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Highlights
Anthocyanins are natural compounds
that act as antioxidants and pigments
and are produced by plants in response
to stress and various environmental
conditions.

Anthocyanin-rich diets protect against
many chronic diseases, a wide range of
tumors, and inflammatory diseases.

The common tomato (Solanum
Over the past decade, progress has been made in the characterization of antho-
cyanin synthesis in fruits of plants belonging to the tomato clade. The genomic
elements underlying the activation of the process were identified, providing the
basis for understanding how the pathway works in these species. In this review
we explore the genetic mechanisms that have been characterized to date, and
detail the variouswild relatives of the tomato,which havebeen crucial for recovering
ancestral traits that were probably lost during evolution from green-purple to yellow
and red tomatoes. This knowledge should help developing strategies to further
enhance the status of the commercial tomato lines on sale, based on both genome
editing and breeding techniques.
lycopersicum) can synthetize antho-
cyanins only in the green parts of
the plant, but not in the fruit. Recent
studies have shown that through
genetic engineering and breeding it
is possible to re-establish the syn-
thesis of anthocyanins in the fruit.

The first purple genetically modified
tomatoes were first approved for sale in
the USA in 2022.

Tomato breeding has led to the develop-
ment of non-genetically modified (GMO)
purple tomatoes by exploiting wild rela-
tives of S. lycopersicum. They contain
anthocyanins in the fruit epicarp and
have a higher antioxidant power than
red tomatoes. They represent a novel
nutraceutical food and can be sold in
the EU.
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Anthocyanins in the tomato: genetically modified organisms (GMOs) and
breeding
The first GMO tomato with high levels of anthocyanins in the fruit was reported in 2008 [1]. The
recent approval by US government agencies for the marketing of GMO purple tomatoes repre-
sents a significative step forward for the nutraceutical enrichment of the human dieti,ii,iii.
Transgenesis is an important biotechnology to meliorate crops essential for human sustainment.
GMOs are often superior to the natural breeding lines thanks to their agronomically relevant traits,
often not achievable via conventional approaches. However, EU legislation has so far approved
only 18 GMOs in different sectors, and approval is slow and often difficult. Nevertheless, the
recent opening of the EU toward the use of genome-editing techniquesiv [2], as well as the recent
growing interest in the rest of the world toward the use of GMOs, highlight how important it is to
identify the genes behind the biosynthesis of the nutraceutical compounds in plants and to design
genetic strategies to increase these compounds in crops of interest.

Anthocyanins: from plant physiology to human health
Many phytochemicals found in the human diet possess health-promoting properties. Unfortu-
nately, many of these phytochemicals have been excluded from modern diets in favor of more
common and unhealthy compounds such as those contained in processed foods. However,
the recent growing interest in nutraceuticals has led to a renewed interest in foods based on
ancient cereals and their beneficial components.

One such class of compounds are the anthocyanins, which are water-soluble polyphenolic
molecules whose colors range from red to purple and blue and which confer typical colorations
in the plant kingdom [3,4]. Anthocyanins play a variety of roles in a wide range of plant species,
tissues, habitats, and environmental conditions [4,5]. In the subepidermal cell layers of the vege-
tative tissues, anthocyanins act as a photoprotective screen by absorbing excess light, including
UV-B radiation, which is harmful for the photosynthetic apparatus; this protective role is
evidenced by the timing of induction of the pathway, which is fast under high light and/or low
temperature conditions when the dark reactions of photosynthesis cannot keep pace with the
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Glossary
Alternative splicing (AS): the process
which – starting from a primary transcript
and through different arrangements of
exons (i.e., exon skipping and intron
retention) – leads to different alternative
mature mRNAs. These can be
translated into protein variants with
different activities or functions or can
represent aberrant transcripts that are
finally degraded by nonsense-mediated
decay mechanisms.
Basic helix–loop–helix (bHLH): a
light reactions, leading to photo-oxidative stress [6–8]. Other stress conditions, both biotic and
abiotic, cause plants to produce more reactive oxygen species (ROS), and this often results in
the accumulation of anthocyanins which help to protect cells, even after cellular damage, through
scavenging and metal-chelating activities [9–11]. Anthocyanins also color flowers and fruits of
many species to attract pollinators and seed-dispersing animals [6]; they also prolong the shelf-
life of tomato fruits by slowing the process of over-ripening and reducing the susceptibility to
necrotrophic pathogens such as Botrytis cinerea [12,13].

There are many different anthocyanin molecules, and different anthocyanin classes (Box 1)
appear to offer different physiological and ecological functions based on their structure and
antioxidant power [14–16].
Box 1. Anthocyanins: insights into their molecular structure and biosynthesis

Anthocyanins are a class of water-soluble polyphenolic compounds which belong to the flavonoid family of specialized
plant metabolites [3]. They are glycosylated forms of anthocyanidins, the molecular structure of which involves two
aromatic rings (A and B), a core heterocyclic oxygen ring (C), and a C3 bridge, referred to as a C6–C3–C6 structure
(Figure IA). Because of the structural complexity of these molecules, which shows different patterns of hydroxylation,
methoxylation, and acylation, the members of this family have increased in number since their first identification, and more
than 700 different compounds have been reported in the plant kingdom [16,22,38,82,83].

