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A unified dataset for pre-processed 
climate indicators weighted by 
gridded economic activity
Marco Gortan1, Lorenzo Testa2,3, Giorgio Fagiolo3 ✉ & Francesco Lamperti3,4 ✉

Although high-resolution gridded climate variables are provided by multiple sources, the need for 
country and region-specific climate data weighted by indicators of economic activity is becoming 
increasingly common in environmental and economic research. We process available information 
from different climate data sources to provide spatially aggregated data with global coverage for both 
countries (GADM0 resolution) and regions (GADM1 resolution) and for a variety of climate indicators 
(total precipitations, average temperatures, average SPEI). We weigh gridded climate data by 
population density, night-time light intensity, cropland, and concurrent population count – all proxies 
of economic activity – before aggregation. Climate variables are measured daily, monthly, and annually, 
covering (depending on the data source) a time window from 1900 (at the earliest) to 2023. We pipeline 
all the preprocessing procedures in a unified framework, and we validate our data through a systematic 
comparison with those employed in leading climate impact studies.

Background & Summary
Climate change and weather events have been shown to adversely affect a wide spectrum of natural and 
socio-economic activities1,2. A blossoming body of literature reports evidence of significant and non-linear 
impacts on agricultural3 and economic production4–6, conflict7, income inequality8, mortality9, energy con-
sumption10, and the list is far from being conclusive. Most of these studies test the presence of a significant 
statistical association between climate variables and socio-economic indicators, adopting either cross-section 
or panel-data approaches11,12.

One common challenge is that weather data are typically available at a much finer spatiotemporal resolution 
than socio-economic variables. While indicators such as industrial production, GDP, employment, and fatalities 
are typically collected annually – at region or country breakdowns – temperatures, precipitations, and other 
weather variables are instead available at gridded levels and hourly or daily frequency. Hence, the common 
approach requires weather-related variables to be aggregated to match lower temporal frequencies and the geo-
graphical boundaries of administrative units.

This process is not straightforward and often requires the use of weights proxying the geographical distribu-
tion of economic activities. Indeed, when studying the impact of climatic conditions and weather events on the 
economy, it is crucial to account for the different exposure of socio-economic activities within an administrative 
region. For example, average temperatures in the Mojave Desert (California, US) during the summer may be con-
siderably higher than in Los Angeles (California, US), but the size of economic activities in the two locations is 
not even comparable. Indeed, one may easily argue that labor productivity in California is much more affected by 
temperatures in Los Angeles than in desert areas. Thus, a simple aggregation of climate data that does not account 
for the geography of socio-economic activities could introduce a bias in the evaluation of climate impacts, espe-
cially when the variability across administrative regions is central to the identification of the effect11,12. Further, 
when a weather-related phenomenon occurs at the regional level, in response to averaged weather, the weighting 
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scheme is crucial to reflect the relative overall importance of weather in different regions. For instance, weighting 
rainfall by the distance from coastline could help to predict the declaration of states of emergency11.

Spatially weighted data are increasingly employed in the literature exploring the impacts of climate change 
and weather events on socio-economic activities. For example, Burke et al.4, in a seminal study assessing the effect 
of global warming on the dynamics of economic production, employ population-weighted temperatures and 
precipitations to measure gradual climate change. Accordingly, a number of studies have been relying on Burke 
et al. dataset to explore the impact of climate on economic inequality and growth8,13,14. Furthermore, population 
weighting is not limited to the case of average temperatures and total precipitations, as it is increasingly employed 
for a variety of additional climate indicators, e.g., in the evaluation of heating and cooling degree days15.

However, replicating published studies using spatially weighted climate data is difficult, as the exact procedure 
employed to obtain weighted climate variables used for impact assessment is often unclear, under-discussed, or 
not reported at all in existing contributions. This poses a potential problem, as the way in which weighting is 
performed may depend on a number of different key factors and choices16. Among them, the sources of data 
used for the construction of weights, the adjustments employed to align gridded information to the borders of 
administrative regions, and the eventual use of a base year are all elements that can sensibly affect the construc-
tion of spatially weighted climate indicators. This also undermines exercises trying to employ existing datasets 
containing spatially-weighted climate variables (e.g., made available in online repositories as supplementary 
material of published papers) in further studies or analyses. Indeed, in the absence of clear guidelines and doc-
umentation, it becomes very hard to build homogenized datasets covering different sets of countries or regions 
and longer time series (i.e., more recent years).

