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We propose a statistical identification procedure for recursive structural vector autoregressive 
(VAR) models that present a nonlinear dependence (at least) at the contemporaneous level. By 
applying and adapting results from the literature on causal discovery with continuous additive 
noise models, we show that, under certain conditions, a large class of structural VAR models 
is identifiable. We spell out these specific conditions and propose a scheme for the estimation 
of structural impulse response functions in a nonlinear setting. We assess the performance of 
this scheme in a simulation experiment. Finally, we apply it in a study on the effects of the 
macroeconomic shocks that propagate through the economy, allowing for asymmetry between 
responses from positive and negative impulses.

1. Introduction

Since the seminal work of Reiersøl (1950), the econometric literature has made clear that linear additive noise models with 
Gaussian and spherical errors are not identifiable unless a priori restrictions or external instruments are employed. Structural vector 
autoregressive (VAR) models, widely used in empirical macroeconomic research since Sims (1980), share the same problem of 
identification. This has been addressed by relying on constraints derived from economic theory (i.e., short-run, long-run, and sign 
restrictions, as pioneered, respectively, by Sims, 1980, Blanchard and Quah, 1989, and Faust, 1998), by using external instruments 
(from Romer and Romer, 1989 to Montiel Olea et al., 2021), or, alternatively, by exploiting specific statistical properties of the data 
that are at odds with the standard model.

This paper contributes to the statistical identification approach. As regards this approach, one finds two strands of the structural 
VAR literature. One of them exploits non-Gaussianity of the errors, the other exploits heteroskedasticity. In common, they have the 
use of higher moments for identification (Montiel Olea et al., 2022; Herwartz et al., 2022). This is possible thanks to the introduction 
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of assumptions that depart from the standard model. In this contribution, we want to show that another swerve from the linear model 
with spherical-normal errors can be exploited for the identification of structural VAR models, namely nonlinearity.

Identification by non-Gaussianity is achieved by the application of ideas and techniques developed in the literature on Inde-

pendent Component Analysis (ICA), a research field that emerged at the intersection of statistics with signal processing (Comon, 
1994; Hyvärinen et al., 2001). Studies in the machine learning literature have shown that ICA can be used for causal inference, 
and more specifically, for the identification of linear structural equation models, under the assumption of noise independence and 
non-Gaussianity, as well as the presence of a recursive (i.e. acyclic) structure among the variables (see, e.g., Shimizu et al., 2006, 
2011; Hyvärinen, 2013). Moneta et al. (2013) have applied some of these techniques to structural VAR analysis. The structural VAR-

ICA literature has been rapidly growing in the recent years, with contributions by Lanne and Lütkepohl (2010); Lanne et al. (2017); 
Gouriéroux et al. (2017); Herwartz (2018); Fiorentini and Sentana (2023), among others. It is important to note that the recursiveness 
assumption has been abandoned in these studies so that the impact matrix of the shocks is identified up to the post-multiplication of a 
generalized permutation matrix, which means, in practice, that one is able to label the shocks only after involving ex post some form 
of economic reasoning, jointly with an inspection, for instance, of the obtained impulse response functions. Recent studies have also 
relaxed the independence assumption but maintaining non-Gaussianity and use of higher moments (Lanne and Luoto, 2021; Guay, 
2021; Mesters and Zwiernik, 2022). Identification by heteroskedasticity was pioneered by Sentana and Fiorentini (2001) and further 
pursued by Rigobon (2003); Lanne and Lütkepohl (2008); Sims (2020); Brunnermeier et al. (2021); Lewis (2021), among others.1

We claim that nonlinearity, analogously to non-Gaussianity and heteroskedasticity, can be exploited for (recursive) structural 
VAR identification. This idea has been much less explored in the econometric literature and we believe that it is important to trigger 
a novel discussion on this. We put forth this idea by — similarly to what has been done in the VAR-ICA approach — importing 
techniques from the machine learning literature on causal discovery (see the review by Peters et al., 2017) and by presenting a 
class of autoregressive processes in which it is possible to recover structural shocks (without any problem of labelling) and their 
dynamic effects on variables of interests directly from the data. In tune with the causal discovery literature, we frame the problem 
of identifying structural shocks and their contemporaneous impacts in a structural VAR model as a particular case of the general 
problem of learning a causal structure (which can be usefully represented by a graph) from an observational joint distribution. Hoyer 
et al. (2008) and Peters et al. (2014) have shown that if the observational distribution follows a structural equation model with an 
additive noise structure, then the causal graph becomes identifiable from the distribution under specific assumptions. Peters et al. 
(2014) have also provided practical algorithms to retrieve the causal structure from finite samples.

It is noteworthy that, in the causal discovery framework we introduce, identification by non-Gaussianity and identification by 
nonlinearity are closely connected and, under recursiveness, nested within the general framework of causal discovery with additive 
noise models. In the first case the key assumptions are, as noted above, shocks’ non-Gaussianity plus independence, while in the 
second case nonlinearity in the shock transmission mechanism plus (again) independence. A related contribution of this paper is 
to shed light on the connection between these two related identification methods. Furthermore, we spell out the conditions that 
allow identification where the underlying model is a VAR process with nonlinear dependence at the contemporaneous level. Such 
a process may or may not show nonlinearities in the autoregressive structure, but the functional autoregressive form is not key for 
identification. Similarly to the first wave of applications of ICA to VAR analysis (Moneta et al., 2013; Guerini and Moneta, 2017), 
however, the recursiveness assumption is here required.

We also provide a practical scheme (two algorithms) to recover the structure linking shocks to (reduced-form) VAR innovations 
and, on the basis of this, to estimate nonlinear structural impulse response functions from time series data. Apart from the role it 
plays in identification, there are many empirical cases in which the presence of nonlinearity in the processes underlying observed 
data should not be underestimated. As Ramey (2016) points out, “positive shocks might have different effects from negative shocks, 
effects might not be proportional to the size of the shock, or the effect of a shock might depend on the state of the economy when 
the shock hits.”

In the next section we present the model set up and the identification methodology, which includes both theoretical results and 
practical algorithms. In section 3 we present the results of a simulation study. Section 4 presents an empirical application. Section 5

concludes.

2. Identification methodology

In this section, we present our method to achieve statistical identification of a specific class of VAR models, namely VAR models 
with generic time dependence and nonlinear but recursive contemporaneous causal structure.

In section 2.1, we introduce this class of models, which we call generalized VAR models with additive noise innovations. This 
class of VAR models is characterised by a recursive causal structure among innovation terms, which can be represented by a directed 
acyclic graph (DAG). Recovering such causal structure is key for identification, since it allows transforming the reduced-form model 
into a structural model with independent shocks. In section 2.2, we define and discuss the concept of identification used in this 
framework.

In section 2.3, we show that the contemporaneous recursive structure among the innovation terms can be recovered by exploiting 
nonlinearity. In section 2.4, we present an algorithm which infers such structure from estimated reduced-form VAR innovations. In 

1 Identification by heteroskedasticity is a “higher-moment” procedure in the sense of using information from conditional (instead of unconditional) second moments 
2

(Montiel Olea et al., 2021), but its underlying model is not, differently from the ICA model, part of the general class of models we consider in this paper.
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𝑢𝑡,1 𝑢𝑡,2 𝑢𝑡,3

𝜀𝑡,1 𝜀𝑡,2 𝜀𝑡,3

Fig. 1. Example of DAG between innovation terms.

section 2.5, we introduce an algorithm to estimate structural impulse response functions. Theoretical results related to the consistency 
of the procedure are referred to and discussed in Appendix B.

2.1. Model setup

We consider here a general class of VAR models (see, e.g., the nonlinear structural VAR models in Kilian and Lütkepohl, 2017, 
ch. 18), in which a vector of 𝐾 time series variables 𝑦𝑡 depends on its lags with an additive vector of disturbances 𝑢𝑡:

𝑦𝑡 = 𝐹𝑡(𝑦𝑡−1,… , 𝑦𝑡−𝐿) + 𝑢𝑡, (1)

where 𝐹𝑡(⋅) is a generic (possibly time dependent) nonlinear or linear function, and 𝑢𝑡 is a zero-mean i.i.d. vector of innovations 
terms and depends only on contemporaneous structural shocks 𝜀𝑡,1, … , 𝜀𝑡,𝐾 :

𝑢𝑡 =𝐺(𝜀𝑡) (2)

We assume that equation (2), for an appropriate ordering of the variables 𝑦𝑡 = (𝑦𝑡,1, … , 𝑦𝑡,𝐾 ), can be written as:

𝑢𝑡,𝑘 = 𝜑𝑘(𝑢𝑡,𝑘) + 𝜀𝑡,𝑘, for 𝑘 = 1,… ,𝐾 (3)

where 𝑢
𝑡,𝑘

is a subset of the variables 𝑢𝑡,1, … , 𝑢𝑡,𝑘−1, and 𝜑𝑘(∅) = 0. In other words, 𝑢𝑡 can be arranged in a recursive order. We also 
assume that 𝜀𝑡,1, … , 𝜀𝑡,𝐾 are cross-sectionally mutual independent and that each 𝜀𝑡,𝑖 (𝑖 = 1, … , 𝐾) is i.i.d. Henceforth, we will refer 
to the model as formalized in equations (1)–(3) as the generalized VAR with additive noise innovation model (GVAR-ANIM).

Equations (1)–(2) can be seen as a generalization of the standard-linear structural VAR model:

𝑦𝑡 =
𝐿∑

𝓁=1
𝐴𝓁𝑦𝑡−𝓁 + 𝑢𝑡, (4)

where

𝑢𝑡 =𝐴0𝜀𝑡. (5)

If 𝜀𝑡,1, … , 𝜀𝑡,𝐾 are mutually independent and non-Gaussian, equation (5) is an ICA model and the matrix 𝐴0 can be identified up 
to a post-multiplication of a generalized permutation matrix (Eriksson and Koivunen, 2004; Gouriéroux et al., 2017). If, for any 
permutation matrix 𝑃 , the matrix 𝑃𝐴−1

0 𝑃
𝑇 is lower triangular (i.e. 𝐴−1

0 is essentially triangular), under this assumption the matrix 
𝐴−1
0 is uniquely identified (Shimizu et al., 2006).2 We call the assumption on 𝐴−1

0 recursiveness assumption, since it imposes a 
recursive causal structure on the contemporaneous variables of the structural VAR model: if this assumption is true, one can re-order 
the variables entering in 𝑦𝑡 in a “Wold causal chain” (Wold, 1960), so that each variable 𝑦𝑡,𝑖 causes 𝑦𝑡,𝑗 and no variable 𝑦𝑡,𝑗 causes 
𝑦𝑡,𝑖 (𝑖 < 𝑗, for 𝑖, 𝑗 in 1, … , 𝐾).

If 𝐴−1
0 is essentially triangular, a convenient way to represent the 𝑢𝑡 from equation (5) is with a directed acyclic graph (DAG) (see 

Spirtes et al., 2000; Pearl, 2009). Let us suppose, only for the sake of illustration, that 𝑃𝐴−1
0 𝑃

𝑇 is lower triangular for 𝑃 = 𝐼 and 
𝐾 = 3. Then we have this system of structural equations between the innovation terms:

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝛼 𝑢𝑡,1 + 𝜀𝑡,2
𝑢𝑡,3 = 𝛽 𝑢𝑡,1 + 𝛾 𝑢𝑡,2 + 𝜀𝑡,3,

(6)

which is represented by the DAG in Fig. 1.