Anthocyanin biosynthesis is conserved and well characterized in higher plants [5] (Figure IB). Anthocyanins derive from the
phenylpropanoid pathway (PPP), which first produces phenylalanine which is converted to cinnamic acid and then
coumaroyl-coenzyme A (CoA) by the consecutive activities of the enzymes phenylalanine ammonia lyase (PAL),
cinnamate-4-hydroxylase (C4H), and 4-coumaryl-CoA ligase (4CL). Subsequently, several structural genes encode
enzymes in the pathway committed to anthocyanin biosynthesis, which is traditionally divided between the early biosyn-
thetic genes (EBGs) and the late biosynthetic genes (LBGs), encoding the enzymes involved in the synthesis of the
common precursors of other flavonoids and of the anthocyanidins, respectively (Figure IB). These enzymes have been
suggested to be organized into a metabolon that is associated with the cytoplasmic face of the endoplasmic reticulum
[5,84–86] (Figure IB). Chalcone synthase (CHS) activity allows the synthesis of naringenin chalcone by combining three
molecules of malonyl-Co-A with one molecule of coumaroyl-Co-A [17,84]. Chalcone isomerase (CHI) isomerizes
naringenin chalcone to naringenin. Naringenin is then converted into dihydrokaempferol by flavanone 3-hydroxylase
(F3H), which can be further hydroxylated by flavanone 3′-hydroxylase (F3′H) or flavanone 3′,5′-hydroxylase (F3′5′H) to
produce dihydroquercetin or dihydromyricetin, respectively. The dihydroflavonols are substrates of dihydroflavonol
4-reductase (DFR), whose activity leads to the synthesis of the colorless leucoanthocyanidins, which are converted
into colorful anthocyanidins by anthocyanidin synthase (ANS). Flavonoid 3-O-glucosyltransferase (UFGT) and other
glycosyltransferases add sugar moieties (principally glucose, arabinose, rhamnose, and galactose) to the C3 position
of the anthocyanidin to form anthocyanins, and these may be further methylated by specific methyltransferases and
acylated with aromatic or aliphatic acyl groups by acyltransferase (AAT) [57,86–88]. In the tomato there is a single
aromatic acyl transferase that adds a coumaroyl group to the C4 position of the rhamnosyl moiety of the anthocyanidin
rutinoside. Interestingly, expression of the genes encoding the methyl and acyl transferases and the anthocyanin trans-
porters are regulated by the MBW complex [1].

Following their biosynthesis, anthocyanins are transported into the vacuole to be stored or further modified by vacuole-
localized enzymes [89] (Figure IB). Two main transport mechanisms have been described, which may act independently,
together, or in a mutually exclusive manner: direct transport to the vacuole, thanks to tonoplast-localized factors, repre-
sented by multidrug and toxic compound extrusion (MATE) and ATP-binding cassette (ABC) transporters, whose action
is mediated by glutathione S-transferases (GST), or vesicle transfer from the secretory pathway [90–95].

Anthocyanins can be classified into three main classes based on their B-ring hydroxylation pattern; the basic representa-
tives are monohydroxylated pelargonidin, dihydroxylated cyanidin, and trihydroxylated delphinidin [17,23] (Figure IB).
Peonidin, petunidin, and malvidin are produced by further methylation reactions [17]. The color of an anthocyanin is
primarily influenced by the pattern of hydroxylation on the B ring of the core structure [17]. pH can further affect the
molecular structure of anthocyanins, resulting in different chemical species characterized by different colors [17], and also
their stability at levels above pH 7, possibly leading to degradation depending on the substituent groups [23]. The
main anthocyanins detected in SunBlack [78] and Indigo Rose [96] varieties were petanin [petunidin-3-(p-coumaroyl)-
rutinoside-5-glucoside] and negretein [malvidin-3-(p-coumaroyl)-rutinoside-5-glucoside], while petanin and nasunin
[delphinidin-3-(p-coumaroyl)-rutinoside-5-glucoside] were detected as main anthocyanins in the Del/Ros1 line [88].
The differences in anthocyanin species between the GM tomatoes and the introgression lines are likely to be due to
differential activities of decorating enzymes in the different genetic backgrounds.

