 

sensors, human presence detection, alarms and access control. Here, 

an instrumented device was developed based on the A121 (Fig. 1 A), 

consisting of a custom 3D printed three-layer platform, three radars 

and an acquisition microcontroller (ESP32, EspressIf, China).  The 

middle layer held the three radars and their hosting custom-made 

PCBs. Here, the radars were configured to emit trains of 60GHz 

pulses in pulsing/silent cycles alternating at 13MHz. The radar 

received pulses at times related to the distances of 35 range points, 

equally distributed from 87.5mm to 175.0mm (i.e., 35 range point, 

where each range point was separated by 2.5mm). Each range point 

measure was represented as a complex number (sparse IQ service 

which utilizes the phase-coherency of the A121 pulsed radar to 

produce stable In-phase and Quadrature components) enclosing 

information about amplitude and phase of the reflected pulse (Fig. 1 

B). Each radar provided a complete measure (i.e., a sweep) of its range 

points with 15Hz frequency. Data was then transmitted via USB to a 

custom Matlab-based PC application.  

B. Data collection protocol  
The radar received intensity is influenced by the reflection and thus 

by the inherent dielectric properties of the target material. In order to 

investigate the performance of our instrumented device on a wide 

range of materials, 19 daily objects were selected for this experiment 

(Table 1), trying to maximize the variety in their dielectric constant 

(i.e., permittivity constant). Additionally, due to the explorative 

nature of this study, we decided to include also the human hand within 

the list of investigated targets (Fig. 1 D). All collected data is publicly 

accessible on Figshare [17].  The three radars were placed 65mm 

away from the top layer, thus from the target objects. This was chosen 

to avoid any artifact or distortion on the radar signals due to too short- 

distance from the target. Moreover, the three radars were placed in 

equilateral triangular configuration with ≈20mm distance between 

each other, although through experimental investigations it was seen 

that the data were not significantly influenced by different intra-radar 

distance, for example with respect to rotating the PCBs by 180○. This 

positioning was deemed as a good compromise between a small intra-

radar distance and a large aggregated field-of-view, so that the objects 

considered were within the space for which the measurements were 

acquired. Data were acquired by positioning the target objects over 

the instrumented device, at the center of the 3D printed top layer 

platform, in three trials of 10s each. For each trial, the target object 

was repositioned in the same position with small random perturbation 

in orientation. This procedure was then repeated for four identical 

sessions. Different orientations and multiple sessions were deemed 

necessary to secure enough data and variability for the following deep 

learning part. Lastly, to avoid potential environmental influences, all 

data acquisition sessions were conducted within the same day, to 

ensure some consistency in room conditions (temperature and 

humidity). 

C. Deep learning models  
The convolutional neural network (CNN) was used for the object 

recognition evaluation. Thus, similar analysis was performed in three 

data conditions, using respectively the data acquired from one, two 

and all the three radars (1RAD, 2RAD or 3RAD). Each model 

consisted of three convolutional input blocks and five linear output 

layers. Then, depending on the data condition, the CNN included one, 

two or three parallel input branches. Each branch consisted of three 

convolutional blocks including four layers each (convolution 3x3 

kernel + max-pooling + batch-normalization + leaky-ReLU 

activation). The linear output layers consisted of five layers including 

 
Objects Permittivity coefficients 

01 Glass empty 3.7-10 

02 Aluminium 3.5-5.5 

03 Plate (ceramic) 4.5-7 

04 Eraser (polyethylene) 2.25 

05 Book 1.4 

06 Power bank 3.5-5.5 

07 CD 2.5 

08 Water bottle (aluminium) 3.5-5.5 

09 Cup (ceramic) 4.5-7 

10 Scissors (steel) 2-7 

11 Jar (glass) 3.7-10 

12 Marker (plastic) 4 

13 Wood 2.25 

14 Tile 3 

15 Keyboard (plastic) 4 

16 Air (No object condition) 1 

17 Phone case (plastic) 4 

18 Bowl (ceramic) 4.5-7 

19 Coffee cup (ceramic) 4.5-7 

20 Human Hand (body 

tissue) 

8 

 

Figure 1: Representative images of the experimental setup, acquired data and processing. (A) Custom 3D printed platform with the three radars 

accommodated in the middle level. (B) Representative visualization of a single sweep intensity (absolute value of each range point) recorded from 

the twenty target objects. (C) Representative images of the water bottle data prepared for the CNN. (D) Twenty target objects evaluated in this 

study. 