If the true DAG were known, one would be able to put (just-identifying or over-identifying) zero restrictions on 𝐴−1
0 and eventually 

to recover the independent shocks 𝜀𝑡 (Swanson and Granger, 1997; Demiralp and Hoover, 2003; Moneta, 2008).

2 Shimizu et al. (2006) prove identifiability of linear, non-Gaussian and recursive model (LiNGAM in their terminology) using ICA and, specifically, the Darmois-
3

Skitovich theorem (Comon, 1994, Theorem 11) (see also Peters et al., 2017, Theorem 7.6).
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Knowing the causal structure is key for identification also in the general nonlinear case of equations (1)–(2). Let us consider the 
following instance of equation (2), which we have assumed that can be arranged in a recursive order with noises entering in an 
additive fashion:⎧⎪⎨⎪⎩

𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝜑2(𝑢𝑡,1) + 𝜀𝑡,2
𝑢𝑡,3 = 𝜑3(𝑢𝑡,1, 𝑢𝑡,2) + 𝜀𝑡,3

(7)

The structure of equation (7) can also be represented by the DAG of Fig. 1. Knowing the DAG, or having a method that infers it, 
allows us to recover the shocks and the manner they impact innovations from observed realizations of 𝑢𝑡. This can be done in a 
recursive way. Suppose the DAG in Fig. 1 is true. Then, following equation (7), one can (i) assign 𝜀𝑡,1 to 𝑢𝑡,1; (ii) run an adequate 
(e.g., nonparametric) regression of 𝑢𝑡,2 on 𝑢𝑡,1 and get 𝜀𝑡,2 as residual; (iii) regress 𝑢𝑡,3 on 𝑢𝑡,1 and 𝑢𝑡,2 and get 𝜀𝑡,3 as residual. In the 
next subsections, we will present a method to recover the DAG that represents the causal structure at stake from estimates of 𝑢𝑡 in 
the GVAR-ANIM framework, where nonlinearity (with additive noise) is the general case and linearity (with non-Gaussian noise) is 
only a special case.

2.2. A note on identification

The concept of identification of linear structural VAR models hinges on the theory of identification in parametric models (Rothen-

berg, 1971). In this framework, criteria for structural VAR identification have been provided and discussed by Rubio-Ramirez et al. 
(2010) and Bacchiocchi and Kitagawa (2022). The notion of identification involved in this paper relies on a general formulation, 
encompassing both parametric and nonparametric models, that has been proposed by Koopmans and Reiersøl (1950) and further 
developed by Roehrig (1988) (see Matzkin, 2007, for a definition of identification in a purely nonparametric setting). In this general 
formulation, the target of identification is not (necessarily) a set of parameter points, but, rather, a set of “characteristics”  of a 
structure  = (𝑓, Φ). A structure consists of a set 𝑓 of relationships of interest (“structural relationships”) between observed variables 
𝑌 and latent variables 𝑉 (𝑓 (𝑌 , 𝑉 ) = 0), and a probability distribution on the latent variables Φ(𝑉 ). A structure implies a unique 
probability distribution Ψ on the observed variable 𝑌 . The set of possible structures are restricted a priori by a model , which is 
defined as a set of structures which share certain pre-defined characteristics.

Definition (Observational equivalence). Two structures in  are said to be observational equivalent if they imply the same probability 
distribution Ψ for the observable variables 𝑌 (cf. Koopmans and Reiersøl, 1950; Rothenberg, 1971).

Definition (Identification). A structure  is identified in  if and only if there is no other ∗ ∈ that is observational equivalent 
to  . A set of characteristics () is identified in  if and only if every structure ∗ ∈ that is observational equivalent to  has 
the same characteristics () (cf. Roehrig, 1988, p. 435).

Thus, in our case, GVAR-ANIM, as defined in subsection 2.1 limits the set of possible structures to restricted characteristics 
that will be specified in subsection 2.3. The model is nonparametric in not imposing a parameterization of the functions 𝐹𝑡 and 𝐺
(equations (1) and (2)). Therefore, the characteristics that turn out to be identifiable in GVAR-ANIM are not parameter points, but 
rather the recursive causal structure among the innovations, like the one displayed in equation (7).

2.3. Exploiting nonlinearity

The causal discovery principle that we exploit here was first introduced in the literature by Hoyer et al. (2008). This can be seen 
as a generalization of the principle underlying causal inference in the linear non-Gaussian case. Let us first show this case, starting 
from a two-variables model.

Consider a bivariate VAR model, whose vector of reduced-form residuals is 𝑢𝑡 = (𝑢𝑡,1, 𝑢𝑡,2). In the following, to improve readability, 
we drop the time-subscript 𝑡 when it is evident from the context and is not relevant, so that, for instance, 𝑢 ≡ 𝑢𝑡 and 𝑢𝑖 ≡ 𝑢𝑡,𝑖. The 
following result was proven by Peters et al. (2017, Theorem 4.2).3

Theorem 1. Consider the following linear model:

𝑢1 = 𝛼𝑢2 + 𝜀1, 𝜀1 ⟂⟂ 𝑢2. (8)

Then there exists 𝛽 ∈ℝ and a random variable 𝜀2 such that

𝑢2 = 𝛽𝑢1 + 𝜀2, 𝜀2 ⟂⟂ 𝑢1 (9)

if and only if 𝜀1 and 𝑢2 are Gaussian (where ⟂⟂ denotes statistical independence).
4

3 The proof of Theorem 1 hinges heavily on the Darmois-Skitovich Theorem (see Peters et al., 2017, Theorem 4.3).
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As a corollary of this theorem, it follows that in a bivariate linear structural VAR, as the one in equation (4) but with 𝐾 = 2
and non-Gaussian shocks, if 𝜀1 is independent of 𝑢2, then equation (8) is the true structural model and the causal structure can be 
represented by the DAG 𝑢2 ⟶ 𝑢1.

Shimizu et al. (2011) extend this result to a multivariate framework. But let us focus here on another possible extension, namely 
the generalization of this result to the nonlinear case, under the condition that we preserve the noise-additivity assumption. It turns 
out that, in the strictly nonlinear case, Gaussianity does not preclude identification any longer. Following the terminology by Peters 
et al. (2017, Definition 4.4), we introduce the additive noise model (ANM) property.

Definition (Bivariate ANM). The joint distribution 𝑃 (𝑢) is said to admit a (bivariate) ANM from 𝑢𝑖 to 𝑢𝑗 if, for any measurable 
function 𝜑𝑗 and a variable 𝜀𝑗 we have:

𝑢𝑗 = 𝜑𝑗 (𝑢𝑖) + 𝜀𝑗 , 𝜀𝑗 ⟂⟂ 𝑢𝑖 (10)

Identifiability of a bivariate ANM is based on the following theorem proven by Hoyer et al. (2008, Theorem 1) (see also Peters et al., 
2014, 2017):

Theorem 2. Let us assume that 𝑃 (𝑢) admits an ANM from 𝑢𝑖 to 𝑢𝑗 and that 𝜀𝑗 and 𝑢𝑖 have strictly positive densities 𝑃 (𝜀𝑗 ), and 𝑃 (𝑢𝑖), 
with 𝜑𝑗 , 𝑃 (𝜀𝑗 ), and 𝑃 (𝑢𝑖) three times differentiable. To simplify notation, let 𝑓 ∶= 𝜑𝑗 , and 𝜉 ∶= log𝑃 (𝑢𝑖) and 𝜈 ∶= log𝑃 (𝜀𝑗 ), skipping the 
arguments 𝑢𝑗 − 𝑓 (𝑢𝑖), 𝑢𝑖 and 𝑢𝑖 for 𝜈, 𝜉 and 𝑓 and their derivatives, respectively. Consider the following condition (see Peters et al., 2014, 
Condition 19).

Condition (C1): the triple (𝜑𝑗, 𝑃 (𝑢𝑖), 𝑃 (𝜀𝑗 )) does not satisfy the following differential equation for all 𝑢𝑖, 𝑢𝑗 with 𝜈′′(𝑢𝑗 −
𝑓 (𝑢𝑖))𝑓 ′(𝑢𝑖) ≠ 0:

𝜉′′′ = 𝜉′′(− 𝜈
′′′𝑓 ′

𝜈′′
+ 𝑓 ′′

𝑓 ′ ) − 2𝜈′′𝑓 ′′𝑓 ′ + 𝜈′𝑓 ′′′ + 𝜈′𝜈′′′𝑓 ′′𝑓 ′

𝜈′′
− 𝜈′(𝑓 ′′)2

𝑓 ′ . (11)

If condition C1 is satisfied, then a backward ANM from 𝑢𝑗 to 𝑢𝑖, i.e. 𝑢𝑖 = 𝜑𝑖(𝑢𝑗 ) + 𝜀𝑖 with 𝜀𝑖 ⟂⟂ 𝑢𝑗 , is not admitted.

Remark. As shown by Hoyer et al. (2008), a “generic” triple (𝜑𝑗, 𝑃 (𝑢𝑖), 𝑃 (𝜀𝑗 )) is expected to satisfy condition C1. Zhang and Hyväri-

nen (2009) actually provide an exhaustive list of five settings that admit an ANM in both the forward and backward direction, the 
most remarkable case being the linear Gaussian case. Notice that if a joint distribution admits a (bivariate) ANM in one direction 
(say from 𝑢𝑗 to 𝑢𝑖), but not in the backward direction, the DAG representing the ANM is identifiable (𝑢𝑗 ⟶ 𝑢𝑖).

Fig. 2 shows results from an illustrative simulation (see also Peters et al., 2017), in which data 𝑥 and 𝑦 are generated from a 
structural model 𝑦 = 𝛽𝑥 +𝑁𝑦, with 𝑥 and 𝑁𝑦 following a uniform distribution, with 𝑥 ⟂⟂𝑁𝑦. In the top left panel, we show the results 
of a linear regression of 𝑦 on 𝑥, whose residuals are plotted over 𝑥 in the top right panel. It is easy to notice the lack of dependence 
between such residuals and 𝑥. The bottom left panel shows the regression with exactly the same data, but performed in the opposite 
direction, namely we regress 𝑥 on 𝑦. Residuals of such regression are plotted over 𝑦 (the covariate in the new regression) in the 
bottom right panel. It is easy to note a (higher-order) statistical dependence. This asymmetry can also be detected in the nonlinear 
generic case. Fig. 3 shows results from another illustrative simulation in which data 𝑥 and 𝑦 are generated from a structural model 
𝑦 = 𝑥3 +𝑁𝑦, with 𝑥 and 𝑁𝑦 following a normal distribution, with 𝑥 ⟂⟂ 𝑁𝑦. In the top left panel, we show the results of kernel 
regression of 𝑦 on 𝑥, whose residuals are plotted over 𝑥 in the top right panel. The lack of dependence between such residuals and 
𝑥 is confirmed by a nonparametric independence test, specifically the Hilbert-Schmidt Independence Criterion proposed by Gretton 
et al. (2007). The p-value for the null hypothesis of independence between residuals and covariate is reported inside the plot. Bottom 
left panel shows the kernel regression with exactly the same data, but performed in the opposite direction, namely we regress 𝑥 on 
𝑦. Residuals of such kernel regression are plotted over 𝑦 (the covariate in the new regression) in the bottom right panel. The 𝑝-value 
for the null hypothesis of independence between residuals and covariate is reported inside the plot and clearly suggests to reject 
independence.

Peters et al. (2014) proved that the identifiability result stated in Theorem 2 can be extended from the bivariate to the multivariate 
case. First of all, the definition of ANM given above can be straightforwardly extended.