590 Trends in Plant Science, May 2024, Vol. 29, No. 5

transcription factor belonging to one of
the largest families in plants; bHLHs
regulate growth and developmental
processes and stress responses.
Clustered regularly interspaced
short palindromic repeats
(CRISPR)/CRISPR-associated
protein 9 (Cas9): a widely used
method to perform gene editing in
eukaryotic cells through RNA-guided
nucleases derived from the microbial
adaptive immune system. It can be used
to edit genes by cutting DNA precisely in
target positions followed by DNA repair
that generates mutations at the repair
site by non-homologous end-joining
(NHEJ).
miRNAs: small RNAs that act as
negative regulators of their targets by
promoting mRNA degradation through
the specific cellular machinery, or by
inhibitingmRNA translation by preventing
the binding of the ribosome to the
transcript.
MYB–bHLH–WDR (MBW) complex:
a multiprotein complex regulating
anthocyanin synthesis; it is made up of
proteins belonging to the R2R3-MYB,
bHLH, and WDR families. Within the
complex, R2R3-MYB factors confer
selectivity on target genes, leading to the
accumulation of anthocyanins in specific
tissues or at certain times. bHLH factors
increase the specificity of the
transcriptional activation, likely offering
additional regulatory mechanisms to
ensure specific recognition of the DNA
binding sites, including binding to
specific bindingmotifs in at least some of
their target gene promoters and/or
activation of the transcriptional process
itself. The WDR proteins are believed to
have the least specific role, and their
levels show a sort of constitutive
behavior. Nevertheless, their presence is
essential for activating the anthocyanin
pathway (e.g., in tomato and other
solanaceous plants), and knockout
WDR proteins or mutations that alter
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Figure I. Anthocyanin structure (A) and anthocyanin biosynthesis (B). Abbreviations: AAT, acyltransferase; ANS,
anthocyanidin synthase; C4H, cinnamate-4-hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; 4CL, 4-
coumaryl-coenzyme A ligase; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; F3′H, flavanone 3′-
hydroxylase; F3′5′H, flavanone 3′,5′-hydroxylase; OMT, O-methyltransferase ; PAL, phenylalanine ammonia lyase;
UFGT, flavonoid 3-O-glucosyltransferase.
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their stability lead to completely
anthocyanin-less plants.
Myeloblastosis (MYB) factor: a
transcription factor belonging to a family
of transcription factors among the
largest in plants; they act in several
processes, including plant and cell growth
and development, regulation of primary
and secondary metabolism, and stress
responses. MYB proteins comprise a
conserved MYB DNA-binding domain
made up of one to four imperfect repeats,
each with a combined length of roughly
50 amino acids, plus a transactivation
domain.
R2R3-MYB: transcription factors of the
MYB family that guide the activation or
repression activity of the MBW complex
binding to the promoters of the structural
genes. R2R3-MYB factors share in the
R3 repeat the conserved domain of
interaction with bHLH factors
characterized by the motif (D/E)Lx2(R/K)
x3Lx6Lx3R. The repressors can exert
their activity by subtracting bHLH factors
from the R2R3-MYB activators and/or
thanks to specific functional motifs in
their C-terminal domains which may
interact directly with promoters of
biosynthetic genes.
R3-MYB: a repressor of the
anthocyanin biosynthetic pathwaywhich
shows the conserved domain of
interaction with bHLH factors in the R3
repeat. This motif allows them to act as
passive inhibitors, by subtracting bHLH
factors from the MYB activators.
Single-nucleotide polymorphisms
(SNPs): genetic variations at single
base positions between different
genomic sequences.
WDR: proteins that contain the WD40
repeat, a short structural motif of
approximately 40 amino acids, often
terminating in a tryptophan (W)–aspartic
acid (D) dipeptide. They are important
components of multiprotein complexes
such as the MBW complex, but their
exact role and presence in all the MBW
complexes is often debated.
As proved by the vibrant hues of many vegetables and fruits, anthocyanins and other plant
antioxidants (e.g., carotenoids) are already part of the diet of many animals, including humans.
Research into novel functional foods has explored newmeans of crop development, and biotech-
nological techniques have played a substantial role [17]. The tomato (Solanum lycopersicum) was
an excellent candidate for this exploration because its fruits do not produce anthocyanins.

The development of the purple GMO tomato line by Butelli et al. in 2008 [1] was followed by
the demonstration, on this specific line, of the health properties of anthocyanins in these fruits,
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characterized by an incredibly high antioxidant content. The health effects of these tomatoes
were demonstrated in vivo on P53 knock-out mice, significantly extending the lifespan of the
mice when they were fed with the tomatoes [1].

Over the years, more anthocyanin-pigmented tomato varieties have been marketed [18]. Antho-
cyanin enrichment in the fruit flesh has been achieved only in GMO lines, whereas varieties based
on natural breeding show accumulation of anthocyanins only in the fruit peel [19]. All current
preclinical studies demonstrating health benefits have been performed with GMO varieties, but
purple fruits from the varieties obtained by conventional breeding might exert similar health
effects, although, because anthocyanins are synthetized only in the peel, a considerably greater
consumption would be required to reach the same intake levels. Any benefits would also be lost if
the peel were removed during the fruit processing, a reason for further improvement of the traits
with the target of producing tomatoes with purple flesh.

Despite their low bioavailability, dietary anthocyanins have been associated with a variety of health
benefits, traditionally ascribed to their antioxidant activities [20–23]. They have anti-atherosclerotic,
anti-diabetic, and antitumor actions. They can also reduce the risk of cardiovascular diseases,
manage body fat accumulation and diabetes, improve visual and cognitive functions, and provide
neuroprotective effects [24–28]. The modulation of many signaling pathways may contribute
to these outcomes [29,30]. For example, cyanidin appears to alleviate inflammation by inhibiting
the signaling of the proinflammatory cytokine interleukin-17A [31]. Anthocyanins may exert
their function by also influencing the composition and functioning of the gut microbiota [32–36],
and they positively impact the abundance of several beneficial species – such as those belonging
to the Peptostreptococcaceae, Bifidobacterium, Lactobacillus, Actinobacteria, Prevotella,
Bacteroidetes, Akkermansia, Ruminococcaceae, and Alloprevotella – as well as reducing the
abundance of species correlated with negative health outcomes [32,37]. Especially in conditions
such as obesity and diabetes, anthocyanins showed other prebiotic effects on the gut, such as
decreased triglycerides, total cholesterol, steatosis scores and insulin resistance index, and ability
to inhibit harmful bacteria [37]. However, the molecular mechanisms underlying these health
benefits are still largely unknown and the object of active research.