Here, we argue that the lack of a harmonized, documented, cross-validated, and open-access source for cli-
mate variables that are spatially weighted by economic activity hinders a rigorous and robust estimation of the 
social and economic impacts of climate change. This may partly explain why unweighted climate indicators are 
still employed in several studies. For example, in their main model specifications, Kotz et al.6 construct a num-
ber of indicators proxying the yearly distribution of rainfall within national and subnational regions without 
accounting for the spatial distribution of economic activities and use such indicators to show the adverse impact 
of precipitation extremes on economic growth – they adopt a specification with population-weighted variables 
in their supplementary material. Furthermore, spatially unweighted climate data are also employed in the emer-
gent macro-econometric literature on climate impacts17–20.

In this paper, we try to close this gap by introducing a unified source of data that pipelines the preprocessing 
and weighting procedures of gridded climate data into a documented, intuitive, and open-access interface. The 
dataset allows researchers to get ready-to-use climate variables aggregated at national and sub-national levels, 
with global coverage over the period 1900–2023. Moreover, we provide a user-friendly dashboard to explore 
and download key climate variables under customizable weighting schemes, temporal frequency, timeframe, 
administrative level, and file format.

Our dataset is intended to support the climate impact assessment community, which is constantly enlarging 
and increasingly opening to scientists and researchers who aim to work with datasets compiled at the adminis-
trative level (e.g., economists and public policy scholars). Indeed, by offering a unified and harmonized access to 
a wealth of publicly available yet dispersed and unweighted climate and weather indicators, we aim to improve 
the replicability of impact assessment studies, increase the transparency of data management practices, and 
incentivize the community to test the robustness of estimates to the choice of data sources and aggregation 
strategies.

Methods
The logical steps behind the construction of our dataset are illustrated in Fig. 1. We combine different gridded 
climate variables from multiple open-access sources, gridded indicators of spatial socio-economic activity, and 
administrative boundaries at different levels of resolution. The main objective is to obtain climate data that are 
weighted by socio-economic indicators according to different strategies that are customizable by the user. To 
achieve this, our procedure follows three key steps:

•	 Selection: In the first step, we choose (i) a specific set of gridded climate variables of interest, (ii) the desired 
geographical resolution, and (iii) a gridded economic activity indicator for constructing the aggregation 
weights.

•	 Computation of weights: Next, we integrate the selected information to derive a gridded weighted version of 
each climate variable. This process ensures that the socio-economic indicators are appropriately considered 
in the analysis.

•	 Aggregation: Finally, we aggregate the gridded weighted observations across the regions defined by the cho-
sen geographical resolution. This step allows us to obtain a comprehensive view of climate data at the desired 
level of granularity.

An interactive interface enables users to explore the dataset, customize the aggregation process and the 
download format. They can modify parameters such as the base year for constructing weights, the frequency 
of climate data (i.e., daily, monthly, yearly), and the time span of interest. Additionally, users can access specific 
information in the dataset tailoring it to their end-use requirements.

Gridded variables and administrative boundaries. The core of the Weighted Climate Dataset rests on 
two groups of gridded variables: climate variables and indicators of economic activity. These variables, together 
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with administrative boundaries, serve as the fundamental components of our dataset. Table 1 shows all the 
sources of data we exploit in our work.

Climate data. We leverage raw gridded climate data from four sources that are routinely used in climate impact 
studies: Climate Research Unit Time-Series21 (CRU TS v4.07, available from 1901 until 2022), Consejo Superior 
de Investigaciones Científicas22 (CSIC v2.7, 1901–2020), ECMWF Reanalysis v523 (ERA5, 1940–2023), and 
University of Delaware24 (UDEL v5.01, 1900–2017). CRU TS, UDEL, and CSIC provide data at the grid resolu-
tion of 0.5° × 0.5°, while data from ERA5 feature a finer resolution (0.25° × 0.25°). Each source offers monthly 
records for two climate indicators, namely average temperatures (measured in Celsius degrees, C) and total 
precipitations (in millimeters, mm), with the exception of CSIC, which provides monthly records for a third 
climate variable, the Standardized Precipitation-Evapotranspiration Index25, also known as SPEI (unit free). In 
addition to monthly data, ERA5 also provides records at the temporal resolution of hours, which we aggregate 
to obtain daily values.

CRU TS employs raw data from an extensive network of weather stations, computes monthly climate anom-
alies, and interpolates them using angular-distance weighting21 (ADW). ADW is employed to account for the 
varying area represented by each grid cell on a spherical Earth, in particular by considering the cosine of the 
latitude of each grid cell. The cosine of the latitude serves as a measure of the change in grid cell area with respect 
to latitude. Cells near the equator have larger areas as compared to those near the poles, where cells are smaller.