Definition (Multivariate ANM). We call a system of 𝐾 structural recursive equations a (multivariate) ANM if it can be written as:

𝑢𝑘 = 𝜑𝑘(𝑃𝑎(𝑢𝑘)) + 𝜀𝑘 for 𝑘 in 1,… ,𝐾, (12)

where 𝜀1, … , 𝜀𝐾 are mutually independent. The set of variables 𝑃𝑎(𝑢𝑘), called parents of 𝑢𝑘, is defined as 𝑃𝑎(𝑢𝑘) ⊆ {𝑢1, … , 𝑢𝐾}∖{𝑢𝑘}. 
We denote by  the DAG representing the structural relations between the 𝑢’s, i.e. 𝑢𝑖 ⟶ 𝑢𝑗 iff 𝑢𝑖 ∈ 𝑃𝑎(𝑢𝑗 ).

Notice that the causal structure  is a DAG because the system is recursive. Identifiability of the multivariate ANM is based on 
5

the following theorem:
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Fig. 2. Illustration of the ANM principle with a sample generated from the linear model 𝑦 = 𝛽𝑥 + 𝑁𝑦 with 𝑥 and 𝑁𝑦 independent and drawn from a uniform 
distribution. Left-side panels: scatter plot of 𝑦 on 𝑥 with OLS regression line (red) corresponding to the ‘forward’ (true) specification (top panel) and to the ‘backward’ 
specification (bottom panel). Right-side panels: corresponding regression residuals are plotted with respect to their regressor values, either 𝑥 (top panel) or 𝑦 (bottom 
panel). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Theorem 3. Consider a multivariate ANM

𝑢𝑘 = 𝜑𝑘(𝑃𝑎(𝑢𝑘)) + 𝜀𝑘 for 𝑘 in 1,… ,𝐾, (13)

associated to DAG  and entailing joint distribution 𝑃 (𝑢), with 𝜑𝑘 three times differentiable and 𝑃 (𝜀𝑘) strictly positive for all 𝑘. An alternative 
ANM with DAG ′, where ′ ≠ , also entailing 𝑃 (𝑢), is not admitted under the following conditions:

Condition (C2) The functions 𝜑1(⋅), … , 𝜑𝐾 (⋅) are not constant in any of their arguments.

Condition (C3) Let us denote with ND(𝑢𝑗 ) the set of graphical “non-descendant” of 𝑢𝑗 , i.e. there is no directed path from 𝑢𝑗 to any variable in 
ND(𝑢𝑗 ) (see Spirtes et al., 2000). For all 𝑢𝑗 ∈ 𝑢, and for all 𝑢𝑖 ∈ 𝑃𝑎(𝑢𝑗 ), and all 𝑢 ∈ 𝑢 such that 𝑃𝑎(𝑢𝑗 ) ⧵ 𝑢𝑖 ⊆ 𝑢 ⊆ ND(𝑢𝑗 ) ⧵ {𝑢𝑖, 𝑢𝑗}, 
there is a value 𝑢 of 𝑢 with 𝑝(𝑢 ) > 0 such that the triple(

𝜑𝑗 (𝑃𝑎(𝑢𝑗 ) ⧵ {𝑢𝑖}, 𝑢𝑖), 𝑝(𝑢𝑖|𝑢 ), 𝑝(𝜀𝑗 )) (14)

satisfies condition C1. In equation (14) the upper bar indicates a specific value that a random variable or vector takes.

The conditions related to Theorem 3 and its proof can be found in (Peters et al., 2014, see section 3.2 and appendix A therein). 
Theorem 3 allows us to recover the contemporaneous causal structure among the innovation terms in the GVAR-ANIM. In the next 
subsection, we will present an algorithm to learn such causal structure from estimated reduced-form VAR residuals.

Topological order

As shown above, knowing the causal structure among innovation terms in the form of a DAG allows specifying the structural 
model, since the set of graphical parents determines the arguments of 𝜑𝑘(⋅) in equation (12). Structural shocks can be recovered by 
regression (parametric or nonparametric) methods applied to the same equation.

Let us now introduce the notion of topological order. Given a DAG over vertices 𝑣1, … , 𝑣𝐾 , it is possible to associate a total 
order on its vertices such that if 𝑣𝑖 is a parent of 𝑣𝑗 (i.e. there is a directed edge from 𝑣𝑖 to 𝑣𝑗 ), then 𝑣𝑖 comes before 𝑣𝑗 in the 
ordering. Notice that there is only one topological order associated to a fully connected DAG (a DAG in which each pair of vertices is 
6

connected). But, in the case of a sparse DAG, there are possibly multiple topological orders associated to it. Also notice that removing 
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Fig. 3. Illustration of the ANM principle with a sample generated from the nonlinear model 𝑦 = 𝑥3 +𝑁𝑦 with 𝑥 and 𝑁𝑦 independent and drawn from a normal 
distribution. Left-side panels: scatter plot of 𝑦 on 𝑥 with kernel regression line (red) corresponding to the ‘forward’ (true) specification (top panel) and to the 
‘backward’ specification (bottom panel). Right-side panels: corresponding regression residuals are plotted with respect to their regressor values, either 𝑥 (top panel) 
or 𝑦 (bottom panel).

an edge from a fully connected DAG does not invalidate the original topological order, but there could be alternative ordering 
compatible with it.4

Suppose that a set of structural recursive equations, associated to a graph 0, has generated some data, and suppose that there are 
multiple topological orders associated to 0. One can deduce a unique fully connected DAG, which we call 𝑚𝑎𝑥, for each of these 
topological orders. It may be the case 0 ≠ 𝑚𝑎𝑥. But 𝑚𝑎𝑥 differs from 0 only in displaying extra edges, i.e. 0 is a subgraph of 𝑚𝑎𝑥. 
Therefore, if we write down a set of structural equations (as in equation (12)) associated to 𝑚𝑎𝑥, this set of equations will differ 
from the “true” one, i.e. the one associated to 0, only in that it includes extra variables in right-hand side. These extra-variables are 
not in a parent set in (the structural model associated to) 0. But since the original causal ordering (associated to 0) is maintained, 
no endogeneity issues arise when one uses 𝑚𝑎𝑥 as a template for a regression model. Indeed, if one applies regression methods to 
the set of equations associated to 𝑚𝑎𝑥, which may therefore include extra variables (with respect to the “true” structural model) on 
the right hand side, one obtains consistent estimates, since these variables are at most irrelevant, but do not entail reverse causality 
problems.

In practice, if the aim of the study is to estimate the structural shocks (e.g., in impulse response function analysis), one may aim 
at recovering a topological order instead of a DAG, so that to minimize inference errors in finite samples. Instead, if causal discovery 
is the goal, then a topological order is not enough. This is why in the next section we will present a search algorithm that can be 
stopped at the topological order step.

A simple case

While the paper, including the algorithms presented in the next subsections, covers a wide class of models that we have labelled 
GVAR-ANIM (see equations (1)–(3)), in both the simulation and the empirical analysis, we are going to focus on a simpler case, 
namely the case of linear lagged relationships with nonlinear contemporaneous relationships between innovations (with additive 
structural shocks). In terms of equations:{

𝑦𝑡 =
∑𝐿

𝓁=1𝐴𝓁𝑦𝑡−𝓁 + 𝑢𝑡,
𝑢𝑡,𝑘 = 𝜑𝑘(𝑃𝑎(𝑢𝑡,𝑘)) + 𝜀𝑡,𝑘 for 𝑘 in 1,… ,𝐾.

(15)

4 Consider the fully connected DAG on 𝑣1, 𝑣2, 𝑣3 associated to the topological order ⟨𝑣1, 𝑣2, 𝑣3⟩. From removing 𝑣1 ⟶ 𝑣3 , we get 𝑣1 ⟶ 𝑣2 ⟶ 𝑣3 , and the original 
topological order ⟨𝑣1, 𝑣2, 𝑣3⟩ is still the only one valid. From removing 𝑣2 ⟶ 𝑣3 , we get 𝑣2 ⟵ 𝑣1 ⟶ 𝑣3 , and there are two possible topological orders: ⟨𝑣1, 𝑣2, 𝑣3⟩, 
7

⟨𝑣1, 𝑣3, 𝑣2⟩.
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We decide to focus on this simple case because the crucial issue in VAR identification (see, e.g. Stock and Watson, 2001) is the 
solution of the contemporaneous causality problem, which allows to estimate the structural shocks. This holds both in the linear and 
nonlinear VAR case. Since the method we propose exploits contemporaneous nonlinearity, equation (15) represents the most simple 
time series model in which we can apply it.

2.4. Algorithm for the contemporaneous structure

Previous sections showed that, under the assumption of additive noise, the (graphical) causal structure of a recursive structural 
equation model is generically identifiable. There are alternative strategies that exploit this identifying principle using sample data 
(see Peters et al., 2014 and Peters et al., 2017 for an overview). Here we are presenting the RESIT (REgression with Subsequent 
Independence Test) algorithm proposed in Peters et al. (2014), which incorporates the principles of identification in the nonlinear 
additive noise setting directly and straightforwardly. It also has the advantage of segmenting the causal search in, first, a topological 
order search phase and, subsequently, a DAG search phase. This modular architecture fits well with the possibility that for shock 
recovery (and impulse response analysis) a topological order can be sufficient for the scope (in finite samples), as noted above. The 
original RESIT algorithm of Peters et al., 2014 operates in two phases (see Appendix A). We add a preliminary phase, which we call 
Phase 0, in which we estimate a reduced-form GVAR-ANIM (see equation (1)) and use its estimated residuals as input for the next 
phase.

Phase 1 aims at ranking the input variables in a topological order. The topological order is elicited in a backward fashion by 
determining which variable is the latest (i.e. a sink node) among the whole set of variables to be ordered, removing it from the set 
and repeating the search over the resulting subset until only one element remains, which is given the first position in the ranking. 
At each iteration, the search is performed by regressing each variable jointly on all the others and measuring the dependence (more 
on this below) between the regressors and the obtained residual. The regressand yielding the weakest dependence is regarded as the 
sink node among the current set of candidates; it is removed from the set of candidates and is assigned the first position among the 
set of variables that have already been removed. The topological order simply corresponds to the reversed order of elimination. The 
topological order determines, for each variable, a set of potential parents. This set coincides with all the variables ranked higher.

Phase 2 (which we call pruning phase) further narrows down the sets of potential parents by performing variable selection (see 
Appendix A). In other words, it prunes edges from the fully connected DAG which one can draw from the topological order of Phase 
1. It essentially performs a variable selection task. It regresses each variable on its putative parents (according to the topological order 
derived above) but omitting iteratively one of them. If the estimated residual of the corresponding nested model is found independent 
of all preceding variables in the topological order, the omitted regressor is removed from the set of parents of the regressand. The 
search stops when no regressor can be removed without creating dependence.

Any regression method and dependence measure can be embedded in the RESIT algorithm, as long as they are adequate with 
respect to the data-generating process. Not knowing the functional dependence, i.e. 𝜑𝑘(⋅) in equation (12), an appropriate strategy 
would be to use a nonparametric kernel estimator (Fan and Gijbels, 2018). In our implementation, in tune with Hoyer et al. (2008), 
we opt for the Gaussian process approach (see Williams and Rasmussen, 2006). An alternative, more restricted, nonparametric model 
is the generalized additive noise model (Hastie and Tibshirani, 2017). At the extreme, the functional form can be “restricted” down 
to linearity, as long as one assumes non-Gaussianity of the noises. In this case, the ANM collapses to the Linear Non-Gaussian Acyclic 
Model studied by Shimizu et al. (2006) (see also Shimizu et al., 2011).

