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1. Introduction

The string dictionary problem is a classic one in the string-matching
field. Given a set S of n strings of variable length drawn from an
alphabet X, the goal is to build a data structure that stores .S and
efficiently answers membership queries on any string ¢ € £*, namely,
checking whether g € S. Sometimes, the data structure is required to
answer a more powerful query, which finds the lexicographic position
of g within the sorted set S (aka the rank of g in §). The attention
to this kind of query is motivated by the fact that it also enables the
implementation of several other queries, such as the prefix search, which
finds all the strings in S prefixed by ¢, and the range search, which
finds all the strings in .S that fall in a given range. We do not consider
update operations and thus assume that S is static. This is common
in several storage systems, such as the ones based on LSM-trees [1,2],
which support updates by periodically merging static sorted string sets.

The recent explosion of massive string dictionaries in several ap-
plications—such as databases [2,3], bioinformatic tools [4], search
engines [5], code repositories [6], and string embeddings [7,8], just
to name a few — has revitalized the interest in solving the problem in

efficient time and space by taking into account the hierarchy of memory
levels that are involved in their processing.

Different solutions have been proposed over the years. A trivial one,
but widely used in practice, consists of using a binary-searched array
of string pointers, which incurs random memory accesses and possibly
1/0s. The classic solution hinges upon the trie data structure [9], a
multiway tree that stores each string in S as a root-to-leaf path, and
whose edges are labeled with either one character from X (the so-
called uncompacted trie) or a substring from the strings in S (the
so-called compacted trie). This historical solution has undergone over
the years many significant developments that improved its query or
space efficiency (see also [10] and refs therein) such as compacting
subtries [10,11], using adaptive representations for its nodes [12—
14], succinct representations of its topology [3,15], cache-aware or
disk-based tree layouts [16,17], and even replacing it with learned
models [18].

Among the most recent and performing variants of tries, we men-
tion: ART [14], CART [19], Path Decomposed Trie (PDT) [20], Fast
Succinct Trie (FST) [3], ctrie++ [11], and CoCo-trie [10]. According to
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the most recent experimental results published in [10], we know that
ART, CART, and ctrie++ are space-inefficient and offer query times on
par with the other data structures. The other three proposals —namely,
FST, PDT, and CoCo-trie— stand out as the most interesting ones
because they offer the best space-time trade-offs to date. Nevertheless,
they incur three main “limitations”: they are very complex to imple-
ment; their code is highly engineered, and thus difficult to maintain
or adapt to different scenarios (e.g., rank operations, adding satellite
information); and, finally, they are designed to compress and index the
string dictionary in internal memory.

In this paper, we ask ourselves whether this “sophistication” is re-
ally needed in practice to achieve efficient time and space performance
on massive string dictionaries, namely, the ones in which the number
n of strings and their total length are so large that .S has to be kept in
slow storage, such as HDDs or SSDs, or in far memories [21].

Inspired by the theoretical proposals of [17,22-24], our solution
consists of decoupling string indexing and string storage via a two-level
approach [25]. The on-disk storage level compresses the sorted strings
in S via rear coding [16] and partitions them into blocks of fixed size.
The indexing level exploits a succinctly-encoded Patricia trie [23,26]
built on the first string of each block so that it plays the role of a router
for determining the block that possibly contains the query string q.
Then, that block is fetched from the storage level, decompressed, and
eventually scanned to search for the (lexicographic position of the)
string ¢. Now, as long as the indexing level is small enough to fit in
internal memory, we can solve the query in at most two I/Os without
resorting to more complicated solutions [17,23].

A proper evaluation of this two-level approach demands the use of
massive string datasets. Unfortunately, previous evaluations [3,10,20]
are of little help here because they employ datasets with at most
233 million strings and of size at most 9.9 GB. For this reason, we
introduce two datasets that are at least one order of magnitude larger:
one consisting of URLs from various Web crawls (about 3.5 billion
strings for a total of 272 GB) [27], the other consisting of names of
source code files from the Software Heritage initiative (about 2 billion
strings for a total of 69 GB) [28].

Thanks to large-scale experiments, we can provide (often unex-
pected) answers to several interesting questions arising in the design
and engineering of massive string dictionaries:

» Do we need to employ sophisticated compression techniques for the
storage of sorted strings? No, we show that simple methods like
rear coding obtain very competitive compression ratios while
providing much faster compression and decompression speeds
than dictionary-based compressors (such as Gzip, Zstd, Xz, Brotli),
grammar compressors (Re-Pair [29]), and even recent proposals
(FSST [30]). Furthermore, when considering a block-wise com-
pression of strings, which facilitates random access, dictionary-
based compressors might actually obtain a worse compression
ratio.

Do we need sophisticated data structures to index strings in mem-
ory? No, we show that sophisticated string dictionaries like FST,
PDT, and CoCo-trie are unnecessarily complex for this purpose
because they do not provide substantial space-time performance
advantage compared to our well-engineered succinct Patricia trie,
which is also much faster to construct.

Does a faster in-memory index always improve the overall perfor-
mance of the two-level string dictionary? No, we show that the
fastest in-memory index (namely, a binary-searched array of
strings') exhibits a worse search performance than the Patricia
trie when considering not only the index access but also the disk
access in scenarios with limited internal memory and large on-
disk storage levels. This is due to the fact that using more internal

1 This is a rudimentary but nonetheless effective solution in practice, as
attested by its use on some real data systems like RocksDB [31].
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memory for a faster index actually steals space available for
caching disk pages and thus increases page faults. Our Patricia trie
implementation, indeed, takes only at most 195 MB of internal
memory (three orders of magnitude smaller than the dataset size),
which is up to 5.2x smaller than the array-based solution, and this
turns out to impact successfully the overall search performance.

Is caching of disk pages the best use we can make of the remaining
internal memory space? No, we show that we can construct a
special in-memory cache that, given a query workload that is
representative of future queries, augments the Patricia trie with
additional information to reduce the number of I/Os and make
queries faster compared to using just the operating system’s cache
(e.g., up to 8.1x faster with under 41 MB of in-memory cache).

Overall, we show that our two-level approach is a robust candidate
for indexing massive string dictionaries, and it paves the way for further
investigations and engineering, as we elaborate upon in the concluding
section of this paper.

Finally, we note this paper extends its conference version [32] by
further elaborating on the content covered in Sections 2 and 3.2, and
by introducing the following new contributions:

» The experimental evaluation of different compression techniques
to adopt for the storage level (Section 4.1 and Figs. 3 and 5);

» A new approach that constructs an in-memory cache to speed up
queries by conceptually interpolating between a Patricia trie and
a compacted trie according to a given internal-memory budget
(Section 3.3);

» The experimental evaluation of the impact of this new caching
approach on our two-level string dictionary (Section 4.4 and
Figs. 9-14).

2. Background

We now describe some basic ingredients of our two-level approach,
starting from the main data structure we use to index and search strings
in internal memory.

The Patricia trie [26] for a string set .S is derived from the com-
pacted trie of S by keeping for every single edge its first labeling
character, and by storing at each node the length of the (prefix of the)
string spelled out by that root-to-node path. Fig. 1 shows an example
of a Patricia trie built on a set of 8 strings.

