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Abstract—The accomplishment of a successful teleoperation
task requires guaranteeing system stability and transparency.
Communication delay (in particular variable time delay), quan-
tization and discretization negatively affect system stability and
might be overcome with Time Domain Passivity Approach
(TDPA), a model-free and robust way to cope with energy
injection due to communication delay. However, this method de-
grades the transparency of the teleoperation system and wors-
ens tracking performance, introducing in particular position
drift error at the slave side and high frequency vibration (jit-
tering) at the master side. In this work, we propose a new joint
passivity controller formulation for kinematically redundant
manipulators. Our approach stabilizes the system guaranteeing
minimal performance loss by privileging the dissipation of the
observed energy in the Jacobian null-space. The residual energy
(if any) is dissipated in an orthogonal subspace. This is achieved
by the solution of an optimization problem with appropriately
dened cost functions and constrained to dissipate the energy
observed by the passivity observer, guaranteeing the stability
of the system. The effectiveness of our algorithm is tested in
simulation with both constant and variable time delays.

I. INTRODUCTION

A teleoperation system allows the user to control a robot
interacting with a remote environment. In general, it is
composed of a master (a haptic device driven by the user)
and a slave (a robotic device that interacts with the remote
environment) connected through a communication channel,
which allows the information exchange. The choice of the
architecture determines the physical information that must
be transmitted over the communication channel [1], [2].

During a teleoperation task, precise master position track-
ing by the slave and clear force feedback signal increase
dexterity and intuitiveness, and they constitute a benchmark
for the architecture transparency. Stability and transparency
are the most important requirements of a teleoperation sys-
tem; they are concurrent features and stability should be
preferred for safety reasons. However, stability is deterio-
rated by phenomena like quantization, sampling, and time
delay. In particular, the last one is the main source of
instability as it makes the communication channel exhibit
an active behaviour. Different methods have been developed
to ensure stability [3], [4], [5]. Among these, the Time
Domain Passivity Approach (TDPA) guarantees the stability
passivating the system in the time domain [6], [7], [8], by
identifying the elements of the architecture that exhibit an
active behaviour and dissipating energy through a virtual
time-dependent damper. Originally developed for 1-degree
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of freedom (1-DoF) systems, the TDPA was extended to n-
degrees of freedom (n-DoFs) systems with formulations in
the Cartesian space [9], [10], [11], [12], but there is an almost
total absence of joint space formulations. Moreover, most
works focus on architectures in which master and slave are
kinematically symmetrical, greatly limiting development.

The TDPA guarantees stability (even in presence of vari-
able time delay [13]) at the cost of position drift error at the
slave side [14] and rendered force high frequency vibrations
(jittering) at the master side [15], thus leading to a degrada-
tion of transparency. Minimizing the drift error and providing
the user with clean force feedback is fundamental in complex
and critical tasks such as in disaster response ones [16]. On
the slave side, many drift compensation methods have been
proposed through the years [14], [17], [18], but they only
work while the system is passive making the drift recovery
slow and inefcient especially for high dissipated energies.
This is a still open problem that degrades the performance of
any passivated teleoperation architecture. On the master side,
few works were proposed to minimize the high-frequency
vibrations that occur as an effect of the stabilizing action.
Among them, Ryu et al. proposed in [13] a virtual mass and
spring (VMS) system on the master side acting as a kind
of low-pass lter, but this method suffers from references
distortion (even greater in presence of variable time delay)
and requires a set-up dependent tuning of the parameters.
In [15], a novel approach named Observer-Based Gradient
Controller was proposed to address this problem, but even
if the vibrations decrease signicantly, a perfect delity of
the force to render is not guaranteed. Both drift error on the
slave side and force jittering on the master side are caused by
the stabilizing action of the PC exploited on the task space.