As regards the dependence measure, any measure that accounts for higher order statistics (rather than linear dependence only) 
can in principle work. This feature is essential because regression techniques that minimize quadratic errors including linear compo-

nents yield estimated noises that are orthogonal to the covariates. Peters et al. (2014) propose to use the 𝑝-value of a nonparametric 
independence test as dependence score, so that the dependence is minimized when the 𝑝-value, under the null hypothesis of in-

dependence, is maximized. This follows the principle of Hodges-Lehmann estimation, which was proposed by Herwartz (2018) for 
independent component analysis. The specific independence test that we perform in our implementation, following (Peters et al., 
2014), is the kernel independence test proposed by Gretton et al. (2007) with the Hilbert-Schmidt Independence Criterion (HSIC). 
The asymptotic results presented by these authors guarantee a convergence of the 𝑝-value to zero only under dependence.

We mentioned above that the RESIT algorithm can be stopped at the topological order step (i.e. Phase 1) if the aim is to estimate 
structural shocks and impulse response functions. The second phase should instead be applied if one is interested in uncovering the 
exact causal structure among the innovation terms. Since both in our simulation study and in the empirical application we focus on 
structural impulse response analysis, the algorithm shown in the main body of the text skips the edge pruning phase (see Algorithm 1

here below). In Appendix A, one can find the original RESIT algorithm embedded in a more general procedure that deals with time 
series data. Notice that the motivation to skip Phase 2 of RESIT is only of practical nature, when one deals with finite sample. 
Contrary to Phase 1, Phase 2 operates on the basis of statistical hypothesis testing (independence test), in which one has to decide a 
rejection threshold. In finite sample, this decision may lead to mistakenly classify weak dependence as independence and therefore to 
mistakenly cutting edges between directly causally related variables. For the sake of retrieving structural shocks from reduced-form 
VAR residuals, one has to run a battery of regressions of the form expressed in equation (13), in which shocks will be the residuals 
of these regressions. If we omit any variable from the parents’ set (i.e. covariates of these regressions) because we have made a 
mistake in Phase 2, we introduce an omitted variable bias. But if we keep an irrelevant variable in the parents’ set, we may add 
some variance in the estimates but we do not introduce any bias. Given this trade-off, we opt for not using Phase 2 for the sake of 
8

estimating impulse response functions.
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Algorithm 1 VAR + RESIT (Phase 1 is from Peters et al., 2014).

1: Input: A K-dimensional time series vector (𝑦𝑡,1, … , 𝑦𝑡,𝐾 )′
2: PHASE 0: Estimate the reduced-form model.

3: Estimate a reduced-form time series model of the class GVAR-ANIM, see eq. (1) and extract residuals 𝑢̂𝑡 = (𝑢̂𝑡,1, … , ̂𝑢𝑡,𝐾 )′ . To simplify the notation, let us call 
𝑢̂𝑡,𝑘 ≡ 𝑣𝑘 , for 𝑘 = 1, … , 𝐾 .

4: 𝑆 ∶= 1, ...,𝐾 , 𝜋 ∶= [ ]

5: PHASE 1: Determine topological order and potential parent set

6: repeat

7: for 𝑘 ∈ 𝑆 do

8: Regress 𝑣𝑘 on {𝑣𝑖}𝑖∈𝑆⧵{𝑘} and obtain residuals 𝑒𝑘
9: Measure dependence between 𝑒𝑘 and {𝑣𝑖}𝑖∈𝑆⧵{𝑘}

10: end for

11: Let 𝑘∗ be the 𝑘 with the weakest dependence

12: 𝑆 ∶= 𝑆 ⧵ 𝑘∗
13: 𝑝𝑎(𝑘∗) ∶= 𝑆
14: 𝜋 ∶= [𝑘∗, 𝜋]
15: until #𝑆 = 0
16: Output: 𝜋
17: Output: (𝑝𝑎(1), … , 𝑝𝑎(𝐾))

Note: with 𝑝𝑎(𝑘) we refer to the set of indices associated to the variables in 𝑃𝑎(𝑣𝑘), for any 𝑘.

A simple illustration

Let us suppose that a 3-variable GVAR-ANIM process of the type of equations (1)–(3) has generated some data. Specifically, 
suppose that equation (3) corresponds to:

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝜑2(𝑢𝑡,1, 𝑢𝑡,3) + 𝜀𝑡,2
𝑢𝑡,3 = 𝜀𝑡,3

(16)

The DAG associated to these equations is 𝑢𝑡,1 ⟶ 𝑢𝑡,2 ⟵ 𝑢𝑡,3. Now, consider to have estimated 𝑢𝑡,1, 𝑢𝑡,2, 𝑢𝑡,3 as reduced-form residuals 
of a VAR of the form of equation (1), following Phase 0 of Algorithm 1. A mistake-free output of Phase 1 will be either the topological 
order ⟨𝑢𝑡,1, 𝑢𝑡,3, 𝑢𝑡,2⟩ or ⟨𝑢𝑡,3, 𝑢𝑡,1, 𝑢𝑡,2⟩. A mistake-free output of Phase 2 (see Appendix A) will be 𝑢𝑡,1 ⟶ 𝑢𝑡,2 ⟵ 𝑢𝑡,3. In order to 
estimate the structural shocks 𝜀1, 𝜀2, 𝜀3 one can run a set of regressions on the basis of equations (16). But suppose one stops at 
Phase 1. Then one would estimate one of the following regression models instead:

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝜑2(𝑢𝑡,1, 𝑢𝑡,3) + 𝜀𝑡,2
𝑢𝑡,3 = 𝜑3(𝑢𝑡,1) + 𝜀𝑡,3

(17)

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜑1(𝑢𝑡,3) + 𝜀𝑡,1
𝑢𝑡,2 = 𝜑2(𝑢𝑡,1, 𝑢𝑡,3) + 𝜀𝑡,2
𝑢𝑡,3 = 𝜀𝑡,3

(18)

Both systems of equations (17) and (18) differ from (16) in including irrelevant variables in the regression systems, but not involving 
any reverse causality issue.

2.5. Algorithm for the structural impulse response functions

The advantage of identifying a structural model is that one can estimate the dynamic effects of structural shocks. But, under the 
generic GVAR-ANIM framework, this cannot be done by using the conventional tools of impulse response analysis. Indeed in such a 
framework the variables’ responses to a specific shock at a certain time depend on the system’s past history, sign and magnitude of 
all contemporaneous shocks and subsequent ones. Following Koop et al. (1996) and Kilian and Lütkepohl (2017, ch. 18), we define 
the structural (nonlinear) impulse response function (IRF) as:

IRF(ℎ, 𝛿,Ω𝑡−1) =𝐸(𝑦𝑡+ℎ|𝜀𝑡,𝑖 = 𝛿,Ω𝑡−1) −𝐸(𝑦𝑡+ℎ|Ω𝑡−1), (19)

where 𝛿 is the (positive or negative) magnitude of the shock 𝜀𝑡,𝑖, whose effects one wants to study, Ω𝑡−1 is the history of the model 
data up to time 𝑡 − 1, and ℎ is the horizon point up to which the impulse response function is studied. To estimate equation (19), we 
can use the Monte Carlo integration approach suggested by Kilian and Lütkepohl (2017).

The idea of this approach, whose detailed scheme is presented in Algorithm 2, is to take pairs of simulation runs: 𝑌 𝛿,𝑛 and 𝑌 𝑛
(for 𝑛 = 1, … , 𝑁), in which 𝑌 𝛿,𝑛 denotes the “treated” time series and 𝑌 𝑛 the “control” one, where 𝑁 is the number of Monte Carlo 
9

runs. Both elements share a common history Ω𝑡−1, but diverge at date 𝑡, in which a structural shock of interest is set to 𝛿 in one 
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run (treatment), while no such restriction applies to the other (control). Apart from this restriction, all shocks are free to fluctuate in 
both groups of series from time 𝑡 onwards. The difference is then taken for each pair. Finally, estimated impulse response functions 
are calculated by taking average of these simulated differences.

Algorithm 2 Structural IRFs at time 𝑡∗.

1: Setting Values:

• 𝑡∗ : date of the shock to be studied

• 𝐻 : max horizon

• 𝑘∗ : index of the shocked variable

• 𝛿: shock magnitude

• 𝑁 : number of Monte Carlo runs

2: Input data

• history (Ω𝑡∗−1) at date 𝑡∗
• estimated structural shock matrix 𝐸
• estimated ̂𝑓𝑘(⋅), 𝜑̂𝑘(⋅) (for each 𝑘)

• topological order: 𝜋 = (𝜋1, … , 𝜋𝐾 ); parents set: (𝑝𝑎(1), … , 𝑝𝑎(𝐾))
3: PHASE 1: Simulate 𝑁 couples of time paths and get the difference

4: for 𝑛 ∈ {1, … , 𝑁} do

5: Create a (𝑡∗ +𝐻) ×𝐾 empty matrix 𝑌 𝑛 . Set 1 ∶ (𝑡∗ − 1) rows ∶= Ω𝑡∗−1
6: 𝑌 𝛿,𝑛 ∶= 𝑌 𝑛
7: Create a (𝐻 + 1) ×𝐾 matrix 𝐸̃, randomly sampling from 𝐸 (columnwise)

Note: denote any (𝑡, 𝑘) entry of any matrix 𝐸 with 𝐸𝑡,𝑘
8: Create a (𝐻 + 1) ×𝐾 matrix 𝐸̃𝛿 , as in line 7, but set 𝐸̃𝛿

𝑡∗ ,𝑘∗
∶= 𝛿

9: Create a (𝐻 + 1) ×𝐾 matrices 𝑈̃ and 𝑈̃ 𝛿 (initially empty)

10: Create a (𝐻 + 1) ×𝐾 matrices 𝐼𝑛;𝑘∗ ,𝛿 (initially empty)

11: for ℎ ∈ {0, … , 𝐻} do

12: for 𝑘 ∈ {𝜋1 … 𝜋𝐾} do

13: 𝑈̃ 𝛿
ℎ,𝑘

∶= 𝜑𝑘({𝑈̃ 𝛿
ℎ,𝑖
}𝑖∈𝑝𝑎(𝑘)) + 𝐸̃𝛿ℎ,𝑘 (with 𝜑𝑘(∅) = 0)