Even if the Patricia trie strips out some information from the com-
pacted trie, it is still able to support the search for the lexicographic
position of a query string ¢ among a sorted sequence of strings, with
the significant advantage (discussed below) that this search needs to
access only one single string, and hence execute typically 1 random I/0
instead of the |g| random I/Os potentially incurred by the traversal of
the compacted trie due to accessing its (possibly long) |¢| edge labels.
This algorithm is called blind search in the literature [23,25]. It is a little
bit more complicated than prefix searching in classic tries, because of
the presence of only the first character at each edge label. Technically
speaking, the blind search consists of three stages.

Stage 1: Downward traversal. Trace a downward path in the Pa-
tricia trie to locate a leaf / which points to one of the in-
dexed strings sharing the Longest Common Prefix (LCP) with ¢
(see [23] for the proof). The traversal compares the characters
of g with the single characters which label the traversed edges
until either a leaf is reached or no further branching is possible.
In this last case, we can choose / as any descendant leaf from
the last traversed node; in our implementation, we will take the
leftmost one.

Stage 2: LCP computation. Compare g against the string s pointed to
by leaf /, in order to determine their LCP length .
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Stage 3: Upward traversal. Traverse upward the Patricia trie from /
to determine the edge e = (u, v) where the mismatched character
s[# + 1] lies. If s[# + 1] is a branching character (and recall that
s[€+1] # g[£+1]), then we determine the lexicographic position
of g[¢ + 1] among the branching characters of u. Say this is
the ith child of u, the lexicographic position of ¢ is therefore
to the immediate left of the subtree descending from this ith
child. Otherwise, the character s[# + 1] lies within the edge e
and after its first character, so the lexicographic position of g is
to the immediate right of the subtree descending from edge e if
ql?¢ + 1] > s[¢ + 1], otherwise, it is to the immediate left of that
subtree.

As an example, assume we are searching for the string g = “alarm”
on the Patricia trie in Fig. 1. In Stage 1, we first trace the path that
spells “al”, the first two characters of ¢q. Then, we reach a node in
which no further branching is possible because the fourth letter of ¢
does not match any outgoing edge. Therefore, we choose the leaf / as
the leftmost descendant of the current node, i.e. the leaf corresponding
to s; = “algebra”. In Stage 2, we compare s; and ¢ and determine their
LCP length ¢ = 2. In Stage 3, we traverse upward the Patricia trie from /
until reaching the edge e where the mismatched character ¢[#+1] = “a”
is, which in our case is the second edge traversed in Stage 1, i.e. the
one labeled “1”. Then, we notice that the mismatched character g[¢ + 1]
is smaller than s,[¢ + 1], so the lexicographic position of g is to the
immediate left of the subtree descending from edge e, i.e. it is between
5o and s,.

The topology of the Patricia trie can be represented in several
different ways, like, for example, using pointers or succinct encodings.
Since we aim for space savings, we will use the latter and, in particular,
the Level-Order Unary Degree Sequence (LOUDS) [15] and the Depth-
First Unary Degree Sequence (DFUDS) [33]. Both encode the trie
topology with a bitvector in which a node of degree d is represented
by the binary string 190. The difference is the order in which the
nodes are visited and the corresponding binary strings are written in
the output bitvector: in level-wise left-to-right order for LOUDS, and in
preorder for DFUDS. For our implementation of DFUDS, we follow [34]
and prepend 110 to this binary representation; instead for LOUDS, we
follow [3] and prepend no bits. See Fig. 1 for an example of LOUDS
and DFUDS representations.

Regarding the compression of a lexicographically-sorted set of
strings, we will concentrate on two simple techniques: front cod-
ing [16,25] and rear coding [16]. Front coding represents each string
with two values: an integer denoting the length of the LCP between
the considered string and the previous one in the sequence, and the
remaining suffix of the considered string obtained by removing that
LCP. If the string has no predecessor, the LCP length is set to 0. In rear
coding, the suffix is obtained in the same way as in front coding, but
the integer represents the number of characters to remove from the
previous string to obtain the longest common prefix.

As an example, for the sorted set of strings {algebra, algebraic,
algorithm, ant, anxiety, machine, three, typo}, front coding produces
the pairs (0,algebra) (7,ic) (3,orithm) (I,nt) (2,xiety) (0,machine)
(0, three) (1,ypo), while rear coding produces the pairs (0,algebra)
(0,ic) (6,orithm) (8,nt) (1,xiety) (7, machine) (7, three) (4,ypo).

Rear coding may be more efficient than front coding since it does
not encode the length of repeated prefixes [16,17]. It goes without
saying that a set of strings (not necessarily sorted) can also be con-
catenated and compressed with dictionary-based and grammar-based
compression techniques. In the former group, there are compressors
(such as Gzip, Xz, and Zstd) based on the Lempel-Ziv algorithm [35],
which processes the strings left-to-right by replacing each repeated
substring with a reference to an earlier occurrence from a fixed-length
sliding window. Another recently proposed dictionary-based compres-
sor is FSST [30], which exploits a properly constructed table of 255
entries to replace as many frequently occurring substrings of up to
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8 bytes with 1-byte codes. In the latter group, there are techniques
such as Re-Pair [29], which compress repeated substrings by generating
grammar rules that are then used to encode those repetitions via rule
IDs. In Section 4.1 we will experiment with several of these approaches
and show that our choice of rear coding is an effective one because it
achieves a good compromise among compression speed, decompression
speed, and compression ratio.

3. Our two-level approach

As anticipated in the Introduction, our string dictionary consists
of two levels: a storage level (residing on disk), which consists of a
sequence of fixed-size blocks where strings are stored in lexicographic
order and compressed; and an indexing level (residing in internal mem-
ory), which consists of a succinctly-encoded Patricia trie (PT) that
indexes the first string of every block. The following Sections 3.1 and
3.2 detail these two levels, while Section 3.3 describes how to cache in
internal memory some properly-chosen substrings to reduce disk I/Os.

3.1. Storage level

For the on-disk storage level, let us consider the sequence of
lexicographically-sorted strings, and disk blocks of size 4, 8, 16, and
32 KiB. The first string of each block is stored explicitly (i.e., not
compressed), whereas the subsequent strings are compressed with rear
coding until the block is (almost) full, that is, it cannot host the
subsequent rear-coded string s. In this case, the current block is padded
with zeros, and a new block is started by setting its first string to s. The
lengths in rear coding are stored with a variable-byte encoder to keep
byte alignment, and thus speed up string decompression. Of course,
other encoders could be applied [36-40].

Since the blocks are of fixed size, the indexing level just needs to
return the rank of the block containing the query string, which is then
multiplied by the block size to get the byte offset of that block on
disk. However, since the strings have variable length but the block
size is fixed, to efficiently compute the rank of the query string ¢ in
S, we need to store for each block b an integer indicating how many
dictionary strings appear before it in the lexicographic order, denoted
with c¢(b). This way, let b be the disk block containing the lexicographic
position of the query string ¢: the rank of ¢ is then computed by
summing c(b) with the relative rank of ¢ among the strings in 5. The
latter value is obtained via a linear scan and decompression of the block
b, which takes advantage of rear coding and LCP length information to
possibly skip some characters, as detailed in [41, §6]. For simplicity,
we store the integers c¢(b) in an in-memory packed array that allocates
some bits per element sufficient to contain the largest one. Since these
integers are increasing, one could save some further space by using
a randomly accessible compressed integer dictionary (see e.g. [42,43]
and references therein), but this is deferred to subsequent studies.