For a redundant manipulator, an efcient dissipation strat-
egy may involve the null-space (or self-motion space), since
movements performed in this space do not affect the task
space. In [19], it was proposed the idea of subspace ori-
ented dissipation: it consists in privileging the dissipation
in the Jacobian null-space, thus the task space is less af-
fected (up to none) by the stabilizing action. This work
has paved the way for interesting applications (for example
in aerospace robotics [20]). However, this case of study
is limited to impedance-based devices and the presented
damping elements are assumed to be limited on the base
of the sampling time. Moreover, this limit does not take
into account the manipulator conguration, while power-
limited actuators require an on-line solution of a quadratic
programming (QP) problem in order to not exceed power
limitations. Furthermore, this algorithm was not tested on
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Fig. 1: Network representation of a Position-Force (PF) architecture with Passivity Observers and Passivity Controllers.

a complete (master/slave couple) teleoperation architecture
and no actual comparison with the classic TDPA approach
was provided.

In this paper, it is presented a new joint passivity controller
formulation for kinematically redundant both impedance-
based and admittance-based robot manipulators. The con-
troller guarantees to optimally stabilize the system with a
dissipation strategy performed directly at the joint space
level. The controller aims to divide the joint space in
the Jacobian null-space and its orthogonal and ensures to
prioritize the dissipation in the Jacobian null-space in order
to not affect the task space level, thus improving for instance
the architecture transparency. This approach greatly relieves
both injected-energy-based drift compensation methods and
rendered force enhancing methods. References on the com-
munication channel are still transmitted in the Cartesian
task space, thus no changes are required for the energy
observer since energy is a scalar invariant quantity. This
also means that no kinematic symmetry between master and
slave is required. Moreover, the joint space proposed solution
allows to limit the damping elements relating them with the
actuators power limits and the manipulator conguration and
it can be formulated in a closed-form solution which does
not require on-line computations. The proposed approach is
supported by a numerical simulation conducted in presence
of both constant and variable time delay for a complete
Position-Force (PF) teleoperation architecture.

The paper is organized as follows. Section II gives a sum-
mary of the TDPA method. Section III describes in depth our
new passivity controller and proves the effectiveness of the
method against the classic TDPA passivity controller. Then,
section IV describes the simulation implemented to validate
our proposed approach and shows the results. Finally, in
Section V we discuss the results and conclude the paper.

II. TIME DOMAIN PASSIVITY APPROACH

The TDPA guarantees stability by passivating the elements
of the architecture which exhibit an active behaviour. To
identify these elements the system is represented as 2-port
network blocks interconnected. This makes possible to mon-
itor the energy owing through the blocks using Passivity
Observers (PO) and dissipating it using Passivity Controllers
(PC). We assumed the presence of a forward time delay
(Tf ) and a backward time delay (Tb) in the communication
channel. The communication network is represented as two
undelayed dependent sources and two Time Domain Power

Networks (TDPNs) which incorporate the delays and carry
the energy of the undelayed dependent sources. Referring to
gure 1, we dene vm as the master velocity vector and fs
as the slave commanded force vectors the PO for the slave
takes the following form:




wS(k) =
1
∆T

[EM
in (k−Tf )−ES

out(k)+ES
PC(k−1)]

EM
in (k) = ∆T

k

∑
i=0

fTs (i−Tb)vm(i), if fTs (i−Tb)vm(i)> 0

ES
out(k) = ∆T

k

∑
i=0

−fTs (i)vm(i−Tf ), if fTs (i)vm(i−Tf )< 0

(1)
where ES

PC(k−1) is the energy dissipated by the slave PC
and ∆T is the sample time. The slave is stable if wS(k) ≥
0 ∀ k ≥ 0. The PC for the slave takes the following form:

vsd(k) = v̂sd(k)+β (k)fs(k)⇒ ES
PC(k−1) = fsT (k)β (k)fs(k)

(2)
where v̂sd(k) is the non-passivated velocity reference and

β (k) is the virtual damper matrix. Similarly, dening fe
as the interaction force vector between the slave and the
environment provided by a sensor, the PO for the master
takes the following form:




wM(k) =
1
∆T

[ES
in(k−Tb)−EM

out(k)+EM
PC(k−1)]