14: 𝑌 𝛿,𝑛
𝑡∗+ℎ,𝑘 ∶= 𝑓𝑘(𝑌

𝛿,𝑛
𝑡∗+ℎ−1, … , 𝑌 𝛿,𝑛

𝑡∗+ℎ−𝐿) + 𝑈̃ 𝛿
ℎ,𝑘

15: 𝑈̃ℎ,𝑘 ∶= 𝜑𝑘({𝑈̃ℎ,𝑖}𝑖∈𝑝𝑎(𝑘)) + 𝐸̃ℎ,𝑘
16: 𝑌 𝑛

𝑡∗+ℎ,𝑘 ∶= 𝑓𝑘(𝑌
𝑛
𝑡∗+ℎ−1, … , 𝑌 𝑛

𝑡∗+ℎ−𝐿) + 𝑈̃ℎ,𝑘
17: 𝐼𝑛,𝑘

∗ ,𝛿
ℎ,𝑘

∶= 𝑌 𝛿,𝑛
𝑡∗+ℎ,𝑘 − 𝑌

𝑛
𝑡∗+ℎ,𝑘

18: end for

19: end for

20: end for

21: PHASE 2: Average values

22: 𝐼𝑘
∗ ,𝛿,𝑡∗ ∶= 1

𝑁

∑𝑁
𝑛=1 𝐼

𝑛,𝑘∗ ,𝛿,𝑡∗

23: Output: 𝐼𝑘∗ ,𝛿,𝑡∗

Algorithm 2 requires as input estimates (from the observed data) of the functional relationship 𝜑̂𝑘(⋅) between innovations in 𝑢𝑡,𝑘
= 𝜑𝑘(𝑃𝑎(𝑢𝑡,𝑘)) +𝜀𝑡,𝑘 (for 𝑘 in 1, … , 𝐾); estimates of the lagged functional relationship 𝑓𝑘(⋅) in 𝑦𝑘,𝑡 = 𝑓𝑘(𝑦𝑡−1, …, 𝑦𝑡−𝑝)+ 𝑢𝑘,𝑡 (for 𝑘
in 1, … , 𝐾)5; estimates of the structural shocks 𝜀𝑡,1, … , 𝜀𝑡,𝐾 . These can be estimated through the following procedure. For each 𝑘 =
1, … , 𝐾 , if 𝑃𝑎(𝑢𝑡,𝑘) = ∅ then set ̂𝜀𝑡,𝑘 ∶= 𝑢̂𝑡,𝑘; else (non-parametrically) regress ̂𝑢𝑡,𝑘 on {𝑢̂𝑡,𝑖}𝑖∈𝑝𝑎(𝑘) and set ̂𝜀𝑡,𝑘 ∶= 𝑢̂𝑡,𝑘− 𝜑̂𝑘({𝑢̂𝑡,𝑖}𝑖∈𝑝𝑎(𝑘)).6

Each simulated7 path (𝑌 𝛿,𝑛 and 𝑌 𝑛) is computed iteratively at each time period, starting from the time point of the “treatment”. At 
each step, new values are generated summing (i) lagged effects 𝑓𝑘(𝑦𝑡−1, … , 𝑦𝑡−𝐿); with (ii) innovation terms 𝑢𝑡,𝑘 = 𝜑𝑘(𝑃𝑎(𝑢𝑡,𝑘)) + 𝜀𝑡,𝑘, 
for every 𝑘. New values of 𝜀𝑡,𝑘 are independently drawn from their marginal empirical distribution at each time horizon (except for 
the one set at 𝛿 at time 𝑡 in the treatment run). Since the innovation model is recursive, each 𝑢̃𝑡,𝑘 is computed iteratively at each 
time step by adding its structural shock 𝜀𝑡,𝑘 to the contemporaneous effect of its parents (𝑃𝑎(𝑢𝑡,𝑘)). Parents’ sets can be assigned 
in two alternative ways: (i) by simply taking the parents’ sets as given by the full version of RESIT as it appears in Appendix A; or 
(ii) in a more conservative fashion (see discussion above), by considering the sole topological order (see Algorithm 1 in section 2.4) 
and by regarding any variable 𝑢𝑡,𝑘 as a parent of those it precedes in that ordering. Either way, the functional forms 𝜑̂𝑘(⋅) of the 
contemporaneous effects are estimated via (nonparametric) regression of each variable over the parent set considered.

3. Simulation analysis

The simulation study documented in this section aims at evaluating the performance of our approach in estimating structural 
impulse response functions. We simulate a simple VAR with different contemporaneous causal structures and different parametriza-

tions. We then estimate the structural IRFs using Algorithm 2, but under different identification approaches, and, we systematically 
compare them. Our simulation results, as reported below, demonstrate that, in case of nonlinearity in the data generating process, our 

5 For simplicity, we dropped the time index from the lagged effects 𝑓𝑘,𝑡(⋅). A time-varying function can be incorporated into the algorithm we are discussing in this 
subsection by updating the 𝑓𝑘,𝑡(⋅) at each step.

6 With 𝑝𝑎(𝑘) we refer to the set of indices associated to the variables in 𝑃𝑎(𝑢𝑡,𝑘), for any 𝑘.
10

7 Simulated variables are marked with a tilde sign (∼).
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Table 1

Functional forms of nonlinear models. The parameters 𝛼 and 𝛽 are independently drawn from 
a uniform distribution with support [1, 4].

Causal chain Common cause v-structure

𝜑2() sign(𝑢𝑡,1)|𝑢𝑡,1|𝛼 sign(𝑢𝑡,1)|𝑢𝑡,1|𝛼 sign(𝑢𝑡,1)|𝑢𝑡,1|𝛼
𝜑3() sin(sign(𝑢𝑡,2)|𝑢𝑡,2|𝛽 ) sin(sign(𝑢𝑡,2)|𝑢𝑡,2|𝛽 ) sign(𝑢𝑡,1)|𝑢𝑡,1|𝛼 + sin(sign(𝑢𝑡,2)|𝑢𝑡,2|𝛽 )

procedure is able to satisfactorily estimate the structural IRFs and that a linear approximation may lead astray even under correctness 
of the recursive order.

3.1. Data generating processes

We simulate a 3-variables VAR model with one lag, which can be written as

𝑦𝑡 =𝐴1𝑦𝑡−1 + 𝑢𝑡, (20)

where 𝐴1, to control for the persistence of the process, is a lower triangular matrix with all elements below and on the main diagonal 
equal to 0.5. The 𝑢𝑡 terms are generated following three types of causal structures, which we call the “Causal chain” (21), “Common 
cause” (22), and “v-structure” (23):

Causal chain

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝜑2(𝑢𝑡,1) + 𝜀𝑡,2
𝑢𝑡,3 = 𝜑3(𝑢𝑡,2) + 𝜀𝑡,3

(21)

Common cause

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝜑2(𝑢𝑡,1) + 𝜀𝑡,2
𝑢𝑡,3 = 𝜑3(𝑢𝑡,1) + 𝜀𝑡,3

(22)

v-structure

⎧⎪⎨⎪⎩
𝑢𝑡,1 = 𝜀𝑡,1
𝑢𝑡,2 = 𝜀𝑡,2
𝑢𝑡,3 = 𝜑3(𝑢𝑡,1, 𝑢𝑡,2) + 𝜀𝑡,3

(23)

Furthermore, each generic model will be given three alternative parametrizations to (𝜑∙(⋅), 𝜀∙). We first define a “linear Gaussian” 
setting in which each 𝜑∙(𝑥) = 𝑥 and 𝜀𝑡,1, 𝜀𝑡,2, 𝜀𝑡,3 are mutually independent and (standard) normally distributed. Second, the “linear 
non-Gaussian” setting is characterized by the same identity function but the 𝜀𝑡,1, 𝜀𝑡,2, 𝜀𝑡,3 are drawn from a Laplace distribution with 
scales parameters 1, 2, 4, respectively. Finally, we define a “nonlinear Gaussian” setting in which shocks are drawn in the same 
fashion as in the “linear Gaussian” setting and the functional forms taken by 𝜑2(⋅) and 𝜑3(⋅) in each causal structure are reported in 
Table 1. We generate samples {𝑦𝑡}𝑇𝑡=1 of size 𝑇 = 250, 500, 1000.

3.2. Identification schemes

For each selected 𝑇 , type of structure and parametrization we generate 200 artificial (3-variate) time series, from which we 
estimate IRFs. These are constructed following Algorithm 2, according to five different schemes, which we call: (i) “theoretical” 
IRFs, (ii) Cholesky-based (linear) IRFs, (iii) true-graph-based nonlinear IRFs, (iv) true-topological-order-based nonlinear IRFs, and 
(v) Algorithm-1-based nonlinear IRFs.

Scheme (i) builds IRFs by applying Algorithm 2 to each artificial time series, except that instead of the estimated structural 
shock matrix (see “Input data” in the pseudo code) we use the true DGP’s one, instead of the estimated functional forms we use 
the autoregressive matrix 𝐴1, and the true generating functions 𝜑𝑘(⋅), and we use the correct set of parents (and topological order) 
implied by the true causal structure. We calculate IRFs using this scheme because we want to have a ground truth against which we 
can assess our procedure. In practice, scheme (i) is the application of Algorithm 2 to the true model, bypassing the model estimation 
step. For this reason, we call the produced IRFs “theoretical”.

In contrast, the remaining four procedures are based on estimates of the model. Scheme (ii) is meant to provide a benchmark to the 
approaches that, differently from this scheme, allow for nonlinearity. Here structural shocks are computed via Cholesky factorization 
of the reduced-form residuals’ covariance matrix, where the recursive ordering of the innovation structure is the true one, instead of 
11

being determined in a data driven fashion as Algorithm 1 does. Moreover, for the sake of comparison with the other schemes, we 
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do not apply here the standard linear approach that derives IRFs from MA coefficients, but we feed Algorithm 2 with the estimated 
linear coefficients. We label IRFs from this scheme “CHOL” (from Cholesky).

Scheme (iii) is similar to scheme (i) except that the functional (autoregressive and contemporaneous) dependencies are estimated 
from the data, on the basis of the true causal graph (which automatically implies a correct topological order). Functional forms are 
estimated via OLS as regards the autoregressive components and through Gaussian process regression as regards the contemporaneous 
structure. In practice, in this scheme we are bypassing the data-driven causal (order) search by using the correct specification of the 
model. The aim here is to isolate the performance of Algorithm 2, avoiding potentially compounding mistakes of Algorithm 1. We 
label IRFs from this scheme “TDAG” (i.e. true DAG).

Scheme (iv) is a slight variant of scheme (iii): we feed Algorithm 2 with a correct topological order and a fully connected DAG 
deduced from it, which may have extra edges with respect to the true DAG. Thus, we also isolate here the performance of Algorithm 2

(as in (iii)), but we allow the introduction of potentially irrelevant variables in its inputs, to see if they make a difference in terms of 
performance. Notice that Algorithm 1, which is involved in the next scheme, may also introduce these extra variables, so that scheme 
(iv) is a closer benchmark to scheme (v). Furthermore, scheme (iv) is a nonlinear counterpart of the Cholesky scheme (ii) because 
they are both based on the true topological order, without any further restrictions (i.e., they may include irrelevant covariates). We 
label IRFs from this scheme “TTOP” (i.e. true topological order).

Scheme (v) implements the data-driven approach proposed in Section 2 so that its assessment is the focus of this analysis, the 
previous schemes ultimately being benchmarks for this one. Here, from each generated time-series sample we estimate the topological 
order, from which we deduce a fully connected DAG and a corresponding set of parents, by Algorithm 1 and subsequently we apply 
Algorithm 2. As input for the functional forms we use OLS for the autoregressive part (as in schemes (ii-iii-iv)) and Gaussian process 
regression for the contemporaneous structure (as in schemes (iii-iv)). Recall from Section 2.5 that the structural shocks (further input 
of Algorithm 2) are recovered from the residuals of the regression model at the contemporaneous level. We label IRFs from this 
scheme “ALG1” (i.e. based on Algorithm 1).

3.3. Simulation results

Let us call IRF∙
𝑘,ℎ

the IRF referring to the responses of variable 𝑦𝑡,𝑘 to shock 𝜀𝑡,1, at horizon ℎ, using scheme ∙, where 𝑘 ∈ {2, 3}, 
ℎ ∈ {0, 1, 2, 3, 4}, ∙ ∈ {CHOL, TDAG, TTOP, ALG1}. For a given data generating process, we calculate the following average mean 
squared error:

ÂMSE
∙
= 1

10
1

200
∑
𝑘=2,3

4∑
ℎ=0

200∑
𝑙=1

(ÎRF
∙
𝑘,ℎ − ÎRF

theor.