Clearly, one could apply other compression techniques on top of or
in place of rear coding, such as entropy coding, grammar compression,
and dictionary compression. These techniques are useful for reducing
the space of in-memory string dictionaries [30,41,44-46]. Hence we
experiment with several of them in Section 4.1 (see also Fig. 4) and
find that our choice of rear coding hits a sweet spot among compression
speed, decompression speed, and compression ratio. We finally mention
that, compared to the approach of creating variable-sized blocks with a
fixed number of (front- or rear-coded) strings [41,46], our use of fixed-
size blocks allows for better compression because it may take more
advantage of runs of consecutive strings sharing long common prefixes,
which thus result highly compressible in one single block.

The storage level is accessed by memory-mapping the corresponding
file (via the mmap system call), which compared to explicit reads of
disk blocks allows a simpler implementation [47].
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S1 S2 53
LOUDS
Topology | 1110 1110 0 110 0 110 110 0 0 0 0 0 0
Labels | amt bln hy eo tx
Lengths 0 1 1 2 1
Leaves 5 0 671234

S4
DFUDS
110 1110 1110 0 110 0 0 110 0 0 0 110 0 ©
amt bln eo tx hy
0 1 2 1 1

Fig. 1. At the top, the Patricia trie on the 8 strings {abduct, algebra, algorithm, ant, anxiety, machine, three, typo} corresponding to the leaves s, ...,s;. Outside each node, we
write its position in the LOUDS order, in the DFUDS order, and its degree in unary, respectively. At the bottom, we show the two succinct representations: LOUDS on the left,
and DFUDS on the right. Notice that the Labels sequence stores the first character of every trie edge, and the Lengths sequence stores the length of the substring spelled on the
edge that leads to each node. In the LOUDS representation, there is also a Leaves sequence storing the ranks of the strings corresponding to the leaves.

3.2. Indexing level

The indexing level consists of a Patricia trie (PT) built on the first
string of every block in the storage level. We succinctly encode the
Patricia trie by considering one of two succinct representations of its
topology, either LOUDS or DFUDS. Furthermore, we use two additional
sequences: one for the single characters labeling the edges of the
Patricia trie, and the other for the lengths of the string prefixes spelled
out by root-to-node paths. Both sequences are stored as packed arrays
whose elements are ordered according to the topology representation,
thus in level-wise order for LOUDS and in preorder for DFUDS. To
reduce the number of bits needed to store the lengths of the string
prefixes, we store just the length of the substring spelled by the edge
that leads to each node, since we can easily recover the original value
by summing the lengths of the visited nodes during the downward
traversal (see Section 2).

If LOUDS is used, we need one more sequence that maps each leaf in
the level-wise ordering to the lexicographic rank of the corresponding
string, which we need to jump to the corresponding block in the
storage level. If DFUDS is used, such a sequence is not needed since
the leaves are ordered according to the lexicographic rank of the
corresponding strings.

Fig. 1 shows an example of the sequences created for the encoding
of a Patricia trie.

The overall space usage can be upper bounded as follows. Let s
be the number of strings indexed by the Patricia trie (or equivalently,
the number of blocks in the storage level), and let m < 25 — 1 be the
number of nodes in the Patricia trie (in Fig. 1, s = 8 and m = 13). The
topology representation needs 2m—1 bits with LOUDS, or 2m+2 bits with
DFUDS. The sequence encoding the edge labels needs (m — 1)log ¢ bits,
where ¢ is the alphabet size of the branching characters. The sequence
encoding the lengths of the string prefixes needs (m—s)log # bits, where
¢ is the maximum length value (which can be upper bounded by the
maximum LCP length between consecutive sorted strings). Summing
up and assuming 1-byte edge labels, i.e. logo = 8, the overall space
is at most 10m + (m — s)logZ < (20 + log#)s bits. If LOUDS is used,
further slogs bits are needed for the sequence mapping each leaf to
the lexicographic rank of the corresponding string.

The rest of this Section details how to search for the lexicographic
position of ¢ within the strings indexed by the Patricia trie, by dis-
tinguishing between the two proposed succinct representations (i.e.,

LOUDS and DFUDS). This will in turn identify the disk block containing
¢’s lexicographic position within the whole set S of indexed strings.

Downward traversal with LOUDS. To downward traverse the Patricia
trie encoded with LOUDS, rank and select primitives are used [34]:
rank,(i) counts the number of bits equal to b up to position i, while
select, (i) finds the position of the ith bit equal to b. Assuming that the
nodes, their children, and the bits of the binary sequences are counted
starting from O, it is well known [3,15,34] that we can traverse the
trie downwards by computing the position of the kth child of the node
whose encoding starts at position p with the formula selecty(rank,(p +
k))+ 1. We show below that we do not need rank, because its result can
be computed with proper arithmetic operations during the traversal.
This fact allows us to save space because we discard the auxiliary
data structure needed for constant-time rank, operations, and to save
time because several CPU cycles and possibly cache misses are needed
for rank;.

Fact 1. The downward traversal of a Patricia trie encoded with LOUDS
can be executed with just select, operations.

Proof. We start by recalling two basic identities of rank and select
primitives (recall that positions in the binary sequences are counted
from 0):

rank(x) = x — ranky(x) + 1, (€8]
and

rankg(selecty(x)) = x. 2
From these two equalities, it follows that

rank,(selecty(y)) = selecty(y) — rank(selecty(y)) + 1 3)

= selecty(y) —y+ 1.

Let us now consider the traversal of the Patricia trie via rank and
select primitives, and let p be the position of the currently visited
internal node in the LOUDS bitvector B, i.e. the degree d > 1 of the
current node is represented in B[p, p + d] = 190. We now show that the
well-known formula selecty(rank,(p+k))+ 1 that allows going from the
current node to its kth child (0 < k < d), can be computed with just
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select, and arithmetic operations. Thus we focus on the rank,(p+k) part
of the formula and distinguish two cases.

If the currently visited node is the root of the Patricia trie, then p = 0
and rank,(p + k) = rank,(k) = k + 1 because B[p, p+ d] = B[0,d] = 190.

Otherwise, the currently visited node is an internal node of the
Patricia trie, thus p has been computed with the known formula as p =
selecty(rank,(p’ + k")) + 1, where p’ is the starting position of its parent,
and £’ is its position among its siblings. Let us call y = rank,(p’ + k'),
and thus p = selecty(y) + 1. Then, it holds

rank,(p + k) = rank,(p) + k (since B[p,p+ k] is all 1s)

= rank,(selecty(y) + 1)+ k  (by substitution of p)

= rank,(selecty(y)) + k+1 (since B[selecty(y)+ 1]= B[p]=1)

= selecty(y) —y+k+2 (by Eq. (3))

So, during the downward traversal, all the operations of the form
rank,(p+k) can be replaced with arithmetic and select, operations. []

When a leaf is reached, we compute its rank in the leaf sequence by
counting how many leaves appear before its position x in the LOUDS
representation of the Patricia trie. This rank is given by ranky(x) —
rank,y(x), where the first value denotes the number of nodes (internal
and leaves) that appear in LOUDS before the considered one, and the
second value (for which rank is queried on the two bits 10) denotes the
number of internal nodes that appear before position x. Now, the value
ranky(x) = x — rank;(x) + 1 by Eq. (1), can be computed by substituting
rank,(x) with the value returned by the arithmetic operations executed
during the downward traversal, as detailed in the above proof of Fact 1.
Instead, the value rank,y(x) needs a proper data structure built on the
LOUDS sequence.