The road to purple tomatoes: attempts and achievements
Fruits of S. lycopersicum are among the most consumed vegetables worldwide. Wild-type (WT)
tomato varieties do not synthetize anthocyanins in fruits (Figure 1A); nevertheless, they con-
tain all the biosynthetic genes required to do so [18,38,39]. By contrast, tomatoes contain large
amounts of carotenoids (with lycopene as the most abundant compound), sugars, amino acids,
and vitamins, aswell as some flavonols and other phenylpropanoids. They also containmany volatile
molecules, which confer their intense flavor. This high nutritional value has made the tomato a good
candidate for anthocyanin enrichment, to further boost its nutraceutical properties [18].

Early studies investigating the lack of synthesis of anthocyanins in tomatoes focused on expression
of the CHI gene (Box 1). When CHI was ectopically expressed in the fruit, it conferred a 78-fold
Figure 1. AN2like confers the pigmentation of Anthocyanin fruit (Aft) and Aubergine (Abg) fruits. Fruits at the mature green stage of wild-type (WT) (A), Aft
homozygous (B), and Abg heterozygous (C) genotypes in the domesticated tomato genetic background. (D) WT and Aft SlAN2like allelic structures with splice sites,
corresponding proteins from the mature mRNAs, and relative phenotypes. The position of the SNP responsible for generating the alternative splice site is highlighted in
red. (E) SlAN2like allelic structure in Abg with the different splicing sites leading to two different proteins from the relative mature mRNAs and relative phenotypes. The
numbers on the protein structures represent the polypeptides derived from the corresponding exons. Presumably, in the short form of SlAN2like, two alternative splice
sites within the third exon allow the production of an alternative transcript of SlAN2like, which splice out a small inner sequence located in this region. The resulting
short transcript still retains the first and the second exon but only the initial and the last part of the third, which is, however, still in frame until the canonical stop codon.
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increase in flavonol content, but no anthocyanins were synthesized, suggesting that something
else was missing or blocking the pathway [39,40].

When the central role of the regulatory MYB–bHLH–WDR (MBW) complex (see Glossary) in
anthocyanin synthesis started to become clear (Box 2), various studies tested the heterologous
expression of transcription factors (TFs) of the complexes already identified in other species,
such as the R2R3-MYB factor C1 with the basic helix–loop–helix (bHLH) factor Lc from
Zea mays or the Arabidopsis thaliana R2R3-MYB factor PAP1. These tests either failed or were
only partially successful, with no or only a small increase in the anthocyanin content [41,42].

As already reported, the most successful attempt was carried out in 2008 [1] when two TFs from
Antirrhinummajus (snapdragon), the bHLH factorDelila (Del), and the R2R3-MYB Rosea1 (Ros1),
were expressed under the control of the E8 promoter, specific to tomato fruit. The transgenic lines
obtained produced the first deep purple tomato, with a uniform coloration from the peel to the
flesh. The health properties demonstrated led first to the US Department of Agriculture/Animal
Box 2. Anthocyanin synthesis: a highly regulated process