𝑘,ℎ )2, (24)

where 𝑙 indicates a simulation run. We focus on the effect of the first shock to other variables since the first variable is always 
exogenous in all the causal structures we consider.

Table 2 shows estimated AMSE, averaged across 200 simulation experiments, for different values of 𝑇 and parametrizations, along 
with standard errors, for the causal-chain structure. Analogous results for the common-cause (Table 3) and v-structure (Table 4) are 
reported in Appendix C since they are qualitatively similar.

Looking at the top panels (of all these tables), we note that the ALG1 scheme (v) outperforms the Cholesky one (scheme ii) 
whatever the structure and sample size when the DGP is nonlinear (second row). Recall that scheme (v) has the advantage, over 
scheme (ii), of allowing for nonlinearity in the estimation of impulse response functions (since it uses Gaussian process regressions 
via Algorithm 2), when the data are generated by a nonlinear DGP, as in this case. But it undertakes the risky task of inferring the 
causal order from data.8 On the other hand, scheme (ii) runs in this case under a misspecified model (the linear one). But it has the 
advantage of overriding the search for a topological order from the data: it is given a correct one.

We observe a reversal in the relative accuracy of scheme (ii) and (v) when the model becomes linear (see first and third row 
in Table 2, subtables CHOL and ALG1). The poor performance of scheme (v) within the linear Gaussian setting does not come as a 
surprise since this class of ANMs is not identified. In contrast, the linear non-Gaussian model is identified, but scheme (ii) has the 
advantage of being endowed with the true topological order. Scheme (v) has the disadvantage of learning the causal order from 
data and having an estimation method which is not the most efficient for the linear case. Scheme (iv) (TTOP) fills the gap between 
scheme (v) and scheme (ii) in being a nonlinear approach — like the former — and hacking the order search — like the latter. As 
expected, scheme (iv) systematically beats scheme (v) in terms of AMSE. To assess in isolation the effect of the estimation method, 
one can compare scheme (ii) with scheme (iv) (cf. subtables CHOL and TTOP in Table 2). To assess in isolation the effect of causal 
learning, one can compare scheme (v) with (iv) (cf. subtables ALG1 and TTOP in Table 2). One can notice that the main source of 
error of scheme (v) depends on the distribution of the shocks. In the linear non-Gaussian case, the performance of scheme (v) is 
mostly hindered by the estimation method (AMSEs of TTOP are much closer to those of ALG1 than of CHOL). Notice that, in this 

8 Peters et al. (2014) report simulation results about the accuracy of the RESIT algorithm, showing that the performance (in a nonlinear setting) in terms of distance 
between the estimated structure and the correct DAG is good both in outperforming other established causal discovery algorithms, but also in absolute terms. We 
have replicated this analysis by applying RESIT to VAR residuals and we found similar results. We also studied the accuracy of Algorithm 1 in returning a correct 
topological order. Both these results are available upon request. The accuracy rate is satisfactory in most cases, but we also found that small samples (i.e. 𝑇 < 500) can 
be problematic for some causal structure (specifically for the common cause). Note that, however, this problem seems to have only a limited impact on the estimates 
12

of the structural IRFs (which is the main object of this study), as shown in the subsequent analysis reported in Fig. 4.
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Table 2

Average MSE, across 200 simulations, between IRFs estimated using different schemes (i.e. CHOL, TDAG, TTOP, ALG1) 
and the theoretical IRFs. MSE are calculated over the responses of 𝑦𝑡,2 and 𝑦𝑡,3 to the first shock (of one standard-deviation 
magnitude) and over the first five periods. The contemporaneous structure is the “causal chain”. We consider different 
values of 𝑇 (sample size) and three different model classes (Linear with Gaussian noises, non-linear with Gaussian noises 
and linear with non-Gaussian noises). Standard errors are reported in round brackets.

CHOL ALG1

T 250 500 1000 250 500 1000

Linear 0.034 0.020 0.015 0.257 0.244 0.249

Gaussian (1.42E-03) (7.51E-04) (5.20E-04) (8.26E-03) (7.81E-03) (7.97E-03)

Nonlinear 1.428 1.023 1.303 0.188 0.124 0.085

Gaussian (1.05E-01) (7.10E-02) (8.90E-02) (1.20E-02) (1.00E-02) (5.00E-03)

Linear 0.078 0.051 0.038 0.293 0.179 0.094

Non-Gaussian (3.53E-03) (1.92E-03) (1.82E-03) (1.36E-02) (8.11E-03) (4.88E-03)

TDAG TTOP

T 250 500 1000 250 500 1000

Linear 0.029 0.023 0.018 0.036 0.022 0.019

Gaussian (1.12E-03) (8.51E-04) (6.44E-04) (1.30E-03) (8.35E-04) (7.18E-04)

Nonlinear 0.142 0.086 0.091 0.135 0.086 0.081

Gaussian (8.00E-03) (9.00E-03) (8.00E-03) (7.00E-03) (7.00E-03) (8.00E-03)

Linear 0.152 0.085 0.060 0.230 0.123 0.079

Non-Gaussian (6.91E-03) (3.30E-03) (2.70E-03) (1.35E-02) (6.67E-03) (4.09E-03)

setting, the estimation method improves as the sample size increases, so that the performance of scheme (iii) and (iv) gets closer to 
scheme (ii). In the linear Gaussian case, the performance of scheme (v) is mostly hindered by the structure learning method (AMSEs 
of TTOP are much closer to those of CHOL than of ALG1).

Comparisons between scheme (iv) and scheme (iii) (subtables TTOP and TDAG) do not clearly discriminate between the two. It 
seems that within our sample range the less parsimonious modeling strategy (scheme iv) often allows to better mimic the DGP than 
what can be achieved by faithfully sticking to the actual DGP specification (scheme iii). This finding is important because it supports 
our decision to use Algorithm 1, i.e. a truncated version of the original RESIT by Peters et al. (2014). As regards of how AMSE 
changes with respect to the sample size 𝑇 , we notice that with scheme (ii) AMSE does not show any downward trend over 𝑇 when 
the DGP is nonlinear, while with scheme (v) AMSE shows a clear tendency to decrease, at least over the values of 𝑇 we consider.

Fig. 4 shows structural IRFs in the causal chain setting computed via Monte Carlo integration (Algorithm 2) under the theoretical 
scheme (i), the CHOL scheme (ii), and the ALG1 scheme (v), plotted from horizon 0 to 10. Dashed lines give the 68% confidence 
intervals of those averages. Specifically, the top panels show the dynamic responses of variable 2 (𝑦𝑡,2) to setting structural shock 
𝜀𝑡,1 to one at time 𝑡∗ = 2, while the bottom panels display their counterparts for variable 3 (𝑦𝑡,3). For the sake of conciseness and 
readability, we do not plot IRFs obtained with TDAG and TTOP since they are very similar to each other and tend to overlap with 
those obtained by ALG1. For the same reasons, we display simulation results only for the smallest samples (𝑇 = 250, left panels) 
and largest (𝑇 = 1000, right panels). Analogous figures for the common-cause and v-structure settings can be found in Appendix C

(Figs. 8 and 9, respectively). From these plots, one can notice that the ALG1-IRFs are in most cases, even at horizon equal to 
zero, indistinguishable from the theoretical ones. Moreover, the failure of the CHOL scheme in recovering contemporaneous shocks’ 
impacts is quite evident. Since CHOL is built on the correct (imposed a priori) topological order, this suggests that knowing this 
order is not enough to accurately estimate structural IRFs, but it is also crucial to allow for nonlinearities in the regression method, if 
present. The nonparametric regression we use (GP regression) seems to successfully capture the nonlinear contemporaneous effects.

4. Empirical application

Our empirical application studies the effects of macroeconomic shocks on nominal interest rate, inflation, output and financial 
conditions, using U.S. data. The study allows for nonlinearity at the contemporaneous level. We compare our findings with the results 
from a linear recursive SVAR model, highlighting the difference between the two results. This fact allows us to depart from a typical 
feature of linear SVAR models, namely the fact that the effect of a positive shock is by construction symmetric to the effect of a 
negative shock. Asymmetric effects of shocks have been studied, among others, by Lo and Piger (2005), Höppner et al. (2008), Kilian 
(2014), Hussain and Malik (2016). We should notice, however, that we are imposing a recursive structure with additive noises on 
the relationship among innovations, in a setting where the reduced form VAR is linear. This implies that the shock which is last in 
the topological order can only have a linear impact on the variables. Specifically, this means that if the monetary policy instrument 
is last, as it turns out to be the case in our application, its shocks have linear effects by construction.

We estimate a linear reduced-form VAR model with five variables: inflation (𝑝𝑖𝑡), output gap (𝑜𝑢𝑡𝑡), the federal funds rate (𝑟𝑡), 
13

industrial production (𝑖𝑝𝑡), and excess bond premium (𝑒𝑏𝑝𝑡). We take the data from the Federal Reserve Economic Database (FRED), 
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Fig. 4. DGP with “causal chain”. Theoretical (THEOR), linear (CHOL), and nonlinear (ALG1) IRFs for 𝑇 = 250 (left panels) and 𝑇 = 1000 (right panels). Each solid line 
exhibits the average, across 200 simulations, IRF from a unitary shock 1 (𝜀𝑡,1) to variable 2 (𝑦𝑡+ℎ,2) (top panels) or variable 3 (𝑦𝑡+ℎ,3) (bottom panels), for ℎ = 0, … , 9. 
Confidence intervals at 68% are reported in dashed lines.

except 𝑒𝑏𝑝𝑡, which we took from Forni et al. (2024). The data are collected at the quarterly frequency in U.S. and cover the period 
from 1973-Q1 to 2019-Q4 (188 observations). Inflation is computed as the change in the logarithm of the GDP deflator (FRED 
mnemonic GDPDEF). Output gap is computed as the deviation of the logarithm of real GDP (FRED mnemonic GDPC1) from the 
logarithm of potential GDP (FRED mnemonic GDPPOT), which we take from the U.S. Congressional Budget Office’s estimate. The 
series 𝑟𝑡 is set to the federal funds effective rate (FRED mnemonic FEDFUNDS). The series 𝑖𝑝𝑡 is taken from the index of industrial 
production (FRED mnemonic INDPRO). The five time series are plotted in Fig. 5. A three-lags VAR specification is selected according 
to the Akaike information criterion. The “portmanteau” test for residual autocorrelation does not reject the null hypothesis of zero 
autocorrelation at 0.01 level of significance.

We identify a SVAR model of the type of equation (15). As mentioned in Section 2, identification can be obtained by knowledge of 
the causal structure among innovation terms. As noted, for the sake of estimating structural impulse response functions, knowledge 
of the topological order is sufficient in our framework, given the recursiveness assumption. Therefore, as in the simulation analysis, 
we apply Algorithm 1 to the data (i.e., first step of RESIT to the reduced-form VAR residuals). Having obtained the topological order 
and a set of (potential) graphical parents from Algorithm 1, we feed Algorithm 2 with these two pieces of information. Thus, we 
can estimate the structural IRFs, setting the number of simulations for the Monte Carlo integration 𝑁 = 100. Both in Algorithm 1

and Algorithm 2, estimates of 𝜑𝑘(⋅) (i.e., functional dependence between innovation terms) are obtained through Gaussian process 
regressions.

To address uncertainty in the estimates of the structural IRFs, we perform a bootstrap analysis with 500 iterations. For each 
bootstrap iteration, we estimate a new VAR model and, maintaining the topological order that we got from the application of 
Algorithm 1 to the original data, we compute new contemporaneous effects and structural shocks.9 On the basis of this, we calculate 
structural IRFs following Algorithm 2.