Overall, we have thus proved that to support the downward traver-
sal of a Patricia trie encoded with LOUDS we need to build just two
succinct data structures on the LOUDS binary sequence that support
select, and rank, operations. Due to their time efficiency [48], we will
implement the former with the sux library [49], and the latter with the
sds1 library [50].

Downward traversal with DFUDS. To downward traverse the Patricia
trie encoded with DFUDS, we compute the position of the kth child
of the node whose encoding starts at position p with the formula
close(succy(p) — (k + 1)) + 1 [34]. Here, succy(p) returns the position
of the first 0 that follows position p in the DFUDS sequence, and it
is implemented by using a linear scan starting from p until a bit 0 is
found. Since DFUDS can be seen as a sequence of balanced parenthesis,
we have that if i is the position of an open parenthesis, close(i) returns
the position of the corresponding close one. For close we adopt the
sdsl: :bp_support_sada implementation of balanced parenthe-
sis [50,51]. When a leaf is reached, we compute its rank among the
leaves of the Patricia trie via rank; and rank,, operations. By knowing
the position where the encoding of a leaf starts, the rank, operation
allows us to derive the number of nodes that appear in the sequence
before it, while the rank,, operation, as for LOUDS above, allows us to
compute how many of these nodes are internal nodes. Thus subtracting
those two values we get the rank of the reached leaf. Therefore, in
our implementation of DFUDS, we exploit data structures that allow us
to execute in constant time the operations of rank,, close, and rank,
(these last two ones are included in sdsl: :bp_support_sada).

Upward traversal in LOUDS and DFUDS. For the upward traversal of
a Patricia trie, we need to scan back the nodes accessed during the
downward traversal. But, instead of executing any of the bit-operations
above (as typically done for the upward traversal of trees [15]), we
adopt a much simpler and time-efficient approach that pushes in a stack
the LOUDS/DFUDS positions of the nodes visited during the downward
traversal, and then it pops them out from the stack during the upward
traversal.
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Finalizing the query. After the upward traversal, we have identified the
correct lexicographic position of the query string ¢ among the strings
indexed by the Patricia trie, and thus we can infer the block 5 in the
storage level containing the lexicographic position among all indexed
strings of .S. Thus the search for g is concluded with a linear scan of b
as described in Section 3.1.

If the Patricia trie fits in internal memory, the search costs overall
O(|q|) time and incurs at most 2 random I/Os: one at the end of the
downward traversal to compare ¢ with the first string in a block & (cf.
Stage 2 in Section 2); and another random I/O to access the block
b if this block is different from b (and possibly far from it, since the
prefetcher could have loaded some blocks neighboring b).

We can summarize this result as follows (note we are making the
simplifying, yet reasonable, assumption that each input string fits into
a disk block).

Theorem 1. Given a set S of n variable-length strings, the proposed
two-level string dictionary takes O(s) space for the indexing level, where
s = O(n) is the number of blocks taken by the on-disk storage level storing
the compressed S.

If the indexing level fits in internal memory, then the rank of a query
string q can be determined in O(|q|) time and at most 2 random I/Os;
otherwise, its downward traversal might incur in up to |q| 1/Os.

We remark that the additional random I/Os incurred by the Patricia
trie that does not fit in internal memory can be reduced by using more
sophisticated solutions or trie layouts [16,17,23].

In practice, our experiments in Section 4 show that the combination
of rear coding (which obtains a small s) and our succinct encoding
of Patricia tries make a very space-efficient indexing level (e.g. up to
195 MB for a string dictionary of 273 GB), which not only fits in the
internal memory of any commodity machine, but it also allows us to use
the remaining memory to further decrease the number of random I/0Os
via a suitably designed caching strategy, as we do in the next section.

3.3. Caching

We now describe an algorithmic approach that, given a query work-
load that is representative of future queries, constructs an in-memory
cache with enough information to potentially reduce the number of
1/0s of our two-level approach.

The high-level idea is to turn the Patricia trie into a hybrid data
structure consisting of a mix of a compacted trie and a Patricia trie,
namely, into a trie in which some properly chosen edges— here-
after termed cached edges— are fully labeled with substrings (as in
a compacted trie), while the other edges are labeled with just the
first character of these substrings (as in a Patricia trie). The choice
between a full label or a single-character label for an edge will be made
according to given the query workload; whereas, the number of cached
edges will depend on a given cache size parameter, which we assume to
be fixed in advance by the user according to the memory availability:
the higher it is, the closer the hybrid trie is to a compacted trie; the
smaller it is, the closer the hybrid trie is to a Patricia trie. Fig. 2 shows
an example of a Patricia trie, a hybrid trie, and a compacted trie built
on a set of 6 strings, where the two cached edges in the hybrid trie are
highlighted with a thick line and lead to the strings s, and ss.

As we will see, thanks to the cached edges, the lexicographic posi-
tion of a query string ¢ among the indexed strings of the Patricia trie can
sometimes be identified immediately during its downward traversal,
thereby reducing the traversal time and saving the random 1I/0 required
by Stage 2 of the lexicographic search described in the previous Section.

For selecting which edges to cache, we adopt a strategy based on
their traversal frequency induced by the strings in the given query
workload. More precisely, we consider as candidate edges for caching:
the ones leading to an internal node, having a nonzero frequency
and labeled with more than one character (since those with a single
character must be kept anyway, as in the standard Patricia trie). Edges
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Fig. 2. The Patricia trie, a hybrid trie, and the compacted trie on the strings {autonomy, autopsy, key, telecom, telephone, telephony} corresponding to the leaves s, ...,ss. The
intuition behind the caching shown in the figure is that one of the two strings s, and s5 is more frequent than all the other strings, and thus the edges on its leading path get

fully represented (i.e., cached).

leading to a leaf can be dropped from the candidate set because they
“distinguish” between two adjacent disk blocks, which are anyway
fetched together by the disk caching. Then, we sort the candidate edges
from the most- to the least-frequently accessed, and we cache edges in
this order until the cache is full.

It is easy to observe that our cached edges satisfy a sort of prefix-
completeness property: if the label of an edge e gets cached, so are all
the labels of the edges in the path that leads to e, because they have
an access frequency greater than or equal to that of e. For example,
in Fig. 2, out of the three candidate edges “auto”, “tele”, and “phon”,
the hybrid trie at the center has cached the last two edges that form a
downward path in the shown trie.