ES
in(k) = ∆T

k

∑
i=0

fTe (i)vm(i−Tf ), if fTe (i)vm(i−Tf )> 0

EM
out(k) = ∆T

k

∑
i=0

−fTe (i−Tb)vm(i), if fTe (i−Tb)vm(i)< 0

(3)
where EM

PC(k− 1) is the energy dissipated by the master
PC. The master is stable if wM(k)≥ 0 ∀ k ≥ 0. The PC for
the master takes the following form:

fmd(k)= f̂md(k)+α(k)vm(k)⇒EM
PC(k−1)= vTm(k)α(k)vm(k)

(4)
where f̂md(k) = fe(k − Tb) is the non-passivated force

reference and α(k) is the virtual damper matrix. It should
be noticed that Xu et al. [11] pointed out the differences in
the calculation of the damping matrices in the literature: a
damping matrix can be implemented as a diagonal matrix
whose elements are a damping factor computed indepen-
dently for each Cartesian axis, as a diagonal matrix whose
elements are a damping factor equal for each Cartesian axis,
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Fig. 2: Position-Force teleoperation architecture in the mixed
Cartesian-joint domain. The master transmits the Cartesian
velocity as reference, while likewise the slave transmits the
force. Both these quantities are used to compute the energies
by the POs in the Cartesian domain. The PCs are responsible
for reporting the Cartesian reference in the joint space and
for applying the dissipating action directly at joint level.

or as a damping factor that multiplies the inertia matrix of
the manipulator transposed in Cartesian coordinates. All the
damping factors are computed on the base of the energy
observed.

III. TIME DOMAIN PASSIVITY APPROACH WITH
KINEMATIC REDUNDANCY

In this section, it is presented a new joint passivity
controller formulation that exploits the kinematic redundancy
of a robotic manipulator to optimally stabilize the system
and minimizes the dissipation effect in the task space. For
a multi-DoFs system, a strategy to distribute the energy ob-
served by a PO among the degrees of freedom is required. A
valid approach consists in projecting the dissipation action in
the Jacobian null-space, resulting in a task space untouched
by the dissipating action. Such a strategy is intuitively easy
to be implemented directly in the joint space. However,
there are no such joints formulations in the state-of-the-
art. This may be due to the fact that a joint formulation
may be supposed to require that data transmitted over the
communication channel are joint space variables. It is easily
understood that this way of transmitting data requires a
new denition of the POs among with a full kinematic
symmetry between the master and slave, greatly limiting the
applicability of a joint passivation strategy. However, it is
possible to implement a mixed-spaces architecture in which
the transmitted data belong to the Cartesian space (see gure
2 for a generic PF architecture). This makes possible not to
change the PO denition (in fact, energy is an invariant scalar
quantity) and does not require kinematic symmetry between
master and slave. In such an architecture the PC will perform
the dissipation action at joint level.

Consider a slave (s subscript) and a master (m subscript)
redundant robot manipulators with ns, nm degrees of freedom
in an m-dimensional work-space (thus the redundancy is
given by rs = ns−m and rm = nm−m). The redundant joint
formulation of the PC (rPC) can be derived by analogy with
the Cartesian one (cPC): at joint level, the passivated velocity
(or passivated force) must equal the non-passivated velocity
(or non-passivated force) plus a dissipation vector.

q̇sd(k) = ˆ̇qsd(k)+ds(k)
τττmd(k) = τ̂ττmd(k)+dm(k)

(5)

where ˆ̇qsd(k) = J+s v̂sd (with Js ∈ Rm×ns and J+s =
JTs (JsJ

T
s )

−1 right pseudo-inverse of the slave Jacobian ma-
trix) and τ̂ττmd(k) = JTm f̂md (with Jm ∈ Rm×nm is the master
Jacobian matrix). The POs compute the scalar power ws(k)
and wm(k) that the controllers must dissipate to guarantee
stability. To lighten the notation, the time k dependence will
be omitted from now on.