9 We maintain the same topological order at each bootstrap iteration because we do not want to account for uncertainty about inference of the causal structure 
14

here. To do that, one can adapt the stability selection procedure by Meinshausen and Bühlmann (2010).
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Fig. 5. Employed time series. From the top, inflation (𝜋), output gap (𝑜) and nominal interest rate (𝑟). Data sample from 1953-Q3 to 2019-Q4.

The topological order that we obtain by applying Algorithm 1 to our time series is ⟨𝑝𝑖𝑡, 𝑖𝑝𝑡, 𝑜𝑢𝑡𝑡, 𝑒𝑏𝑝𝑡, 𝑟𝑡⟩, which supports the idea 
that the federal funds rate is set in reaction to movements of the other variables, since the Fed is supposed to continuously monitor 
the macroeconomic and financial conditions of the system. Inflation, macroeconomic activity, financial conditions do not respond to 
changes in the federal funds rate within the period, according to our findings. This is in tune with typical recursiveness assumptions 
used in SVAR-based monetary analysis (see Christiano et al., 1999).

For each nonlinear IRF we analyze, we consider the response of a variable 𝑦(𝑡+ℎ),𝑘 to a shock 𝜀𝑡,𝑗 of magnitude equal to one 
standard deviation of the variable 𝑦𝑡,𝑗 .10 We do it for ℎ = 0, … , 20. We compare these nonlinear IRFs with linear IRFs estimated using 
the following scheme: (i) we impose the Cholesky order derived from the topological order estimated by Algorithm 1 (i.e. ⟨𝑝𝑖𝑡, 𝑖𝑝𝑡, 
𝑜𝑢𝑡𝑡, 𝑒𝑏𝑝𝑡, 𝑟𝑡⟩); (ii) hence we get the structural shocks and the coefficients of the impact matrix; (iii) using the latter terms as input, 
we apply Algorithm 2 and get IRFs.

Fig. 6 (left panels) shows the median effects of a positive interest rate shock (i.e. a contractionary monetary policy shock) on 
the other variables, derived from bootstrapped nonlinear and linear IRFs. Confidence intervals refer to the interquartile range (i.e. 
the 25th and 75th percentiles). Notice that the effects of an expansionary monetary policy shock (right panels) are by construction 
completely symmetric to the contractionary ones, figuring 𝑟 as last in the topological order. Fig. 7 shows the median effects of a 
positive (left panel) and negative (right panel) inflation shock. In Appendix D (see Fig. 10 and Fig. 11), we also show the effects of 
the output and the excess bond premium shocks.

As regards the 𝑟 (positive) shock (Fig. 6, left panel), the reaction of inflation is positive for two quarters and then becomes negative 
after one year. The reactions of industrial production and output gap are decisively negative. The excess bond premium responds 
positively, but only after 3 quarters. Notice that the nonlinear and linear scheme cannot depart from each other by construction as 
regards this shock.

Looking at the responses of a positive inflation shock (Fig. 7, left panels), we see that industrial production has an instantaneous 
positive reaction. This holds both for the linear and nonlinear schemes. If we look at the responses of a negative inflation shock 

10 As starting date, we simply choose 𝑡∗ = 4, considering that the number of lags is equal to 3. Note, however, that due to the linearity of the reduced-form model, 
15

different choices would not affect our results.
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Fig. 6. Structural IRFs to a positive (left panels) and negative (right panels) interest rate shock of one-standard deviation magnitude. Each panel shows nonlinear 
structural IRFs obtained from Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm 2 but fed with coefficients derived from 
Cholesky factorization (blue lines, not distinguishable). Being 𝑟 last in the topological order, the two IRFs are identical. Solid lines refer to the median effects while 
dashed lines refer to the interquartile range computed over 500 bootstrap simulations.

(Fig. 7, right panels), the instantaneous effects are symmetric to the positive shock in the linear scheme by construction. But we 
find an asymmetry in the nonlinear scheme: the responses of 𝑖𝑝 to the negative inflation shock are also positive at the impact. In 
the subsequent periods, for 2-3 quarters, the effects of a positive 𝑝𝑖 shock on 𝑖𝑝 vanish and then backfire, under both the linear and 
nonlinear schemes. Under the latter scheme, the effects of a negative 𝑝𝑖 shock on 𝑖𝑝 remain on the positive sign. Other asymmetries 
are detectable also as regards the reactions of 𝑜𝑢𝑡, 𝑒𝑏𝑝, and 𝑟 to the same shock: the instantaneous reactions of output gap and excess 
bond premium (in the nonlinear scheme) are not symmetric between the positive and negative 𝑝𝑖 shock. In particular, although output 
gap reacts instantaneously to the 𝑝𝑖 shock with the opposite sign, the absolute value of such a reaction is greater and more evident 
(considering the position of confidence interval above the zero line) in the case of a negative 𝑝𝑖 shock. The short-term response of the 
federal funds rate (𝑟) to positive and negative inflation shocks under the nonlinear scheme is noteworthy for its asymmetry. Notably, 
16

when the system experiences a positive inflation shock, the federal funds rate reacts much more strongly, nearly doubling in absolute 
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Fig. 7. Structural IRFs to a positive (left panels) and negative (right panels) inflation shock of one-standard deviation magnitude. Each panel shows nonlinear structural 
IRFs obtained from Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm 2 but fed with coefficients derived from Cholesky 
factorization (blue lines). Solid lines refer to the median effects while dashed lines refer to the interquartile range computed over 500 bootstrap simulations.

terms compared to its response to a negative inflation shock, as regards the point estimates. In terms of confidence intervals, the 
impact is significantly positive after a positive inflation shock, but not significant after a negative inflation shock. This suggests that 
the FED is more reactive, in terms of changing the short term interest rate, to a positive inflation shock than a negative one.

Looking at Figs. 10 and 11 (Appendix D), we can detect some asymmetries in the contemporaneous responses of 𝑟 to both the 𝑜𝑢𝑡
and 𝑒𝑏𝑝 shocks. In particular, looking at the nonlinear scheme, the contemporaneous median response of 𝑟 is positive to 𝑜𝑢𝑡 shocks, 
no matter the sign, and, conversely, the contemporaneous median response of 𝑟 is negative to 𝑒𝑏𝑝 shocks, no matter the sign.

5. Conclusions

There is a departure from the linear model with Gaussian disturbances that can be exploited for identification, namely nonlinear-
17

ity, as long as the disturbances are additive. We have shown that this feature can be exploited to identify a structural VAR model that 
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contains nonlinearities in the cross-sectional structure. The identification criterion we have exploited in this paper is based on the 
following simple idea: in case of nonlinearity it is admitted an additive noise model (i.e. a model in which disturbances are indepen-

dent of covariates) from the cause to the effect, but, in the generic case (see conditions C1-C3 in section 2.3), not from the effect to 
the cause. Thus, by iterative regressions and subsequent independence tests, it is possible to determine the contemporaneous causal 
structure underlying a VAR model, under the assumption of recursiveness and mutual independence of the shocks. On this basis, we 
can recover structural impulse response functions, which we define as difference of conditional expectations and estimate through 
Monte Carlo integration. It also turns out that, for the sake of estimating impulse response functions, the inferred causal structure 
can contain some redundant links, as long as the topological order is correct. Simulation results have shown that the proposed 
search procedure and our scheme to estimate impulse response functions perform correctly under data generating processes satis-

fying the theoretical conditions. Moreover, if the data generating process is nonlinear, they outperform methods based on linearity 
assumptions, even under the correct zero restrictions. Our empirical analysis has shown that taking into account nonlinearity helps 
recovering the contemporaneous structure of the SVAR system. It may also make a substantial difference in terms of predicting the 
effect of macroeconomic shocks to the economy, particularly because it allows for asymmetric effects between positive and negative 
structural shocks.

The idea of exploiting nonlinearity for identification has been put into practice in this paper by recovering a topological order 
through Algorithm 1, but one can, of course, conceive different ways to implement it. Other procedures worth exploring are those 
in the family of the score-based approach to causal discovery (see, e.g., Peters et al., 2014: section 4.2, and Bühlmann et al., 2014). 
A limitation of our procedure can be seen in the recursiveness assumption. This has been relaxed, in the bivariate case, by Mooij 
et al. (2011), but further research is needed for the case with more than two variables and, more in general, for its adaptation 
to the structural VAR framework. Another interesting path of research is the nonlinear ICA approach, which has been pioneered 
by Hyvärinen and Pajunen (1999) and recently developed by Monti et al. (2020) and Gunsilius and Schennach (2023). This class 
of blind source separation methods departs from the additive noise model framework studied in this paper and its applicability to 
macroeconomic data is still to be explored. Our hope is that the potentiality that nonlinearity has shown for identification will foster 
the adoption of this idea within the field of econometrics.

Appendix A. Complete RESIT algorithm

Algorithm 1 full VAR + RESIT (Phases 1-2 are from Peters et al., 2014).

1: Input: A K-dimensional time series vector (𝑦𝑡,1, … , 𝑦𝑡,𝐾 )′
2: PHASE 0: Estimate the reduced-form model.

3: Estimate a reduced-form time series model of the class GVAR-ANIM, see eq. (1) and extract residuals 𝑢̂𝑡 = (𝑢̂𝑡,1, … , ̂𝑢𝑡,𝐾 )′ . To simplify the notation, let us call 
𝑢̂𝑡,𝑘 ≡ 𝑣𝑘 , for 𝑘 = 1, … , 𝐾 .

4: 𝑆 ∶= 1, ...,𝐾 , 𝜋 ∶= [ ]

5: PHASE 1: Determine topological order.

6: repeat

7: for 𝑘 ∈ 𝑆 do

8: Regress 𝑣𝑘 on {𝑣𝑖}𝑖∈𝑆⧵{𝑘} and obtain residuals 𝑒𝑘
9: Measure dependence between 𝑒𝑘 and {𝑣𝑖}𝑖∈𝑆⧵{𝑘}

10: end for

11: Let 𝑘∗ be the 𝑘 with the weakest dependence

12: 𝑆 ∶= 𝑆 ⧵ 𝑘∗
13: 𝑝𝑎(𝑘∗) ∶= 𝑆
14: 𝜋 ∶= [𝑘∗, 𝜋]
15: until #𝑆 = 0
16: Output: 𝜋

17: PHASE 2 (pruning): Remove superfluous edges.

18: for 𝑘 ∈ {2, … , 𝐾} do

19: for 𝑝 ∈ 𝑝𝑎(𝜋(𝑘)) do

20: Regress 𝑣𝜋(𝑘) on {𝑣𝑖}𝑖∈𝑝𝑎(𝜋(𝑘))⧵{𝑝} .
21: if residuals are independent of {𝑣𝑖}𝑖∈{𝜋(1),…,𝜋(𝑘−1)} then

22: 𝑝𝑎(𝜋(𝑘)) ∶= 𝑝𝑎(𝜋(𝑘)) ⧵ {𝑝}
23: end if

24: end for

25: end for

26: Output: (𝑝𝑎(1), … , 𝑝𝑎(𝐾))
Note: with 𝑝𝑎(𝑘) we refer to the set of indices associated to the variables in 𝑃𝑎(𝑣𝑘), for any 𝑘.
18
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Appendix B. Discussion on consistency

The method proposed provides the topological order and causal structure among innovation terms and allows us to estimate 
structural impulse response functions. As one gets more data, one would hope that the recovered order/structure is correct and that 
the estimated IRFs would converge to the true IRFs, under the assumptions that the underlying data generating process is GVAR-ANIM 
and that the relationships between innovation terms (equation (3)) can be described by a multivariate ANM under assumptions (C1)-

(C3). While it is clear that an unidentified model cannot be consistently estimated, it is not necessarily true that identifiability implies 
consistency (see Deistler and Seifert, 1978; Gabrielsen, 1978). Studying consistency and other statistical properties (e.g. asymptotic 
normality, efficiency) of the entire procedure, considering the different options in terms of model specification and estimation, is a 
task we leave for future research. In the following, however, we refer to some key results for such task.