Succinct representation of the cache. Let n, be the number of edges and
let n, be the number of cached edges. To implement the cache we
augment the succinct representation of the Patricia trie in Section 3.2
with three sequences: a length-n, bit sequence C that, for each edge,
indicates whether an edge is cached or not, a string E that concatenates
the substrings labeling the cached edges (without their first character,
which is already stored in the labels sequence of the Patricia trie),
and a length-n, integer sequence D specifying the starting offsets of
the cached edges into E. The elements in these sequences are ordered
according to the succinct representation of the trie topology (either
LOUDS or DFUDS).

So, for example, consider the Patricia trie in Fig. 2 encoded with
LOUDS, and assume that the most frequent edges are the ones labeled
with ‘t” and ‘p’ in the first and second level, respectively, which cor-
respond to the thick edges in the hybrid trie at the center. The bit
sequence C is 001000100, the string E concatenates the substrings “ele”
and “hon”, whereas the integer sequence D stores the offsets 0 and 3
specifying where the two edge labels start in E (we assume zero-based
indexing).

Checking whether an edge is cached or not then amounts accessing
C[p] where p is the node index (in LOUDS or DFUDS order) the edge
leads to; while the characters labeling a cached edge are found starting
from E[D[k]], where k is given by a rank,;(p) — 1 query on C. It
goes without saying that alternatives to the use of rank, do exist: for
example, we can replace it with a linear scan that counts the number of
bits set before the current edge to get the index of the offset to access.

Semi-blind search algorithm. To traverse the hybrid trie given a query
string g, we execute additional checks compared to the blind search
algorithm (Section 2). Specifically, we check whether the traversed
edge e is cached (and thus its label is fully available) or not (and thus
its edge label consists of only the first character). If it is cached, the
corresponding characters in ¢ are compared with those at the edge
and, if a mismatch is found, the lexicographic position of ¢ is already
available: say s is the string spelled by the root-to-e path and there is a
mismatch g[¢#+1] # s[£+1] on the label of edge e, then the lexicographic
position of ¢ is to the immediate right of the subtree descending from
e if q[¢ + 1] > s[¢ + 1], otherwise, it is to the immediate left of that
subtree. If no mismatch is found, the downward traversal continues to

Table 1

Datasets used in previous papers, ordered by their sizes in GBs, com-
pared to the two datasets introduced in this paper, which are up to about
28x larger. The size of “Emails addresses” is not explicitly indicated
in [3], but we derive it from the average length and number of email
addresses indicated in that paper.

Dataset # strings (M) Size (GB) Reference
xml 2.9 0.1 CoCo-trie [10]
protein 2.9 0.1 CoCo-trie [10]
enwiki-titles 8.5 0.1 PDT [20]
aol-queries 10.2 0.2 PDT [20]
trec-terms 32.2 0.2 CoCo-trie [10]
tpeds-id 30.0 0.4 CoCo-trie [10]
Integer keys 50.0 0.4 FST [3]
Emails addresses 25.0 0.5 FST [3]
uk-2002 18.5 1.4 PDT [20]
synthetic 2.5 1.5 PDT [20]

dna 367.4 6.5 CoCo-trie [10]
webbase-2001 114.3 7.1 PDT [20]

url 233.2 9.9 CoCo-trie [10]
Filenames 2294.3 68.9 This paper
URLs 3654.1 272.7 This paper

the next proper edge. If a non-cached edge of length greater than 1 has
to be traversed, the search continues as a standard downward search
of a Patricia trie without considering the cache anymore, as specified
in Section 3.2.

We notice that, if we keep track of the length #’ of the longest
cached path matching ¢, then we can speed up the LCP computation
phase (i.e. Stage 2) by starting from the (¢’ + 1)-th character of the
compared strings, rather than from their first one.

4. Experiments

We use a machine with a KIOXIA KPM61RUG960G SSD and two
NUMA nodes, each with a 1.80 GHz Intel Xeon E5-2650L v3 CPU and
32 GB local DDR4 RAM. The machine runs Ubuntu 20.04.4 LTS with
Linux 5.4.0, and the compiler is GCC 9.4.0. We schedule experiments
on a single node via numactl. For the mmap in the storage level, we
tested both the MAP_SHARED and MAP_PRIVATE flags and noticed
no significant performance difference (indeed, the storage level is read-
only), so we chose the former. We also tested the MAP_POPULATE flag
but decided not to use it because it did not impact the performance.
We alternate datasets given to mmap to try to prevent caching by the
operating system. Our source code is available at https://github.com/
MariagiovannaRotundo/Two-level-indexing.

Datasets. Datasets used in previous experimental evaluations of state-
of-the-art solutions (i.e., FST [3], PDT [20], and CoCo-trie [10]) were
quite small. Their size (shown in Table 1) was indeed no more than
0.5 GB and 25M strings for FST, 7.1 GB and 114.3M strings for PDT,
and 9.9 GB and 233.2M strings for the CoCo-trie.
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Since we want to evaluate our solution on big datasets, we intro-
duce two new string collections extracted from real applications. The
first, URLs, consists of web page addresses from various crawls® for a
total size of 272.7 GB and 3.7 billion strings. The second, Filenames,
consists of the name of many source-code files collected by Software
Heritage [6,28,52,53] for a total size of 68.9 GB and 2.3 billion strings.
So our datasets are up to one order of magnitude larger than the
internal memory of our machine and larger than the ones used in
previous evaluations by up to 15.6x in number of strings and up to
27.5x% in size.

About the features of the new datasets, we briefly report that URLs
contains long strings (avg. 73.6, max. 2083) with long LCPs among
them (avg. 53.7), on a medium-size alphabet (88 characters); whereas
Filenames, which does not contain whole paths, offers the opposite
features, namely shorter strings (avg. 29.1, max. 16051) with even
shorter LCPs among them (15.4), on a large alphabet (241 characters).

Outline of the experiments. In what follows, we first evaluate the perfor-
mance of different compression techniques in the creation of the storage
level (Section 4.1). Then, we evaluate the different data structures for
the indexing level in isolation, i.e. without considering the access to
the storage level that concludes the query (Section 4.2). After that,
we evaluate the performance of the overall two-level approach (Sec-
tion 4.3). Finally, we evaluate the performance of the proposed solution
by adding edge caching (Section 4.4).

4.1. Evaluation of the storage level

We evaluate six compression techniques for the storage level: FSST
[301, Gzip v1.10, Re-Pair [29],® Xz v5.2.4, Zstd v1.4.4, and our imple-
mentation of rear coding. For Gzip, we consider two flags, -1 and -9,
to achieve the best compression speed and the best compression ratio,
respectively. Instead, we consider the flag —12 for Zstd, and the flag
-6 for Xz, trying to ensure a good compression ratio while still being
fast. Finally, about Re-Pair, we consider a different number of rules that
impact the speed and compression ratio, namely: at most 100, 1000, or
10000 rules, or no limit on the number of rules.

As a first analysis, we apply these compressors to the whole dataset
(as a unique huge block). Then, for the most efficient solutions, we
concentrate on analyzing the block-wise compression performance for
each dataset. As evaluation metrics, we use the compression and de-
compression speed (both expressed in MB/s, thus higher values are
better), and the compression ratio (the ratio between the size of the
compressed and the uncompressed data, expressed as a %, thus lower
values are better).