A. Admittance-based Formulation

The problem is dened and solved using the optimum
Lagrange method. To guarantee stability, the rPC must be
constrained to dissipate the observed energy ws into the
Jacobian null-space. The imposed constraint is scalar, this
means that we need a cost function to nd the remaining
ns − 1 components of the dissipation vector. The best cost
function to reduce the load on the actuators is a function
that minimizes the norm of the dissipation vector:




q̇sd = ˆ̇qsd +Psd1
ds

τττTs Psd1+ws = 0→ constraint

g(d1) =
1
2
dT1 d1 → cost function⇒ argmin

d1
g(d1)

(6)
where Ps = I− J+s Js ∈ Rns×ns is the slave’s Jacobian null-

space projector and I ∈Rns×ns is the identity matrix. For this
problem, the solution is the following:

ds = αsPsτττs with αs =
−ws

τττTs Psτττs
(7)

where αs is the damping element of the controller. It is
straightforward to verify that the solution always veries the
constraint on the power (τττTs Psds = ws).

1) Power-limited Actuators: Equation 7 attempts to dissi-
pate the overall observed power in the Jacobian null-space.
This is possible in case of unlimited dissipating capability.
However, the dissipating capability of a robot depends rea-
sonably on the actual conguration and on the power limits
of its actuators, preventing from dissipating all the power
in the Jacobian null-space. In fact, consider without losing
generality ns = 2 and m= 1 (thus rs = 1). Referring to gure
3, consider three example linear constraints, each associated
to an observed energy wi, so that the following holds:

σi : τττTs Psds−wis = 0 with i= 1,2,3
w1s < w2s < w3s

(8)

According to the manipulator joint limits, it is possible
to dene a maximum joint speed vector q̇MAXs . Thus, in a
certain conguration the maximum speed performable in the
Jacobian null-space is Psq̇MAXs . Since the joint dissipation
vector ds is a joint speed, it must remain in the circumference
limited by Psq̇MAXs . The constraint is veried if the
Jacobian null-space projected torque, scaled by the damping
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Fig. 3: Joint space representation for an admittance-based
manipulator with ns = 2, m= 1 and rs = 1. A certain power
can be dissipated in the Jacobian null-space according to the
maximum displayable joint speed in such a space.

element, intercepts the constraint line inside the radius of the
circumference. In the example, this is possible for powers
ws1 and ws2 (at limit), but power ws3 would require not
dispensable joint speed. Thus, the following two points must
be addressed:

• It is necessary to dissipate the remaining power (if any)
in another subspace to guarantee stability.

• The damping element must be constrained taking into
account the power-limited actuators.

2) Null-space Orthogonal Dissipation: The Jacobian null-
space denes a privileged dissipation direction (or subspace).
However, if (and only if) the privileged dissipating action
exceeds the power limits it is necessary to dene a sec-
ondary dissipating action that dissipates the residual energy
guaranteeing stability dening a dissipation priority logic.
When required, the secondary action should not introduce
disturbance components in the privileged direction, otherwise
this will result in altering the optimality or the feasibility
of the solution. For example, consider a generic R2 space
in which the dissipation takes place (see gure 4) with a
privileged dissipation direction d̂p and its orthogonal d̂o.
Moreover, we dene a vector v (versor v̂) so that vTd =
w. Assume that the power to be dissipated requires the
privileged dissipation to reach its maximum dpM . Consider
two possible dissipations: d1 = dpM +dr1 (with dr1 ⊥ d̂o) and
d2 = dpM +dr2 ) (with dr2 ̸⊥ d̂o). Thus, the following holds:

d1 = dpM +dr1 ⇒ vTd1 = [vTdpM ]  
wp

+[vTdr1 ]  
wo

d2 = dpM +dr2 = dpM +(dro2 +drp2)
⇒ vTd2 = [vT (dpM +drp2)]  

wp

+[vTdro2 ]  
wo

(9)

where wp is the power dissipated in the privileged di-
rection, while wo is the power dissipated in its orthogonal.
Thanks to the orthogonality of the subspaces, the overall
dissipated power is the sum of the two terms. The priority
dissipation algorithm produces dpM as rst vector, then, if
dr2 is summed, its component in the preferred direction
(drp2 ) leads to a dissipated power in the privileged subspace
higher (gure 4a) or lower (gure 4b) with respect the