The anthocyanin biosynthetic pathway responds to multiple environmental and developmental signals. It is tightly regu-
lated at the transcriptional, post-transcriptional, and post-translational levels, as shown in Figure I. The primary level of reg-
ulation is represented by the expression of the regulatory genes, which is affected by the different upstream signal
transduction mechanisms [76,97,98], and allows the production of the TFs, which then control the expression of the struc-
tural genes coding for the enzymes of the pathway [18]. The MBW complex, made up of R2R3-MYB, bHLH, and WDR
proteins, is highly conserved in plants and regulates the activity of key biosynthetic genes of the pathway [97]. MYB TFs
can be activators or repressors of the anthocyanin synthesis [76]. In the tomato, a special anthocyanin locus lies in the long
arm of chromosome 10, which contains six R2R3-MYB genes, SlANT1, SlAN2, SlANT1like, SlAN2like, SlAN2like-2
(also known as SlMYB113), and SlMYB32, which all code for TFs involved in the pathway [50,58,77]. The first four are
activators, while SlMYB32 (also known as SlTHM27) is a repressor [58,77]. SlAN2like-2 is not functional in S. lycopersicum.
There is a high level of synteny for this locus, as it is also present in othermembers of the Solanaceae, such as eggplant, potato,
and pepper [99,100]. There appear to be hierarchical systems that control the role of bHLH factors [76,101]. In the Solanaceae,
for example, two different complexes have been identified: the first one, formed by a R2R3-MYB (e.g., SlAN2 in tomato
vegetative tissues, or SlAN2like in tomato fruit) and the bHLH factor SlJAF13, activates the expression of the gene SlAN1,
encoding the second bHLH [101]. SlAN1 participates in the second complex with the R2R3-MYB proteins, which activates
the expression of genes encoding enzymes in the pathway [52,101]. SlJAF13 and SlAN1 are so far the only known bHLHs
taking part in theSolanaceaeMBWcomplex, andmutations in these genes can result in an anthocyanin-less phenotype.SlAN1
[48], for example, was recently identified as the gene mutated in plants exhibiting the well-known Hoffman’s anthocyanin-less
phenotype, causing loss of anthocyanin synthesis in the tomato, a gene controlled by developmental and environmental
factors, and strongly induced by cold [102]. SlAN1 is the homologue of Petunia PhAN1, controlling anthocyanin accumulation
in petals, anthers, and leaves [103]. In Solanum tuberosum, AN1 and JAF13 are similar but different, in fact PhJAF13 expression
fails to activate anthocyanin synthesis when expressed in Nicotiana benthamiana, while potato AN1 can [104]. WDR proteins
have often been discussed for their actual role in regulating anthocyanins, taking part also in the MBW complexes. One WDR
encoding gene is known in tomato, SlAN11 [48]. The exact role of this factor is still not completely known, but experimental
evidence has shown how it interacts with SlAN1 to promote anthocyanin regulation [105]. Apparently, SlAN11 does not interact
directly with the R2R3-MYB factor, but onlywith the bHLH in theMBWcomplex [105]. It is known that silencingSlAN11 results in
lower anthocyanin activation, while its expression levels in WT plants appear to be constitutive, suggesting that theWDR protein
is probably essential but not sufficient for the anthocyanin activation [105].

At the post-transcriptional level various mechanisms have been described, the most common being miRNA regulation
and alternative splicing (AS), as shown in Figure I. The most evolutionarily conserved and studied miRNA in plants is
miR156. In several species miR156 negatively targets SPLs gene transcripts which, apart from their well-known role in
development, also affect anthocyanin synthesis [106–108]. Other miRNAs, such as miR828 and miR858, target different
MYB genes involved in positive or negative regulation of the flavonoid pathway [109,110]. Anthocyanin synthesis is
regulated through AS [111,112] in different species. In fact, many genes in the flavonoid pathway, both structural and
regulatory, exhibit AS [113,114]. Among them, the biosynthetic gene DFR in some species of the spiny Solanum group
[115], and the regulatory gene SlAN2like, encoding the R2R3-MYB factor responsible for the anthocyanin pigmentation
of the tomato fruit exocarp [53,54]. Finally, a well-known mechanism of post-translational regulation is the substrate
specificity of the enzyme DFR (see Box 1 in the main text). In tomato, for example, the predominant biosynthetic pathway
leads to the synthesis of delphinidin, which confers a typical dark purple color, due to the substrate selectivity of DFRwhich
shows a preference for dihydromyricetin, the precursor of delphinidin, over the other dihydroflavonols [116].
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Figure I. Regulation of anthocyanin biosynthesis. Abbreviations: bHLH, basic helix–loop–helix; DFR, dihydroflavonol
4-reductase; EBG, early biosynthetic gene; LBG, late biosynthetic gene; TFs, transcription factors; WDR, proteins that
contain the WD40 repeat.
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and Plant Health Inspection Service (USDA/APHIS) approval in September 2022 and later to FDA
notification in July 2023. Eventually, the GMO purple tomatoes arrived on the market in the USA
where they are having considerable commercial successi,ii,iii.

EU laws have been restrictive towards cultivation and commercialization of GMO food, and so far
only 18 GMOs have been approved for different uses, including food, feed, or cultivation. Purple
tomatoes have not yet been submitted for approval in Europe.

Targeted breeding represents an alternative strategy to improve performance and quality traits,
and exploitation of natural biodiversity within the broader tomato family has allowed the
Trends in Plant Science, May 2024, Vol. 29, No. 5 595
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production of tomato varieties with fruits enriched in anthocyanins. Indeed, breeders and re-
searchers noticed that, unlike the cultivated species, some wild relatives of S. lycopersicum
showed a dark purple pigmented fruit phenotype [43]. These different loci were then introduced
through guided breeding into the tomato genome to trigger anthocyanin synthesis in tomato
fruits. The best-known loci which effectively boosted the production of anthocyanins in the fruit
peel were Anthocyanin fruit (Aft), atroviolacea (atv), and Aubergine (Abg) [43].