CSIC leverages CRU TS data to provide the SPEI, a drought index that combines information from both 
precipitation and evapotranspiration to assess the severity and duration of drought conditions. It is a stand-
ardized version of the widely used Palmer Drought Severity Index (PDSI) that takes into account the effects of 
both precipitation and temperature on water availability. Given its multi-scalar nature, it is able to differentiate 

Fig. 1 The Weighted Climate Dataset workflow. Users can combine gridded climate variables, gridded indicators 
of economic activity, and administrative boundaries to achieve regional climate variables weighted by economic 
activity.

Source Reanalysis Variables Coverage period Frequency Resolution Version

CRU TS21 No Temperature, precipitation 1901–2022 Monthly 0.5° 4.07

CSIC22 No SPEI 1-month 1901–2020 Monthly 0.5° 2.7

ERA537 Yes Temperature, precipitation 1940–2023 Daily 0.25° 5

UDEL24 No Temperature, precipitation 1900–2017 Monthly 0.5° 5.01

GPW30 Population density 2000, 2005, 2010, 2015 Yearly 0.25° 4

Li et al.31 Night-time light intensity 2000, 2005, 2010, 2015 Yearly . �0 0083 7

HYDE32 Cropland 2000, 2005, 2010, 2015 Yearly 0 083�. 3.2

GPW30 Population count 2020 Yearly 0.25° 4

HYDE32 Population count 1900–2010 10 years �.0 083 3.2

GADM33 Administrative boundaries 4.1

Table 1. Summary of the main features of the employed data sources.

https://doi.org/10.1038/s41597-024-03304-1


4Scientific Data |          (2024) 11:533  | https://doi.org/10.1038/s41597-024-03304-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

among different types of drought; we currently propose the 1-month level of aggregation, focusing on changes 
in headwater levels.

ERA5 climate data set uses data from radiosondes, which are battery-powered telemetry instruments carried 
into the atmosphere by weather balloons to measure various atmospheric parameters, including temperature, 
wind, and humidity profiles. The information collected by radiosondes is transmitted back to the ground via  
radio signals and is assimilated by ERA5 along with other observations, such as satellite and surface-based meas-
urements, using numerical weather models, in order to provide a comprehensive picture of the Earth’s climate 
system23. It is the only reanalysis source, as it integrates climate models with past observations to provide (i) 
consistent values over time and (ii) more accurate estimates in the grids not covered by measurement stations.

Finally, UDEL provides gridded estimates mainly based on station records compiled from several pub-
licly available sources (e.g., Global Historical Climatology Network dataset26, Global Historical Climatology 
Network Monthly dataset27, the Daily Global Historical Climatology Network archive28). Interpolation is per-
formed with Shepard spatial-interpolation algorithm29, modified for use over Earth’s near-spherical surface.

Socio-economic data. We use gridded socio-economic data to gauge information on the spatial distribution 
of economic and human-based activities. In particular, three distinct indicators are used as weights for the 
spatial aggregation of climate data into administrative units. The first proxy is population density, available 
from Columbia University’s Gridded Population of the World v4 (GPWv4)30, measured at 0.25° and 0.5° spa-
tial resolutions. The climate econometrics literature has largely employed population density as an indicator 
of economic activity proxying local exposure to weather conditions4,11,12. Note that population density is 
measured with respect to the land area of each grid. Thus, in our aggregation strategy, we employ the product 
between the population density and the area of the associated grid to account for population size properly.

A second, alternative indicator of economic activity that we include in our dataset is night-time light data31. 
Records in night-time light data are the digital number (DN) values, a standard measure of the brightness of a 
pixel in a digital image ranging from 0 to 63. These data are originally available at a 30 arc-second spatial resolu-
tion (0 0083�. ). To match this finer resolution with the coarser resolutions of our gridded climate data, we com-
pute the mean of the values of the cells in the 0.25° and 0.5° grids. We aggregate by first taking the mean of 900 
(30 × 30) and 3600 (60 × 60) most upper-left cells in our coordinate system to produce a single grid at a resolu-
tion of, respectively, 0.25° and 0.5°. We then iterate this procedure with the adjacent blocks of cells to obtain all 
the gridded values of the night-time light data for the coarser resolution. We note that the harmonized 
VIIRS-DMSP tif file (especially for the year 2015) presented noise from auroras and other temporary effects 
(e.g., boat lights and fires) – see Fig. 2, left panel, where we show the aggregation for the year 2015. Therefore, as 
suggested by Li et al.31, we set to 0 the values in the grids whose DN values are less than 30 before aggregating. 
Figure 2, right panel, shows the result of this correction for the year 2015.