(a) (b)

Fig. 4: Graphical representation of the dissipation space. (a-
b) represent different cases in which the residual dissipation
vector (dr2 ) is not orthogonal with respect the privileged
dissipation direction (d̂p). In both gures, the represented
case is compared with a residual dissipation vector (dr1 )
orthogonal to d̂p. Different components of vectors in the
three cases dissipate the same power.

one that the manipulator is able to display. In the rst
case the solution leads potentially to instability, while in
the other case the capabilities of the manipulator are not
fully exploited. In conclusion, in a priority dissipation logic,
the best direction (or subspace) to dissipate the residual
power is orthogonal to the privileged direction. In this way,
if the privileged dissipation reaches its limit, the residual
dissipation performs its action without compromising the rst
one. These considerations hold regardless of the space in
which the dissipation is performed, whether it is Cartesian
or at the joint space and it was not taken into account by
other methods presented in literature.

3) Complete Admittance-based Formulation: The dissi-
pating vector can be thought as the sum of two terms, one
(privileged) in the Jacobian null-space (N) and the remaining
(or residual) energy in the Jacobian null-space orthogonal
subspace (O). Each of these is characterized by its damping
element. Since the formulation is expressed at the joint level,
each damping element will be limited linking the dissipation
vector to the manipulator joint power limits in each subspace.
The priority dissipation strategy and the orthogonality make
possible to design the two components of the damping vector
separately. Moreover, it is straightforward that the overall
dissipated energy is given by the sum of the dissipated
energies by the two individual components of the dissipating
vector. Thus, the admittance formulation of the rTDPA PC
can be formulated as follows:

q̇sd = ˆ̇qsd +ds with ds = Psd1s  
dNs

+(I−Ps)d2s  
dOs

(10)

The Jacobian null-space component dNs is obtained as:




τττTs Psd1s +ws = 0

g(d1s) =
1
2
dT1sd1s ⇒ argmin

d1s
g(d1s)

⇒ dNs = αNsPsτττs

with αNs =





−ws

τττTs Psτττs
i f


ws < 0
τττTs Psτττs > 0

0 otherwise
(11)
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where αNs is the damping element of the controller in the
N subspace and τττs is the commanded slave torque. Since dNs

is a joint space velocity performed in the N subspace, the
damping element can be limited on the base of the maximum
displayable velocity in the N subspace in a certain moment:

dNs  ≤ Psq̇MAXs  ⇒ ᾱNs =


q̇TMAXsPsq̇MAXs

τττTs Psτττs
(12)

where q̇MAXs is the maximum joint speed vector and ¯αNs is
the N subspace maximum damping. The energy dissipated by
this vector (up to its limit) is wNs =αNsτττTs Psτττs. If wNs < ws
the residual power will be dissipated in the O subspace. Thus,
the Jacobian null-space orthogonal component dOs can be
obtained as follows:




τττTs (I−Ps)d2s +(ws+ ᾱNsτττTs Psτττs) = 0

g(d2s) =
1
2
dT2sd2s ⇒ argmin

d2s
g(d2s)

⇒ dOs = αOs(I−Ps)τττs

with αOs =





−(ws+ ᾱNsτττTs Psτττs)
τττTs (I−Ps)τττs

i f


(ws+ ᾱNsτττTs Psτττs)< 0
τττTs (I−Ps)τττs > 0

0 otherwise
(13)

where αOs is the damping element of the controller in the
O subspace. As in the previous case, the damping element
can be limited on the base of the maximum displayable
velocity in the O subspace in a certain moment:

dOs  ≤ (I−Ps)q̇MAXs  ⇒ ᾱOs =


q̇TMAXs(I−Ps)q̇MAXs

τττTs (I−Ps)τττs
(14)

where ᾱOs is the maximum O subspace damping. The
energy dissipated by this vector (up to its limit) is wOs =
αOsτττTs (I−Ps)τττs.