Whole-dataset compression. Fig. 3 shows the compression and decom-
pression speed vs the compression ratio of the considered compression
techniques. Fig. 4 presents the same data but, for each metric, sorts the
techniques from best to worst.

The results show that rear coding is the fastest solution in both
compression and decompression speed, followed by FSST, Gzip, and
Zstd; while Re-Pair and Xz are the slowest solutions. Instead, the best
compression ratio is obtained by Xz, followed by Zstd, Gzip (-9 and
—1), Re-Pair without limit on the rules, and rear coding; while the worst
compression ratios are obtained by Re-Pair with limits on the number of
rules and FSST. We recall to the reader that, however, the most space-
efficient compressors (i.e., Xz, Zstd, and Gzip) do not support random
access to the individual dictionary strings when applied to the whole
dataset, as in the present experiment.

We also tested Brotli with flag =11 but due to its high compression
time, we interrupted the execution. The compressed file at the moment

2 Namely, the crawls eu-2015, gsh-2015, clueweb12, and uk-2014 [27].
3 We use the implementation of Re-Pair available at https://github.com/
acubeLab/eXtended-RePair/.
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Fig. 3. Space and average query time of different data structures for the indexing level.

of interruption was larger than the one obtained by Gzip -9, and thus
worse in terms of compression speed and compression ratio.

In light of these experimental results, we consider for the block-wise
compression evaluation just rear coding and Zstd —12 because they
have shown, respectively, the best (de)compression speed, and a good
trade-off between speed and compression ratio.

Block-wise compression. To support the fast random access to the in-
dividual strings of our indexed dictionaries, we applied rear coding
and Zstd over blocks of different sizes. For Zstd, we use the APIs for
streaming compression and decompression provided by the library,*
whereas for rear coding we use our implementation.

Fig. 5 shows the performance of the two compressors on the datasets
of URLs and Filenames with block sizes between 4 and 32 KiB. We
notice that rear coding provides the fastest compression speed, from
69.3 up to 80.1x faster than Zstd on URLs and from 66.9 up to 72.8x
faster than Zstd on Filenames. By looking at decompression time and
compression ratio, rear coding and Zstd show close performance. In
particular, on URLs, rear coding tends to be slightly faster in decom-
pression time than Zstd on small blocks, while it is slower on large
blocks. Instead, on Filenames, rear coding is slightly slower than Zstd
for every considered block size. About the compression ratio, rear
coding is significantly better than Zstd on Filenames, and slightly worse
on URLs.

Overall, it is surprising to see that the very simple rear coding
achieves in the considered scenario a performance on par with Zstd
or even better. Therefore, for the following evaluations, we will adopt
rear coding to implement a block-wise storage level since Zstd does
not give significant advantages either in terms of decompression speed
or in terms of compression ratio, and it is two orders of magnitude
slower in compression speed. This latter is crucial to efficiently handle
dynamic string dictionaries in storage systems that perform frequent
rebuilds “from scratch”, as it occurs in LSM-based approaches [2].

4 https://facebook.github.io/zstd/zstd_manual.html
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4.2. Evaluation of the indexing level

We now evaluate different data structures for the indexing level
in isolation, that is, without considering the access to the storage
level. Specifically, to construct the in-memory index, we consider the
set S’ composed of the first string of every block truncated at its
minimum distinguishing prefix, and then we discard S’. As the in-
dex, other than our succinct implementation of the Patricia trie with
LOUDS and DFUDS (henceforth, PT-LOUDS and PT-DFUDS, respec-
tively), we consider FST [3], PDT [20], CoCo-trie [10], and a simple
and commonly-used solution [31,41]— that we name Array — which
stores S’ contiguously in an in-memory array and binary searches on
it via an auxiliary packed (still in-memory) array of offsets to the
beginning of the strings.

Notice that, for all solutions, the truncation of strings in S’ saves
space in the resulting index and still allows identifying the correct block
in the storage level which includes the lexicographic position of the
query string ¢ (actually, upon accessing the first string of a block we
might find that g is in the preceding block, which nonetheless is likely
to be loaded quickly thanks to disk prefetching). All solutions, except
our Patricia trie, use a space that is proportional to the indexed distin-
guishing prefixes. On the other hand, the Patricia trie does not store
the distinguishing prefixes but only ©(|.S’|) characters/edges/nodes,
thus occupying a space that is independent of the string lengths. We
also anticipate that all these indexing data structures fit in the internal
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memory of our machine and thus solve a query with at most two
random I/Os to the storage level.

Construction time. Fig. 6 shows the time to construct the indexing data
structures over the set S/, available in internal memory. CoCo-trie is
constructed only on URLs because the current implementation [10]
supports only ASCII alphabets. Moreover, we point out that its con-
struction time for blocks of 4 and 8 KiB is not shown due to its high
memory consumption that required a machine with a much larger
internal memory and thus different performance (still, we construct
these CoCo-tries because we test their search time in Fig. 7).
Unsurprisingly, Array provides the fastest construction because it
involves just string copies and offsets storage. Our PT-LOUDS and PT-
DFUDS implementations have the second-fastest construction, which is
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Fig. 7. Space and average query time of different data structures for the indexing level.

based on scanning prefixes at increasing lengths of (ranges) of strings,
determining sub-ranges corresponding to deeper levels of the PT, and
handling these sub-ranges recursively in LOUDS order or DFUDS order.

Fig. 6 shows clearly that our PT-based indexes are significantly
faster in construction than the other trie-based indexes such as FST,
PDT, and CoCo-trie, by up to 7%, 5%, 42x, respectively.

Space-time performance of the indexing level. Fig. 7 shows the average
query time to perform a membership query (on a random sample of
10% of the strings in the set S’ of distinguishing prefixes) for various
data structures implementing the indexing level, thus not accounting
for the I/0 cost to access the storage level on disk. For PT, due to
the lack of the storage level, we skip Stage 2 of the blind search (cf.
Section 2) and execute a full upward traversal to the root.

The best solutions are located near the bottom-left corner of Fig. 7,
which corresponds to the fastest and most space-efficient performance.
Our experimental results show that Array is the fastest but also the most
space-hungry solution. As we increase the query time and decrease
the space usage, we find that PDT and FST provide a good trade-
off, but this latter only on the Filenames dataset due to its shorter
strings that induce a shorter trie traversal. Our PT approaches, despite
their simplicity, are very competitive and on the Pareto front of both
experimented datasets. In particular, PT-LOUDS is the second-fastest
data structure with a space occupancy that is competitive with that of
the most sophisticated solutions such as CoCo-trie and PDT. In fact,
we notice that the difference in space with those data structures is no
more than 35 MB, which is not very significant given the size of the
indexed dictionaries. On the other hand, our PT-DFUDS is the most
space-efficient but also the slowest solution due to the more complex
operations needed to traverse the succinct trie representation (hence,
we leave as an open issue their engineering). We recall that CoCo-trie is
not constructed for Filenames because the current implementation [10]
supports only ASCII alphabets.

4.3. Evaluation of the whole two-level approach

Given the results of the previous sections, we restrict our evaluation
of the overall solution (involving the indexing level in internal memory
and the storage level on disk) just to Array and PT-LOUDS, since
the other data structures are not competitive or too complex for this
indexing setting, or their current implementations do not return the
lexicographic rank of the query string among the indexed ones, being
this a crucial information to jump to the correct disk block.