We also include a third proxy for economic activity in our dataset – cropland. Data on cropland are available 
from the History Database of the Global Environment (HYDE)32, version 3.2, and measure the area of the arable 
land and the permanent crops within each cell, in square kilometers. These data are recorded at a spatial resolu-
tion of 5 arc-minutes ( �0 083. ). To match the finer resolution of these grids with the coarser resolutions of our 
gridded climate data, we perform the same aggregation procedure as for the night-time light data. We notice that 
weighting climate variables by crop areas may be a relevant choice to reflect the impact of climate change in 
regions where crops are grown.

We allow weighting by population, night-time light, and cropland using the base years 2000, 2005, 2010, 
and 2015. Moreover, the dataset contains aggregated climate data which have not been weighted by any spa-
tial economic indicator, but only by the area of each grid cell. This option is referred to as unweighted. Finally, 
we provide a different weighting strategy that we refer to as concurrent, where we weigh climate variables 
using the population count measured at the beginning of the zero-to-nine decade of reference, to provide 
an integrated dynamic weight. For example, temperatures in 1907 are weighted using population data in 
1900. We exploit population count from HYDE32, version 3.2, for the decadal years from 1900 to 2010, and 

Fig. 2 Correction of auroras and other noise sources in the night-time light data for the year 2015. The left plot 
shows night-time light data before correction; the right plot shows the same data after correction, which consists 
of setting to 0 the values in the grids whose digital number values are less than 30.
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GPW, for the decadal year 2020, as HYDE (v3.2) population data are available until 2017. Note that HYDE 
adopts the United Nations World Populations Prospects (UN-WPP) as the basis for the post-1950 estimates. 
Therefore, we employ the UN WPP-Adjusted Population Count from GPW in order to make the two sources 
consistent.

Administrative boundaries. We employ two levels of geographical resolution from the Database of Global 
Administrative Areas33 (GADM). While the first level (GADM0) has a coarser resolution and replicates country 
boundaries, the second level (GADM1) is sub-national and consists of the largest administrative area included 
within national countries (e.g., states for the US, regions for Italy, etc.). In our work, we used GADM version 4.1 
released on July 16, 2022.

Weighting and aggregation strategy. Raw grid data require to be aggregated to match administrative 
areas, for which many other socio-economic indicators are usually available. The general weighting scheme is the 
following:
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where yi,t,w,T is the value of the climate variable y in the geographical unit i (at a specified GADM resolution) at 
time t weighted by proxy w measured in base year T ∈ {2000, 2005, 2010, 2015}; Ji is the set of grids intersecting 
the geographic unit i; fi, j is the fraction of grid j which intersects the geographic unit i; aj is the area of the grid j; 
xi, t is the raw grid climate variable. In all but the concurrent aggregation scheme, in line with the prevailing prac-
tice in the literature, the base year T is fixed ex-ante and does not vary with t4,12. Of course, for the unweighted 
aggregation, wj, t = 1 for any j and T. When applying the cropland and concurrent weights, we set aj = 1, since 
the two measures do not need any adjustments for the area of the grid. Finally, in the concurrent aggregation, 
we have T = h(t), where h is a function taking the year of the date t and returning its decade-floor. For example, 
h(1948) = 1940.

We notice that grid resolutions may vary across data sources. The NetCDF file retrievable from ERA5 is 
made up of a 721 × 1440 grid, with extremities (180.125°W, 179.875°E, 90.125°S, 90.125°N), and a 15 arc-minute 
spatial resolution. The gridded files of the weights feature instead a 720 × 1440 grid, with extremities (180°W, 
180°E, 90°S, 90°N). To make the weighting and climate variables of ERA5 consistent, we resampled the values 
of the weight grids with a simple bilinear interpolation. The logic behind such a procedure is sketched in Fig. 3, 
where the stylized grids of two sources are displayed. This procedure is applied whenever we weigh climate 
variables from ERA5 with population density, night-time light, cropland, and concurrent population count grid 
files.

Sources of both climate and socio-economic data sporadically present missing values. We deal with this issue 
conservatively: when we are not able to properly weigh the climate variables (for example because the weights 
are all 0, or because climate sources do not provide data for cells in a specific geographical unit), we do not 
impute values, and leave NAs instead.

As an example of the aggregation strategy, Fig. 4 shows three panels. The left and center panels display raw 
gridded data for night-time light intensity in 2015, and ERA5 average annual temperatures in 2015 for the con-
tiguous US, respectively. Night-time lights are chosen as the weighting variable in this example. Figure 4, right 
panel, displays the resulting aggregation at GADM1 resolution and illustrates the output that users can retrieve 
from our dataset.