B. Impedance-based Formulation

The impedance-based formulation is completely symmet-
rical to the admittance-based one substituting torques with
joint velocities and vice versa. The privileged subspace is a
joint subspace so that the torques produced in this subspace
do not result in forces in the Cartesian space. It is well known
that f = Qτττ , where Q = (JB−1JT )−1JB−1 is the transpose
Jacobian pseudo-inverse matrix weighted for the robot inertia
matrix B [21]. Thus, the projector in the privileged subspace
is then dened as follows:

Pm = I− JTm(JmB
−1
m JTm)

−1JmB−1
m (15)

where I ∈Rnm×nm is the identity matrix. Note that, contrary
to the admittance-based case, the projector is idempotent,
but not symmetric. Thus, the orthogonal is dened as O :
Imm(I−Pm)T.

C. Final Remarks and Limitations

The concept of privileged dissipation in null space, origi-
nally proposed in [19], has been reformulated in the joint
space and extended for manipulators in admittance con-
guration. Although the formulation is dealt with in the

joint space, no modications to the POs are required nor
is kinematic symmetry between master and slave required.
It has been clearly demonstrated that power-limited actuators
require a space in which to dissipate the energy that cannot
be dissipated in the privileged subspace. In addition, the
power limits require that a maximum damping that can be
performed by the PC is dened. The best space to complete
the dissipation of residual energy was found to be the
subspace orthogonal to the privileged subspace. This is true
in general for a priority-based dissipation logic regardless of
the space (Cartesian or at the joints) where the dissipation is
performed, however it is a point not guaranteed in previous
works that have dealt with the same topic in the state-of-
the-art. This point is solved by the presented approach in
both robot congurations. Since the damping element is a
scalar value, it was chosen to impose a scalar constraint in
order to easily come to a reasonable new damping limit.
The proposed limitation aims to bind the maximum damping
to the power limits of a manipulator in a specic subspace
limiting the norm of the dissipation vector with the norm
of the maximum action (torque for admittance conguration
and joint speed for impedance conguration) performable in
a certain subspace. This way of limiting the damping has
pros and cons. This approach guarantees that the dissipating
action is limited in norm, but it does not guarantee that all
joints respect their limit at the same time: this means that a
certain joint may exceed its limits. However, it present the
following advantages over other approaches:

• the damping limited through a norm allows keeping
the joint references reasonably close to the limits.
Conversely, the sample time based limit may produce
references much higher than the power limits of the
actuators (in fact, think of a situation in which the
sampling time is high, but the power limits of the
actuators are extremely low for construction reasons.
In this situation the damping is not properly limited).

• the proposed limit does not require the solution of a QP
online problem and provides a closed-form equation for
the maximum damping with consequent advantages, in
particular in robotic stand alone applications.

It should be noticed that each PC performs its action at
reference level. Thus, if the reference exceeds the limits, the
system will behave as in saturation for a certain period of
time. However, the proposed limitation produces references
that are reasonably close to the joint limits for short period of
time. The proposed limitation could be modied to be more
conservative: if the limit joint vector is characterized by low
variance (which means that all joints have similar limits in
torques or in joint velocities), the maximum damping can
be divided by a factor 1

√
n (with n number of joints) to

take into account the worst case scenario in which only
one joint is moved. However, the proposed limitation could
be ineffective if the limit joint vector of the manipulator is
characterized by high variance (the joints differ signicantly
each other in torques or in joint velocities limits).
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IV. SIMULATION AND RESULTS

A. Simulation

To test the performance of the rPC, a simulation of a
PF teleoperation architecture was implemented in MATLAB
Simulink using the Robotic System Toolbox. The simulation
runs at 5 KHz and lasts 8 s. The architecture consists of a
master and a slave manipulator, both are 4-DoFs planar robot
manipulators (see gure 5). This choice was only due to
simplicity because no kinematical symmetry between master
and slave is required. The robot parameters were reported
in table I. Moreover, all robots actuators are power limited
(q̇MAX = π rads; τMAX = 80 Nm). The slave performs a
low-level joint PD position control while the master performs
a low-level joint P torque control. All the controllers have
been calibrated for the best performance. In the simulations,
gravity has been neglected as being a planar problem. At
high level, the slave accepts a Cartesian velocity reference
from the master, while the master accepts a Cartesian force
reference. The Cartesian target trajectory requires to follow a
planar trajectory where the two linear coordinates x and y are
imposed resulting in two redundancy DoFs. This trajectory is
reported to a force reference for the master (and summed to
the external force to obtain the complete reference) through
an impedance (k f ) to roughly represent a human moving
a master in a real teleoperation scenario. The trajectory
has been designed so that the slave manipulators contact
a stiff wall. The wall stiffness was set to kw = 10Nmm
and the damping parameter was bw = 2ζ