1. Assume a joint distribution 𝑃 (𝑢) generated by a GVAR-ANIM, associated to a DAG  representing the structural relations 
between innovation terms 𝑢𝑡 = (𝑢𝑡,1, … , 𝑢𝑡,𝐾 )′. Assume that: (i) conditions C1-C3 are satisfied; (ii) the 𝑢𝑡 are consistently estimated 
from the reduced-form VAR model (Algorithm 1, Phase 0); (iii) 𝜑𝑘(⋅) is estimated with a consistent regression method, for each 𝑘; 
(iv) the dependence measures (Algorithm 1, Phase 1) is correct and independence tests (Algorithm 1, Phase 2, see Appendix A) are 
consistent. Then the output of the (full) Algorithm 1 is guaranteed to be correct. This statement generalizes Theorem 34 in Peters 
et al. (2014) to the case of VAR-estimated input and presupposes the identifiability result of Theorem 3 (section 2.3).

2. The regression method to estimate 𝜑𝑘(⋅) is user-specified in our procedure, with the caveat that linear regression is not allowed, 
except in the case in which the structural shocks are nonnormal. In our simulation analysis and empirical application, we use Gaussian 
process regressions, whose consistency has been studied by Williams and Rasmussen (2006, Chapter 7) in the general case and by 
Choi and Schervish (2007) in the univariate case. Following the latter authors, let us consider 𝑌𝑖 = 𝜂(𝑋𝑖) + 𝜖𝑖 (𝑖 = 1, … , 𝑛), where 
we are interested in estimating 𝜂(𝑥) = 𝐸[𝑌 |𝑋 = 𝑥]. Assume: (i) 𝜖𝑖 ∼𝑁(0, 𝜎2) or 𝐷𝐸(0, 𝜎) (𝐷𝐸 stands for double exponential, i.e. 
Laplace, distribution); (ii) 𝜂(⋅) is a random process with a Gaussian process prior distribution: 𝜂(⋅) ∼𝐺𝑃 (𝜇(⋅), 𝑅(⋅, ⋅)); (iii) smoothness 
conditions on 𝜇(⋅), 𝑅(⋅, ⋅)), and 𝜂(⋅) (in particular, continuously differentiable mean function 𝜇(𝑥) and covariance function 𝑅(⋅, ⋅)
having continuous fourth partial derivatives). Let the posterior distribution 𝑝𝑛,𝑁 (𝜂|𝑋, 𝑌 ) be, for each neighborhood 𝑁 of the true 
regression function 𝜂0 and each sample size 𝑛: 𝑝𝑛,𝑁 = Pr({𝜂 ∈ 𝑁}|𝑋1, … , 𝑋𝑛, 𝑌1, … , 𝑌𝑛). Under the assumptions above, Choi and 
Schervish (2007) show that the posterior distribution of 𝜂 is almost surely consistent, i.e., for every 𝑁 , lim𝑛→∞ 𝑝𝑛,𝑁 = 1 a.s.

As an alternative nonparametric regression method to estimate 𝜑𝑘(⋅), let us consider the Nadaraya-Watson estimator. Considering 
again the regression function 𝜂(𝑥), this estimator computes 𝜂̂(𝑥) =

∑𝑛
𝑖=1𝑤𝑖𝑌𝑖 where 𝑤𝑖 =

𝐾ℎ(𝑋𝑖−𝑥)∑𝑛
𝑗=1𝐾ℎ(𝑋𝑗−𝑥)

, being 𝐾ℎ a kernel function 

with bandwidth ℎ. It has been established (see, e.g., Györfi et al., 2002) that if 𝑛ℎ →∞ and 𝑛 →∞ then the estimator is consistent 
(the result has also been extended to the multivariate case).

3. Conditions for a consistent estimation of a fully non-parametric (but time invariant) reduced-form GVAR-ANIM (see equation 
(1)) are discussed in Härdle et al. (1997). Nonparametric kernel estimation turns out to be consistent under the conditions discussed 
above for the Nadaraya-Watson estimator with the addition that the underlying process must be 𝛼- or 𝜙-mixing. In our simulation and 
empirical application, we actually estimate a linear reduced-form VAR. Here the least squares estimator is consistent and asymptotic 
normal (even in the presence of unit roots with a number of lags strictly greater than one) under general conditions (see Kilian and 
Lütkepohl, 2017). Notice, however, that we cannot assume normality of the reduced-form residuals here, since this would imply a 
linear form in the conditional expectation function. Conditions for consistency in the case of a linear non-Gaussian SVAR are studied 
by Gouriéroux et al. (2017).

4. The dependence measure and the independence test used in the Algorithm 1 (full version, see Appendix A) are also user-

specified in our procedure, under the condition that they account for order statistics. In our applications, we use the nonparametric 
measure of dependence and the kernel independence test proposed by Gretton et al. (2007), who prove consistency of the test by 
deriving distribution of the test both under the null hypothesis of independence and under the alternative. The distribution of the 
test statistics, as the sample size approaches infinity, is parameterised in terms of kernels of the data.
19
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Appendix C. Further simulation results: common-cause and v-structure

Table 3

Average MSE, across 200 simulations, between IRFs estimated using different schemes (i.e. CHOL, TDAG, TTOP, 
ALG1) and the theoretical IRFs. MSE are calculated over the responses of 𝑦𝑡,2 and 𝑦𝑡,3 to the first shock (of one 
standard-deviation magnitude) and over the first five periods. The contemporaneous structure is the “common 
cause”. We consider different values of 𝑇 (sample size) and three different model classes (Linear with Gaussian 
noises, non-linear with Gaussian noises and linear with non-Gaussian noises). Standard errors are reported in 
round brackets.

CHOL ALG1

T 250 500 1000 250 500 1000

Linear 0.031 0.019 0.014 0.200 0.209 0.189

Gaussian (1.29E-03) (7.05E-04) (4.74E-04) (7.27E-03) (7.40E-03) (7.22E-03)

Nonlinear 1.403 1.01 1.28 0.185 0.12 0.077

Gaussian (1.04E-01) (7.00E-02) (8.80E-02) (1.20E-02) (9.00E-03) (4.00E-03)

Linear 0.068 0.045 0.035 0.268 0.162 0.089

Non-Gaussian (3.09E-03) (1.74E-03) (1.58E-03) (1.22E-02) (7.12E-03) (4.51E-03)

TDAG TTOP

T 250 500 1000 250 500 1000

Linear 0.028 0.023 0.018 0.031 0.019 0.017

Gaussian (1.01E-03) (8.27E-04) (6.16E-04) (1.01E-03) (6.85E-04) (6.20E-04)

Nonlinear 0.155 0.093 0.094 0.14 0.089 0.081

Gaussian (8.00E-03) (9.00E-03) (8.00E-03) (7.00E-03) (6.00E-03) (8.00E-03)

Linear 0.179 0.102 0.069 0.182 0.102 0.070

Non-Gaussian (9.27E-03) (4.80E-03) (3.30E-03) (1.04E-02) (5.37E-03) (3.52E-03)

Table 4

Average MSE, across 200 simulations, between IRFs estimated using different schemes (i.e. CHOL, TDAG, TTOP, 
ALG1) and the theoretical IRFs. MSE are calculated over the responses of 𝑦𝑡,2 and 𝑦𝑡,3 to the first shock (of one 
standard-deviation magnitude) and over the first five periods. The contemporaneous structure is the “v-structure”. 
We consider different values of 𝑇 (sample size) and three different model classes (Linear with Gaussian noises, 
non-linear with Gaussian noises and linear with non-Gaussian noises). Standard errors are reported in round 
brackets.

CHOL ALG1

T 250 500 1000 250 500 1000

Linear 0.019 0.010 0.008 0.084 0.089 0.094

Gaussian (8.23E-04) (4.23E-04) (2.97E-04) (4.56E-03) (5.01E-03) (5.11E-03)

Nonlinear 0.936 0.678 0.861 0.118 0.064 0.048

Gaussian (9.90E-02) (6.80E-02) (8.50E-02) (1.10E-02) (5.00E-03) (4.00E-03)

Linear 0.057 0.034 0.023 0.255 0.135 0.057

Non-Gaussian (2.79E-03) (1.42E-03) (1.26E-03) (1.40E-02) (7.07E-03) (3.44E-03)

TDAG TTOP

T 250 500 1000 250 500 1000

Linear 0.016 0.012 0.009 0.023 0.014 0.011

Gaussian (7.14E-04) (5.00E-04) (3.65E-04) (9.47E-04) (5.73E-04) (4.37E-04)

Nonlinear 0.088 0.049 0.053 0.089 0.053 0.046

Gaussian (7.00E-03) (6.00E-03) (7.00E-03) (7.00E-03) (6.00E-03) (5.00E-03)

Linear 0.121 0.064 0.049 0.207 0.102 0.066

Non-Gaussian (8.11E-03) (3.94E-03) (3.19E-03) (1.26E-02) (5.60E-03) (3.95E-03)
20
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Fig. 8. DGP with “common cause”. Theoretical (THEOR), linear (CHOL), and nonlinear (ALG1) IRFs for 𝑇 = 250 (left panels) and 𝑇 = 1000 (right panels). Each 
solid line exhibits the average, across 200 simulations, IRF from a unitary shock 1 (𝜀𝑡,1) to variable 2 (𝑦𝑡+ℎ,2) (top panels) or variable 3 (𝑦𝑡+ℎ,3) (bottom panels), for 
ℎ = 0, … , 9. Confidence intervals at 68% are reported in dashed lines.

Fig. 9. DGP with “v-structure”. Theoretical (THEOR), linear (CHOL), and nonlinear (ALG1) IRFs for 𝑇 = 250 (left panels) and 𝑇 = 1000 (right panels). Each solid line 
exhibits the average, across 200 simulations, IRF from a unitary shock 1 (𝜀𝑡,1) to variable 2 (𝑦𝑡+ℎ,2) (top panels) or variable 3 (𝑦𝑡+ℎ,3) (bottom panels), for ℎ = 0, … , 9. 
21

Confidence intervals at 68% are reported in dashed lines.
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Appendix D. Empirical results: further IRFs

Fig. 10. Structural IRFs to a positive (left panels) and negative (right panels) output gap shock of one-standard deviation magnitude. Each panel shows nonlinear 
structural IRFs obtained from Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm 2 but fed with coefficients derived from 
Cholesky factorization (blue lines). Solid lines refer to the median effects while dashed lines refer to the interquartile range computed over 500 bootstrap simulations.
22
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Fig. 11. Structural IRFs to a positive (left panels) and negative (right panels) excess bond premium shock of one-standard deviation magnitude. Each panel shows 
nonlinear structural IRFs obtained from Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm 2 but fed with coefficients 
derived from Cholesky factorization (blue lines). Solid lines refer to the median effects while dashed lines refer to the interquartile range computed over 500 bootstrap 
simulations.
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