Let us comment on these limiting issues in some more detail.
Returning the rank of the query string in the LOUDS-based FST requires
adding an integer value to each leaf (as we did with our PT-LOUDS, cf.
Fig. 1), thus increasing the space of FST (from 1.50 to 1.52x on URLs,
and from 2.17 to 2.30x on Filenames, depending on the block size); or,
it requires switching to the much slower DFUDS representation, thus
increasing the query time. On the other hand, returning the rank of
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Fig. 8. Index space and query time of our two-level approach with Array or PT in the
indexing level. The query time includes both the index and the disk access time.

a query string using PDT requires a more complex trie traversal thus
increasing the query time. So Fig. 7 underestimates the space needs
and query times of FST and PDT when they are used in the two-level
setting, which justifies our choice of limiting the experiments below
just to Array and PT-LOUDS (henceforth referred to simply as PT).

The following two paragraphs discuss the space and the perfor-
mance of the two-level approach.

Space of the two-level approach. In Section 4.1, we already discussed the
effectiveness of rear coding as a compressor for the storage level due
to the good (de)compression speed and compression ratio.

Table 2 shows the exact space of the storage level with rear cod-
ing. With blocks of size 4-32 KiB, the URLs dataset (272.7 GB) is
compressed to 80.5-82.2 GB, and the Filenames dataset (68.9 GB) is
compressed to 35.9-36.1 GB.° Therefore, our approach reduces the
space by up to 3.4x on URLs, and by up to 1.9x on Filenames, which
is an interesting achievement given the simplicity of rear coding.

Table 2 shows also the exact space usage for the indexing level.
Note that, to answer rank queries on the indexed strings, as stated
in Section 3.1, we need to keep in memory the array of integers c(b)
counting the number of strings stored in the disk blocks preceding the
bth one (which is why the index space in Table 2 is larger than the
one reported in Fig. 7). On URLs, the indexing level with blocks of size
4-32 KiB takes 1075.3-104.3 MB with Array, and 195.2-22.8 MB with
PT. On Filenames, the indexing level with blocks of size 4-32 KiB takes
190.7-21.3 MB with Array, and 80.9-9.5 MB with PT. Therefore, under
the same block size, on average PT is 5.0x more compressed than Array
on URLs, and 2.3x more compressed than Array on Filenames.

Notably, as the block size halves, PT scales better in memory
consumption compared to Array, because its space does not depend on
the length of the strings but just on their number.

Performance of the two-level approach. Fig. 8 shows the trade-off be-
tween the overall query time and the indexing level space for both the
Array and the PT solutions.

In terms of Pareto front, on URLs, PT dominates Array with its con-
figurations with 8-32-KiB blocks. On Filenames, PT dominates Array
with its configurations with 4-32-KiB blocks, with the exception of
Array with 4-KiB blocks, which is on the top-left part of the Pareto
front.

In terms of query time, on URLs, PT with 8-KiB blocks is the fastest
solution and is closely followed by Array with 8-KiB blocks, which
requires 5.2x more memory. On Filenames, Array with 4-KiB blocks

5 In Filenames, some strings are longer than the block size. If they happen
to be the first strings of a block, and thus must be stored explicitly, we truncate
them to the block size for simplicity of implementation. This happens for just
5 blocks of 4 KiB, and for 2 blocks of 8 KiB, thus it has a negligible impact
on the compressed size.
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Space used by the storage level where blocks of strings are compressed with rear coding, and by the indexing

level built on the first string of each block.

Block size Solution URLSs Filenames
Index (MB) Storage (GB) Index (MB) Storage (GB)
w T e Fa
" o o W2 wo %0
16K g;r i 2‘2‘21‘5‘ 80.7 ig:; 35.9
32K :;ray 12‘3 80.5 2;22 35.9

is the fastest solution, closely followed by PT with 4-KiB blocks, which
requires 2.4x less memory. For increasing block sizes from 8 to 32 KiB,
both solutions with PT and Array get slower, because of the larger block
to scan and decompress, but more space efficient, because of a more
effective compression and fewer strings to index in internal memory.

Interestingly enough, on URLs, the PT and Array configurations
with 4-KiB blocks are dominated by the corresponding ones with 8-
KiB blocks. This occurs because the indexing level takes more space
and thus there is less internal memory available for the disk cache,
hence making page faults more frequent, as we have verified with the
mincore system call. The next section will show how to further reduce
the number of page faults with our ad hoc caching strategy.

4.4. Evaluation of our edge-caching strategy

We now experiment with the caching approach described in Sec-
tion 3.3 by considering two query workloads: one created by randomly
picking strings from the datasets, and an adversarial one created by
mutating randomly picked strings so that the search incurs exactly
two random I/Os (if caching is not used). For each experiment, we
vary the cache size and analyze the results in terms of four different
metrics: the average number of random I/Os per query, the number of
page faults,® the average time to identify the block where the query
string is lexicographically located, and the average query time (that
includes also time to scan the identified disk block). A key observation
is about the number of random I/Os incurred during a single query:
we count them as 1 if the (semi-)blind search accesses two neighboring
blocks in the storage layer (since prefetching is likely to make the latter
access inexpensive), and 2 otherwise. But a random I/0 incurs a page
fault only if the requested page is not in the operating system’s cache,
which might hold distant pages that have been accessed recently in the
previous queries. Therefore, the overall number of random I/Os is an
upper bound to the number of page faults.

4.4.1. Random query workload

Fig. 9 shows the actual space used by our edge-caching strategy
when we impose different thresholds on its maximum size, which are
assumed to be a power of two between 1 and 128 MB. Here (and in the
following plots/histograms), the missing points/bars correspond to the
cases in which the threshold was too low to store even the basic data
structure needed for caching. On the other hand, too-high thresholds
are not needed since the actual cache size reaches a plateau at 40.2 and
5.5 MB for a block size of 4 KiB on URLs and Filenames, respectively.
We also notice that as the block size increases, the cache size gets
smaller since fewer strings are indexed by the trie. For example, on
URLs, as the block size doubles from 8 KiB to 16 KiB, the cache size
halves from 22 MB to 11 MB. This is perfectly in line with the reduction

6 The number of page faults is found via the mincore system call, notice
a page in our system is fixed to 4 KiB, regardless of the block size we vary in
our storage layer.
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Fig. 10. Impact of the edge caching on a Patricia trie built on the URLs dataset, by
considering a random query workload with 10M queries. The legend shows different
thresholds on the maximum cache size expressed in MB. Missing bars are due to cases
in which the threshold is too low to perform edge caching. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

of the size of the Patricia trie that, by doubling the block size, is built
on around half of the strings.

We are now ready to evaluate the impact of our edge-caching
strategy on a plain Patricia trie (namely, one in which the threshold
on the maximum cache size is zero). In the following, caches larger
than 64 MB for URLs and 8 MB for Filenames are not shown because
of the previous observations on the plateaus.
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Let us start by recalling that the number of I/0s needed to solve
a query is between 1 and 2, according to the structural properties of
our two-level indexing data structure. Fig. 10 shows the performance
on URLs, where one notices that the average number of random I/Os
per query (top-left plot) is at most 1.05 without caching, and then
it decreases up to (the minimum value) 1 by using larger and larger
cache sizes. This is because a larger fraction of the queries get solved
by identifying the correct block directly during the downward traversal,
having fully available the edge labels needed for that traversal, and thus
not incurring the single I/0 needed for the LCP computation phase.