√
kw with ζ = 07.

To guarantee a good trajectory following and hard contact
it was chosen k f = 5Nmm. The velocity is sent to the
slave robot through a forward communication delay and
the force is sent back to the master through a backward
communication delay. The simulated PF architecture has
been tested in two time delay conditions: constant time delay
of 300 ms per channel (600 ms round trip delay) and variable
time delay. It was chosen to implement the variable time

Fig. 5: Robot planar model for the simulation and Cartesian
coordinates. Both the master and the slave manipulators of
the PF architecture have the same kinematics for simplicity.

L1 L2 L3 L4
l [m] 0.25 0.25 0.25 0.25
m [Kg] 1 1 1 1

TABLE I: Geometric and inertial parameters for the sim-
ulated manipulators. All the links were assumed to be
cylindrical and with uniform mass distribution.

delay as a uniform pseudo-random number, which in the
simulations can vary from 300 ms to 400 ms per-channel
(up to 800 ms round trip delay). To guarantee stability, the
simulated architecture has been passivated with the proposed
rPC controllers. Moreover, to have comparison results, the
same architecture in the same conditions has been passivated
with the Multi-DoFs PC weighted with the Cartesian mass
matrix. At least, a simulation has been conducted in which
the master PC was implemented as in [19].

B. Results

For the sake of conciseness, only the results of the simula-
tion conducted under variable time delay will be presented. In
fact, the results in the two delay conditions are comparable:
even if the cPC appears noisier, the rPC is minimally
inuenced by the variable time delay. The results are reported
in gure 6 limited to the x axis for clarity. To compare results
at the end-effector level (which is the aim of this work),
we projected both torque and joint velocity references of
the rPC simulations at the Cartesian level. As expected, the
stabilizing action of the rPC is much less evident at the
Cartesian level with respect to the cPC one. The rst row
(plot (a-b)) shows the slave reference following the master
and it is evident the better behaviour of the rPC controller. In
particular, plot (e-f) report the Cartesian velocity reference
among the passivated one. It is evident the better behaviour
of the rPC controller. This result is conrmed by plot (c-d),
in which the committed end-effector drift is computed as:

perr(k) = ∆T
k

∑
i=0

[vsd(i)− v̂sd(i)] (16)

It must be pointed out that in variable time delay condition,
references that ow through a communication channel suffers
from distortion phenomena [22]. Such a problem is also the
source of unavoidable drift error both on the position and on
the reference force. However, the drift reported in plot (c-d)
are only due to the dissipating action and do not take into
account the distortion phenomena (the speeds of equation
16 are measured after the delay and across the PC). The
committed drift by the rPC approaches 1 mm, while the one
committed by the cPC approaches 8 cm, which implies a
worsening of almost 2 orders of magnitude with respect to
the previous. Because slave manipulators drift in different
ways, the wall position has been empirically adjusted to
produce the same peak contact force. This ensures to have
comparable force references at the master side. Plot (i-j)
report the Cartesian reference force among the passivated
one. Again, the behaviour of the rPC is obviously better.
To better show this result, plot (g-h) report the difference
between the impulse of the passivated force and the impulse
of the non-passivated force over the same period of time
(benchmark proposed in [23]). The impulse difference was
computed as follows:

ferr(k) = ∆T
k

∑
i=0

[fmd(i)− f̂md(i)] (17)