+ + +

4

Fig. 3 Stylized illustration of the bilinear interpolation when the population density, night-time light, cropland, 
and concurrent population count grids are used to weigh ERA5 climate variables. The extent of the weighting grids 
slightly differs from the extent of the ERA5 climate variables grids, both in longitude and latitude, resulting in a 
difference of 0.125° in both directions, exactly half of the spatial resolution of the ERA5 data. Since our weighting 
procedure requires weighting and variable grids to overlap, we resample the weighting grids, filling the values with 
a simple average of the values of the intersecting grids.
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Data records
Data are available at Figshare34. The repository contains datasets relating to 216 different combinations of geo-
graphical resolution (GADM0, GADM1), climate variable (temperature, precipitation, SPEI), climate data source 
(CRU TS, UDEL, ERA5, CSIC), weighting variable (unweighted, population density, night-time light, cropland, 
concurrent population), time resolution (daily, monthly), and weighting base year (2000, 2005, 2010, 2015). 
Each combination is stored in a separate file at Figshare34, saved in csv format. These are organized in a folder 
with two layers, where the first corresponds to a choice of geographical resolutions, and the second discriminates 
among the climate variables. Each dataset is organized in wide format, where the first column refers to the month 
(or the day), and the remaining columns, which are identified by the GADM code of the geographical units, 
contain the values of the weighted climate variable.

Technical Validation
In this section, we validate our dataset against those employed in two influential climate econometric exercises: 
Kotz et al.6 and Burke at al.4. We evaluate the agreement between our weighting procedures and those obtained 
by these two studies, with the aim of supporting the reliability and effectiveness of our approach.

In order to conduct a proper validation exercise, we first align our data sources with the exact versions 
employed by the two targeted studies, which of course have been employing older versions for both climate and 
economic activity datasets. This allows us to validate the accuracy and robustness of our data processing pipe-
lines and methods, and to ensure a fair and reliable assessment of the quality and consistency of our estimates.

More precisely, Burke et al.4 exploit UDEL v3.01 for precipitation and temperature data, and v3 of the GPW 
0.50° gridded population data in 2000. Population is used as the weighting variable and, although the authors 
do not specify the source and version of the national administrative boundaries they use, their shape files are 
publicly available. Conversely, in their main specification, Kotz et al.6 use 0.25° gridded ERA5 precipitation and 
temperature data, do not weigh climate data with any indicator of economic activity, and employ GADM1 v3.6 
for the spatial aggregation.

Results of our comparative analysis are reported in Fig. 5. The figure includes four scatterplots, each repre-
senting the relationship between our estimates and those used in the original studies for both temperature and 
rainfall (SPEI is not used in either of the two mentioned works). Intuitively, points aligning on the main diagonal 
of the scatterplots indicate agreement and reflect the similarity between the estimates.

It is important to note that the data shown in Fig. 5 encompass all the years analyzed in the original studies. 
Notably, a substantial majority of our estimates exhibit a high degree of correspondence with the weighted and/
or aggregated data employed by previous authors. This indicates a strong level of agreement between our results 
and those of previous studies, corroborating the quality and reliability of the methods employed to build our 
dataset. However, there also emerge some minor discrepancies that are worth pointing out. In particular, the 
first panel on the left highlights two main sources of disagreement between the estimates of Burke et al. and 
ours. The first one, on the bottom left (where both temperatures are negative), regards Greenland. In this case, 
the estimates of Burke et al. are higher than ours. The second one, where the estimates of Burke et al. are instead 
slightly smaller than ours, concerns Bhutan. These discrepancies are mainly due to the weighting scheme, 
and in particular to the fact that population density is highly concentrated in a few regions of Greenland and 
Bhutan.

Similarly, Fig. 6 shows the same information presented in Fig. 5 in a different way. In particular, each 
histogram represents the distribution of the difference between our estimates and those of the other authors. 
Clearly, the histograms peak at 0, suggesting that our estimates are very similar to those performed by other 
studies.

Usage Notes
In addition to the repository data, we have also made these data available in the Weighted Climate Dataset dash-
board, which can be accessed at https://weightedclimatedata.streamlit.app.

Fig. 4 Example of climate data weighting for the US. The left panel shows raw gridded night-light data in 2015. 
The middle panel displays raw gridded temperature data in 2015. Finally, the right panel shows, for the year 
2015, temperatures aggregated at the GADM1 administrative level weighted by night-lights in 2015.
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Code availability
Python code running the Weighted Climate Dataset dashboard and scripts for aggregating data are available at https://
github.com/CoMoS-SA/climaterepo. The Weighted Climate Dataset leverages Streamlit. We employed R35  
to process the data, exploiting package exactextractr36 for the weighted aggregations.
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