As it happens for the random I/Os, also the page faults (top-right
plot) decrease as the cache size increases. But here, as the block size
increases, the page faults decrease more sharply as fewer pages are
randomly accessed because the Patricia trie gets smaller. This impacts
positively on the internal memory available for the operating system
and on the time for its traversal. Consequently, the average time needed
to identify the block where a query string is located (bottom-left plot)
decreases sharply too, both as the cache size and the block size increase.

Surprisingly, we notice that this decrease in time to identify a block
is not reflected in the overall average query time (bottom-right plot),
which does not improve that much with a large cache. This is because
even if we have identified the block without any I/Os, we still have to
fetch it from the disk and scan it. Clearly, the time of this scan increases
with the block size, as is evident from the figure. Furthermore, the use
of edge caching induces a small overhead because of its more complex
code, as evident for example for a block size of 4 KiB.

Let us now turn our attention to the other dataset: Filenames. Fig. 11
shows that the average number of random I/Os per query (top-left
plot) is already small even without edge caching, and reaches 1 with
edge caching. Consequently, the page faults (top-right plot) are not
improved by our caching strategy, contrary to what happened for URLs.
The smaller Filenames dataset, indeed, is composed of fewer pages and
thus it is more likely that a page is found in the operating system’s
cache. The average time needed to identify the block where a query
is located (bottom-left plot) shows the same trend of URLs but with
a less noticeable effect of the larger edge cache. As a consequence of
these observations, it is not surprising that the average query time on
this dataset (bottom-right plot) does not improve with edge caching but
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actually, unlike URLs, incurs a higher overhead due to the cost of the
block scan and the code complexity.

4.4.2. Adversarial query workload

Stimulated by the figures of the previous section, we studied the
impact of our edge caching on an adversarial query workload, namely
one in which the queried strings are forced to require 2 random I/Os.
Specifically, we generate each of these query strings by randomly
picking a string from the dataset and mutating one character chosen at
a random position (the new character is chosen at random between 32
and 255, which excludes ASCII control characters), and then we ensure
it elicits 2 random I/Os before adding it to the query workload.

Fig. 12 shows the actual space used by the edge cache at dif-
ferent thresholds on its maximum size. Here (and in the following
histograms), the missing bars correspond to the case in which the
threshold was too low to perform edge caching, as it occurred in the
random query workload of Section 4.4.1. For example, on URLs and
Filenames with a block size of 4 KiB, the actual cache size reaches a
plateau at 33.3 MB and 3.7 MB, respectively, thus slightly earlier than
in the random query workload (where those figures were 40.2 MB and
5.5 MB). We also notice that the actual used cache halves in size as the
block size doubles, as it occurred in the random query workload.

We are now ready to evaluate the impact of our caching strategy on
the performance of a plain Patricia trie. In the following, caches larger
than 64 MB for URLs and 4 MB for Filenames are not shown because
of the previous observations on the plateaus.

Fig. 13 shows the performance on URLs. Here, unlike in the random
query workload, the average number of random I/Os per query (top-
left plot) is 2 for the plain Patricia trie, and it immediately decreases
to 1 already with a few MBs of cache size. For example, with a block
size of 4 KiB and 32 KiB, just 8 MB and 1 MB of cache are enough,
respectively, to reduce the average number of random I/Os from 2 to
at most 1.1. This reduction in random I/Os impacts the number of page
faults (top-right plot) that, for any block size, reduces by a significant
fraction, which is between 87.6% and 93.4%. If we look instead at their
overall number, we notice that by increasing the block size from 4 KiB
to 32 KiB, this number goes from around 3.2M to 1.7M (i.e. a reduction
of 46.2%).

This reduction of the page faults due to edge caching has a signifi-
cant impact on the average time needed to identify the block where a
query is located (bottom-left plot) that, with respect to a plain Patricia
trie, decreases from 6.0 to 50.5x. This time decreases also as the block
size increases due to the smaller and faster-to-traverse trie.

Finally, unlike in the random query workload (Section 4.4.1), the
overall average query time (bottom-right plot) significantly improves
with edge caching, showing a decrease by a factor between 2.8 and
8.1x. This difference in the two query workloads is due to the signifi-
cant reduction in page faults, which in turn depends on the reduction
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in random I/Os enabled by edge caching. Interestingly, larger block
sizes do not impact much on the scan phase since the query strings are
mutations of the dataset strings and thus mismatches cause the scan to
stop earlier compared to the random query workload.

These observations and trends on URLs also hold on the Filenames
dataset. Indeed, Fig. 14 shows that the average number of random
I/0s per query (top-left plot) is 2 for the plain Patricia trie, and it
rapidly decreases to 1 already with 1 or 2 MB of the edge cache. As
a consequence, the number of page faults (top-right plot) is between
38.8 and 78.7% smaller than the one with the plain Patricia trie, and
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the average time to identify the block where a query is located (bottom-
left plot) improves by between 32.0% to 58.6%, and the overall average
query time (bottom-right plot) improves by between 1.8% to 33.9%.
Thus, compared to the random query workload on Filenames (Sec-
tion 4.4.1), edge caching has a positive effect here too. Nonetheless,
the improvements on Filenames are smaller than the ones observed on
URLs due to its smaller size, which impacts the smaller number of pages
occupied in the storage level, and thus in turn a reduced load of the
operating system’s cache.

5. Conclusion

Our two-level approach based on a succinct Patricia trie is a ro-
bust candidate for indexing massive string dictionaries. As we showed
above, it enables indexing up to 272.7 GB with less than 195 MB
of internal memory (a space at least 1396.3x smaller than the dic-
tionary’s size). This small memory footprint allows dedicating much
more memory to caching disk pages and this, in turn, determines a
query efficiency that is comparable to or faster than the one offered
by Array-based solutions (which take 5.2x more memory). In addition,
we further improve the performance of our approach by enabling edge
caching, which reduces the number of page faults and, consequently,
the total query time. We believe these findings are significant not only
for static dictionaries but also for dynamic ones that occur in the design
of modern storage systems. As an example, RocksDB [31] is based on
(static) runs of strings with in-memory array-based indexes.

As future work, other than investigating the impact of our two-
level storage solution on these storage systems we suggest: for the
indexing level, combining Patricia tries with dynamic succinct tree
representations [54] or proper compressors for node fan-outs (similar
to FST and CoCo-trie); and, for the storage level, designing data-aware
solutions that take into account the query distribution and/or the string
distribution to reduce the average time for block decompression/scan.
For the storage level, it may also be considered and evaluated the use
of variable-length codes [37,38] to compress the lengths of the longest
common prefixes. These would require additional data structures to
directly access the encoded length of the first string of the blocks and
to retrieve two blocks from the storage level to answer a query, but it
might reduce the space needed to store these integers and the number
of blocks in the storage level and this could impact positively on the
overall performance.
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