 
Table 1: The table shows the 19 daily objects and the natural hand 

listed with their permittivity constants. 
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batch-normalization and leaky-ReLU activation function. For 2RAD 

and 3RAD data conditions, the outputs of the last convolutional 

blocks were concatenated before passing through the linear output 

layers. The CNNs were implemented with TensorFlow framework, 

trained and tested via GPU (T4, Nvidia, USA) via the Adam 

stochastic optimizer for 200 epochs using a batch size of 8. The 

models’ architectures and hyperparameters were found via 

preliminary testing. Before being fed to the models, the radar readings 

were pre-processed. Specifically, data was divided in frames of 5 

sweeps, then FFT was applied to each frame along the temporal axis 

(i.e., doppler maps) and lastly, images were created from both real and 

imaginary parts of the data (Fig. 1 C). Recognition performances were 

evaluated with both offline and online tests. We evaluated the offline 

recognition performance of the proposed radar-based system by using 

a session-based cross-validation. Thus, three sessions of data were 

used for training and the last session for testing. This leave-one 

session-out process was then repeated for all the combinations of 

sessions and data conditions (1RAD vs 2RAD vs 3RAD). The most 

performing CNNs for each data conditions and for each session-based 

iteration were then exported and used for online evaluation on newly 

collected, unseen data.  For the online tests, a custom Matlab-based 

PC application was developed enabling real-time data acquisition and 

consequent evaluation of the pre-trained exported CNNs. New data 

was collected for each object for 10 seconds, and the online-predicted 

labels issued every 5 sweeps were stored to file for accuracy 

calculations every ~0.3s. Additionally, we performed a power 

analysis to explore effects of training set size, repeating the offline 

analysis using only one or two training sessions. 

III. RESULTS 

A. Offline object recognition 
The proposed system, using all the dataset, shown an average 

accuracy of 90.9% across the 4 testing sessions in the first case 

scenario (1RAD), which increased up to 91.1% of average accuracy 

for the 2RAD condition and finally reached 94% of average accuracy 

if the readings of all three radars are processed (3RAD). The system 

showed a considerable decrease in the median accuracy when the 

training set was reduced to only one or two sessions (Fig 2). Indeed, 

when using a single training session, the offline accuracies were 63%, 

67% and 68.5%, respectively in 1RAD, 2RAD and 3RAD conditions, 

which then increased to 79%, 81% and 86% when using two training 

sessions.

 
Figure 2: Offline test accuracies (median:iqr) for the three different 

scenarios (1RAD,2RAD,3RAD), using different training sets.  

B. Online object recognition 

The most performing CNNs, which they achieved respectively 

91.9%, 94.2% and 96.7% testing accuracy during offline evaluation 

for 1RAD, 2RAD and 3RAD condition, were exported for online test. 

The labels predicted using these models during the real time test-

session for each object were used to calculate the accuracy of the 

system for online classifications. Online object recognition accuracies 

in the three data conditions reached respectively 66.0%, 70.0% and 

89.2%. Results confirmed the feasibility of the radar-based object 

recognition, however three radars appeared to be necessary to keep 

consistency between offline and online accuracy.  Indeed, accuracy 

dropped considerably for 1RAD and 2RAD data conditions. Most of 

the misclassifications (>85%) regarded the eraser vs no object vs the 

marker (Fig. 3), pointing to a potential limitation of the system to 

differentiate low density materials. Interestingly, the system showed 

little difficulties in recognizing the human hand (83.3% of right 

classification, F1-scores: 0.91), opening to promising applications 

with organic material.  