Aft allows the synthesis of anthocyanins in tomato fruits by re-establishing the
key R2R3-MYB factor
Of all the tomato traits exploited by breeders, Aft was the most effective. The Aft locus from
Solanum chilense [44], a wild relative in the genus Solanum, promotes the synthesis of anthocya-
nins in the fruit peel of tomato, a dominant phenotype which depends on exposure to strong light
or low temperatures, and which leads to fruits with a purple-spotted skin [43–45] (Figure 1B).
Aft was first reported by Georgiev et al. [44] in an introgression from S. chilense. Jones et al. [46]
hypothesized that Aft might be an allele of Abg, a putative regulatory gene inducing anthocyanin
pigmentation in tomato fruit peel and already mapped on chromosome 10. Sapir et al. [47]
attempted to extend the knowledge behind this trait and again reported the possible localization
of Aft on chromosome 10. Located on the same chromosome [48], the R2R3-MYB genes
SlAN2 and SlANT1 were initially thought to be responsible for the Aft phenotype [49,50], but Yan
et al. [51] then fine-mapped the Aft locus and identified a single gene,SlAN2like (Solyc10g086290),
encoding a TF belonging to the R2R3-MYB family and very similar to the proteins encoded by other
nearby genes SlANT1, SlAN2, and SlANT1like (Box 2). Very few mutations were found in the
conserved domains of SlAN2like in comparison to WT and Aft alleles, with no predicted impact
on the final proteins. However, Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knock-out of SlAN2like in an Aft
genotype resulted in anthocyanin-free fruits with a strong downregulation of all biosynthetic and
regulatory genes. Yan et al. [51] demonstrated the role of SlAN2like as a gene regulating anthocy-
anin biosynthesis and suggested that the differences between Aft and WT plants may be due to
alterations in the expression of SlAN2like.

Colanero et al. [52] and Sun et al. [53] showed that SlAN2like regulates anthocyanin biosynthesis
in fruit peel, as its levels in Aft aremuch higher than those of the other genes encoding R2R3-MYB
factors expressed there, and they then found a difference between Aft and WT alleles of
SlAN2like. Functional characterization of SlAN2like showed that, unlike the Aft allele, the WT allele
carries a mutation affecting mRNA splicing (Box 2) which prevents the correct expression of the
TF. In fact, some key single-nucleotide polymorphisms (SNPs) in the WT SlAN2like allele
generate alternative splicing (AS) sites, which are given preference over the canonical sites
and lead to the production of aberrant transcripts. These transcripts are later translated into trun-
cated proteins which lack the C-terminal activation domain and most of the R2–R3 domains of
the TF. They are thus unable to interact with the other components of the MBW complex,
bHLH andWDR factors (Figure 1D). This explains the inability of the WT allele to activate the syn-
thesis of anthocyanins in the fruit peel. Indeed, if a correctly spliced coding sequence is recon-
structed from the WT SlAN2like allele and overexpressed in tomato protoplasts, it can activate
the expression of the key biosynthetic gene DFR (Box 1).

Based on these data, it is possible to establish a model for anthocyanin synthesis in tomatoes.
SlAN2like, acting as themost expressed anthocyanin R2R3-MYB activator in the fruit peel, can recruit
the first bHLH factor JAF13 and, likely together with the AN11WDRprotein, activate the expression of
the bHLHAN1 gene. The secondMBWcomplex thus formed, togetherwith AN2like, AN1, andAN11
proteins, may activate the late biosynthetic genes (LBGs) required for anthocyanin synthesis [52].
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Aubergine unveiled: an allele of SlAN2like with a novel mechanism of regulation
The tomato Abg accession was obtained from interspecific crosses between S. lycopersicum
and Solanum lycopersicoides, another wild relative [54]. The phenotype of Abg is similar, but
not identical, to Aft; Abg confers the ability to synthesize anthocyanins in the fruit epicarp upon
exposure to high light levels in S. lycopersicoides or when introgressed into S. lycopersicum
(Figure 1C); however, the degree of anthocyanin accumulation can range from purple-spotted
fruits to intense homogeneous jet-black colorations [43].

Rick et al. [54] first mapped Abg to chromosome 10, on the same long arm as Aft in S. chilense
[52], and where Pertuzé et al. [55] further described a paracentric inversion. The Abg line drew
interest from breeders because its fruit phenotype is the most intensely pigmentated of tomato
anthocyanin mutants, which led to the name ‘Aubergine’ due to its similar coloration to eggplant.
Unfortunately, the Abg locus is unstable, and the homozygotes are sterile. Thus, there were no
further breeding or allele tests with Aft [43].

More recently, Powell et al. [56] sequenced the genome of the wild relative of tomato,
S. lycopersicoides, and showed that this species predominantly expressed SlAN2like in the
fruit. The genomic sequence of S. lycopersicoides showed the same SNP in the 5′ splice site
of the second intron of SlAN2like as in the Aft allele, where it was shown to be essential for the
correct splicing of the transcript [57].

Menconi et al. [58] defined the molecular and genetic basis of Abg in the introgressed
S. lycopersicum line showing for AN2like, the same SNP in the 5′ splice site of the second intron
as in Aft, required for the correct maturation of the transcript, and confirming that SlAN2like in Abg
is correctly spliced (Figure 1E). It can therefore activate the expression of its target genes, and its
expression in fruits leads to strong pigmentation [58]. SlAN2like silencing in Abg fruits completely
abolishes anthocyanin synthesis in the epicarp, proving the role of the gene in the phenotype [58].

Interestingly, a second transcript of SlAN2like was described in this genotype as having resulted
from AS, leading to a shorter mRNA than the canonically spliced one [58] (Figure 1E). This short
form of SlAN2like encodes a protein less efficient at transcriptional activation due to the lack of a
region in the C-terminal domain containing part of a functional motif known as S6B [59]. The short
SlAN2like transcript was much less expressed than the longer one, perhaps representing a form
of regulation operating in response to developmental or environmental stimuli.