Plot (i-j) also show that after a rst hard strike, the
feedback force reported to the master causes a move away
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Fig. 6: The results of the simulation are divided into two columns, one per each PC implemented (cPC or rPC). Plot (a-b)
show the master trajectory (x̂m) and slave (xsd) x axis position, so as the wall position (xw). The drift errors are reported in
plot (c-d), whereas the non-passivated v̂sd) and the passivated (vsd) velocities are shown in plot (e-f). Likewise, the impulse
differences are reported in plot (g-h) and the non-passivated ( f̂md) and the passivated ( fmd) forces can be seen in plot (i-j).

from the wall. In fact, the force starts decreasing after the
forward time delay passed and this can also be seen in a
slight back deviation from the reference in plot (a-b) and
plot (i-j). It should be noticed that the different positions
of the wall, in accordance with different produced drift
errors, produced the same peak forces making all the contacts
comparable. In gure 7 the dissipation distribution between
the privileged subspace and its orthogonal is reported both
for master and slave. In particular, plot (a-b, e-f) report the
actual damping among with its actual maximum computed
as proposed respectively in the privileged subspace and in
its orthogonal. It can be seen that in most of the cases this
maximum damping is much lower than the one based on

Fig. 7: rPC dissipation actions at joint level for master
(right column) and slave (left column) manipulators. The rst
two rows refer to the N subspace dissipation, while the the
last two rows refer to the residual O subspace dissipation.
Both damping (among with the computed maximum) and
dissipation vectors were reported.

the sampling time (αMAX = 1(2Tc) = 2500 1s). In plot (c-
d,g-h), the dissipating actions are reported respectively in
the privileged subspace and in its orthogonal. It can be seen
that the master is able to dissipate the overall energy in the
null-space, while the slave requires a residual dissipation in
the null-space orthogonal. However, the privileged strategy
is evident with consequent benets. The maximum damping
in the admittance-based formulation appears to be noisier
with respect the impedance-based case, this is probably the
reason why the slave requires part of the dissipation in the
task space. This noisy behaviour may depend on the nature
of the commanded slave torques and may be solved by
implementing a method symmetrical to the one proposed in
[24]. As a further element of comparison, some of the results
of the simulation performed by implementing the method
proposed in [19] as master PC are reported in gure 8. The
results for the slave have been omitted since, as there is no
admittance formulation, the cPC has been implemented and
it behaves identically as in the previous simulation. On the
master side, the results are substantially identical to those
obtained with the proposed rPC controller.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, a new joint level passivity controller for-
mulation for both admittance-based and impedance-based
kinematically redundant manipulators was proposed. This ap-
proach allows a privileged dissipation of the observed energy
in the Jacobian null-space, guaranteeing the stability of the
system at the best performance. It was shown that the best
subspace where to dissipate the remaining observed energy
is orthogonal to the privileged subspace. Moreover, the joint
space formulation allowed for the denition of a maximum
damping easily linked to the power limits of the actuators.
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Fig. 8: Master PC behavior implemented as proposed in [19].
The end-effector force is untouched thanks to the N subspace
dissipation. The damping limit (2500 1s) is never reached.

Even if this maximum damping has some limitations, it is
a reasonable value with respect to common limits adopted
in literature, with the advantage of a closed-form equation.
Since references are still transmitted in the Cartesian domain,
the proposed controller doesn’t require any change in the
POs and doesn’t require kinematic symmetry between master
and slave. The behaviour of the proposed controller was
tested in simulation in presence of both constant and variable
time delay. The simulation showed a strong improvement in
performance compared to the cPC implementation both in
terms of drift committed on the slave side and in terms of
precision of the rendered force on the master side. Even if the
cPC suffered more from the variable time delay condition,
the rPC implementation showed similar performance to the
constant time delay condition (neglecting the unavoidable
distortion of the transmitted data). This means that the
rPC greatly relieves both injected-energy-based drift com-
pensation methods and rendered force enhancing methods
under both constant and variable time delay conditions. In
future works, the algorithm will be implemented on a real
system among with a less conservatism TDPA formulation
to improve system performance [25]. Moreover, it should be
studied a method to improve the limitations related to the
maximum damping proposed.
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