IV. DISCUSSION AND CONCLUSION 

In this study, we explored the potential of using low-power radars 

for object and material recognition. Here, twenty different targets 

were explored, including objects from daily environment as well as 

the human hand. The proposed system proved promising recognition 

of all objects and for all data conditions, clearly showing the 

feasibility to differentiate also objects made of the same material (e.g., 

small aluminium parallelepiped vs water bottle). Arguably, the 

overall lower online accuracy can be attributed to the limited amount 

of training data, and to the real-time data normalisation which was 

entirely based on the training data sessions.  A more extensive data 

collection, combined with a real-time calibration session could 

resolve or reduce this accuracy mismatch. Similarly, more training 

data could also resolve the destructive performance drop seen in 

online object recognition with a single radar.  The power analysis also 

generally suggests a larger training set for a more reliable 

classification, for all the case scenarios. Nevertheless, the offline 

recognition results from the ablation study seem to point towards the 

feasibility of using even a single radar for such task. However, more 

testing are imperative to shine some light on the contradictory online 

results for the single radar condition. The data from such simple radars 

appeared highly sensitive to different materials as well as to their 

distribution and density in space. Indeed, it was possible to 

differentiate different objects despite them being made of the same 

material (e.g., small aluminium parallelepiped vs the water bottle). 

Remarkably, for the first time it was shown a correct differentiation 

between human tissue and inanimate objects. Interestingly, the human 

Figure 3: Confusion matrix for the online object recognition test using 

data from the three radars. 
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hand was correctly classified in 100% and 83% of the cases for offline 

and online testing, respectively. This result paves the way for an easy-

to-integrate solution with wide potential benefit in human-robot 

interactions, particularly for those context where human safety is a 

major concern such as industrial automation and assistive robotics.  

Our results found close match with the ones presented by Yeo et 

Al. [10]. Our set of target objects was heavily inspired by this prior 

study and a strong coherence was found for the correct recognition of 

most of the shared targets (i.e., air, aluminum, glass, plate, keyboard, 

wood, book, phone case and CD). Arguably, results can be considered 

comparable even though our study was based on a radar sensor much 

simpler than the prototype developed by Google ATAP. Indeed, the 

A121 radar used here presents several advantages such as it is 

commercially available, highly customizable, low-power and with 

single transmitting and receiving antennas. These advantages can 

provide an easier yet robust starting point for researchers and 

developers aiming to explore radars for novel human-machine 

interfaces. Several study limitations can be discussed. At first, the set 

of target objects was limited and cannot possibly represent the vast 

variety of objects that can be encountered during daily life activities. 

Our intention was merely to provide further evidence of the 

underlying potential of using simple low-power radar sensors for 

object differentiation, rather than making any statement on the 

absolute recognition capability of every single object. Secondly, upon 

closer data examination some dependence was found between the 

radars measurements and the environmental conditions (room 

humidity and temperature). While most of this dependence can be 

easily explained by the different water concentration in the air, it 

could be considered as another possible reason for the lower online 

recognition performances. However, future investigations are needed 

to formalize such dependence and thus elaborate mitigation strategies 

to overcome this limitation, for example adding an initial calibration  

session to increase the generalisation capability of the system. Thirdly, 

the machine learning part was not thoroughly explored here. The 

decision of images processing and CNNs was directly inherited from 

the positive results of our recent study [15], thus only a limited 

network optimisation was considered here. There are certainly many 

aspects that should be further investigated, e.g. exploring classical 

machine learning algorithms and manual features extraction, as well 

as improving models performance via explainable AI methods. Lastly, 

even though the presented results responded validly to the underlying 

technological challenge of integrating such radar-based solution in a 

wearable device (i.e., a prosthetic hand), aspects related to low-power 

optimizations of hardware and software and their embedded 

validation were not included here. These goals remain of interest for 

our group and will be explored in future work. We believe the 

presented results provide interesting insights for the advancement of 

human-robot interfaces and robots automation. The compact size and 

low power requirements of modern radars sensors make them friendly 

to integration into wearable systems. Moreover, the nature of the data 

processed ensures compliance with regulations concerning privacy 

towards third parties in possible everyday applications. Despite the 

experimental and preliminary nature of this study, it represents a 

necessary building block of the technological advancement towards 

more intelligent assistive technology such as prosthetic hands, the 

ultimate focus of our research group. 
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