During the resequencing of S. lycopersicoides, Powell et al. [56] also identified an additional
R2R3-MYB gene on chromosome 10, which they named SlydAN2like-2 due its similarity to
SlAN2like. This gene was shown to have been introgressed into the Abg locus [58], and according
to sequence similarities, phylogenetic analysis, and the presence of motifs typical of anthocyanin
activators already named as MYB113, was also called MYB113. This gene is expressed in the
vegetative parts of the plant, but transcript levels are negligible in the fruit [58]. Interestingly, this
gene has been inactivated following multiple mutations in the domesticated tomato, as well as in
all the Solanum wild relatives close to S. lycopersicum [56,58].

Purple fruits in Solanum galapagense: different origin but same mechanism –

another allele of SlAN2like
Tomato wild relatives can be classified in two major phylogenetic groups: the green-fruited clade,
and the red- and yellow-fruited clade [60,61]. The first group includes the most phylogenetically
distant species, while the second contains the species closer to the cultivated S. lycopersicum
varieties. Green-fruited tomatoes often show purple-colored fruits, with anthocyanin stripes or
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spots, while yellow and red fruits do not. This may mean that the ability to synthesize anthocya-
nins in the fruit peel was lost during evolution from green- to red-fruited tomatoes, such as those
produced by the ubiquitous S. lycopersicum varieties and by Solanum pimpinellifolium, consid-
ered its immediate ancestor species. The anthocyanin-pigmented phenotype may have been
lost as the Solanum species migrated towards lower altitudes or were counter-selected by
humans during domestication due to the more appealing red phenotype of the fruits.

Interestingly, S. galapagense, an endemic species of tomato from the Galápagos Islands –which
belongs to the red and yellow clade and is thus very close to S. lycopersicum – shows a dark
purple fruit pigmentation in the accession LA1141 [62]. S. galapagense is not only different
from other wild species due to its yellow fruit, but also due to its yellow or green leaves, drought
resistance, small seeds, and long seed dormancy [63]. Furthermore, this species is highly com-
patible for crossing with cultivated tomato, and is thus an easy, accessible source of genetic
diversity. This has already led to interesting novel alleles, including jointless pedicel (j2), arthritic
articulation (j2in) which allow mechanical harvest, and anthocyanin gainer (ag2) and Beta (B),
which confer high β-carotene content [63–67].

Fenstemaker et al. [62] recently tested the origin of S. galapagense from the hybridization of
S. pimpinellifolium and Solanum habrochaites and revealed the basis of the anthocyanin synthe-
sis in the fruits of the line LA1141. Two different loci responsible for fruit pigmentation were
identified, one conferring the synthesis of anthocyanins in the fruit, and producing, when present,
populations that had light purple fruits, and a second one that, when combined with the first,
generated populations with fruits with deep purple skins (Figure 3B). The results showed that
the first essential mechanism for anthocyanin synthesis in this line was the same as that shown
by the green-fruited clade species, that is, the presence of a functional allele of the gene
SlAN2like, as observed first in Aft and in Abg and S. lycopersicoides [51–53,56,58]. Interestingly,
the phylogenetic data showed that this allele did not derive from an introgression from the green-
fruited clade, but rather from a gain-of-function mutation that evolved from a nonfunctional
SlAN2like allele backward, thereby restoring its function. The second locus, which, when combined
with the first one, generated deep purple fruits in the line LA1141, was identified on chromosome 7
as a nonfunctional allele of the repressor SlMYB-ATV gene [62]. Knockout of SlMYB-ATV increases
anthocyanin content in the foliage and in the fruit peel when combined with a functional allele of
SlAN2like [51,53,68].

Anthocyanin synthesis can be boosted by knockout of the atv gene
An interesting result obtained through breeding was the use of the tomato line atv. This pheno-
type was introgressed into S. lycopersicum from the wild relative Solanum cheesmaniae,
another species from the Galápagos Islands. The atv phenotype was first described by Rick
et al. [69] as having a generally high content of anthocyanins in all the vegetative parts of the
plant, often resulting in dark purple veins, stems, and leaves (Figure 2B), as well as an altered
perception of red and far-red light, which suggested an impairment in the mechanism of light
perception [70].

The atv line rapidly became popular with breeders not only for its phenotype, but also for its
synergy when combined with other genotypes harboring the Aft trait [51,68,71,72].

The atv trait was mapped to chromosome 7 [69], and the atv locus was identified by Cao et al.
[71] through finemapping in a small region on chromosome 7, which encodes for only one protein
belonging to themyeloblastosis (MYB) factor family, and thus named SlMYB-ATV. This protein
showed high phylogenetic similarity with putative homologs in A. thaliana and Petunia hybrida –
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Figure 2. Loss of function of SlMYB-ATV boosts anthocyanin synthesis. Phenotype of young wild-type (WT) plants
(A) and atroviolacea (atv) plants accumulating high levels of anthocyanins in leaves, stems, and leaf veins (B). (C) SlMYB-ATV
allelic structure in WT plants and in atv plants. In the atv allele a 4-nt insertion results in a premature stop codon at the end of
the second exon, leading to a truncated and nonfunctional protein. The numbers on the protein structures represent the
polypeptides derived from the corresponding exons.
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AtCPC and PhMYBx, respectively – shown to act as anthocyanin repressors. Loss-of-function
mutations in such genes result in plants with higher anthocyanin content [73].

Cao et al. [71] showed that enhanced anthocyanin content was correlated with enhanced
expression of biosynthetic genes in atv plants expressing a truncated form of SlMYB-ATV. In fact,
in atv plants SlMYB-ATV harbors a 4-bp insertion in its coding sequence which is predicted to
cause a premature stop codon and a truncated SlMYB-ATV factor (Figure 2C). The data supported
the hypothesis of SlMYB-ATV as a candidate gene for the atv locus and also, due to the recessive
nature of its phenotype, as a repressor of anthocyanin production. Colanero et al. [72], confirmed
this using genome sequencing coupled with functional characterization of the ATV gene.

Phylogenetic analysis showed that SlMYB-ATV belongs to the CPC-like subgroup of the R3-
MYB family, a well-known group that includes many anthocyanin repressors [73–76] that exert
Trends in Plant Science, May 2024, Vol. 29, No. 5 599
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their activity by competing with the R2R3-MYB transcriptional activators for interaction with the
bHLH components of the MBW complex. Indeed, overexpression of SlMYB-ATV in tomato
plants abolishes anthocyanin synthesis, and the WT protein can bind to bHLH factors while the
mutated form cannot [72]. The expression of SlMYB-ATV is directly regulated by the MBW
complex, thus establishing a negative feedback loop, as the more the pathway is activated, the
more the negative regulator is expressed [72].

Synergistic effects of atv and Aft alleles allow purple fruit pigmentation in tomato
It became clear that the atv and the Aft lines could be used to breed commercial purple tomatoes.
The loci together demonstrated a strong synergistic effect that elevated anthocyanin content in
tomato fruit peel (Figure 3A,B). In fact, the atv locus confers an ineffective R3-MYB repressor
which, when combined with the active R2R3-MYB activator brought by the Aft locus, leads to
TrendsTrends inin PlantPlant ScienceScience

Figure 3. Anthocyanin-enriched tomato fruits are produced by breeding atroviolacea (atv) and Anthocyanin
fruit (Aft) alleles. Anthocyanin-rich fruits from the SunBlack™ variety (A) and a branch of a tomato plant with leaves and a
very small purple fruit of Solanum galapagense LA 1141 lines (B), both harboring the genetic combinations of functiona
SlAN2like alleles and atv mutation. (C) The transcriptional regulation occurring in the fruit peel of the anthocyanin-enriched
lines. The Aft allele confers the functional R2R3-MYB transcription factor AN2like which takes part, along with the basic
helix–loop–helix (bHLH) factor AN1 and the WDR protein AN11, in the MYB–bHLH–WDR (MBW) complex, thereby
activating the anthocyanin pathway in the fruit epicarp. The atv allele confers a non-working form of the R3-MYB represso
MYB-ATV, whose absence cannot trigger the negative feedback loop usually occurring once anthocyanin synthesis has
been activated, thereby allowing a stronger accumulation of the pigments and thus a more uniform purple color on the
fruits. The photograph of the Solanum galapagense fruit (B) was kindly provided by Dr David Francis [62]. Abbreviation
LBGs, late biosynthetic genes.
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Outstanding questions
What is the role of alternative splicing of
the factor SlAN2like in anthocyanin
synthesis, and when did it appear
from a phylogenetic point of view?
Recent studies showed a novel type
of regulation based on AS of this factor
in the Aubergine line: is this mechanism
also conserved in wild relatives of
tomatoes?

Synthesis of anthocyanins correlates
with the amount of light received by the
fruit; shaded parts of the fruits are not
able to synthesize such compounds.
How does light regulate the synthesis
of anthocyanins in tomato?

Exposure to high temperatures
dampens the anthocyanin synthesis,
while exposure to low temperatures
results in a higher anthocyanin content
in tomato fruit peel. How does
temperature regulate the biosynthetic
process in tomato fruits?

How does anthocyanin enrichment of
fruit peel prolong the fruit shelf life,
and which molecular mechanisms
affect sensitivity to unspecialized
necrotrophic fungi, such as Botrytis
cinerea? Are other pathogenic
mechanisms also affected by the
presence of anthocyanins in the
fruit peel?

Why do bred purple tomatoes only
accumulate anthocyanins in the
epicarp? What is blocking the synthesis
in the fruit flesh?
a strong and robust anthocyanin synthesis in the fruit epicarp [51,52,77] (Figure 3C). Purple toma-
toes originating from this combination need strong light or low temperatures to induce the stron-
gest anthocyanin synthesis and so, to achieve the most intense and homogeneous fruit
pigmentations [68]. Interestingly, other metabolites, such as carotenoids, are maintained at the
same level as in anthocyanin non-pigmented fruits, meaning that the increased flavonoid synthe-
sis is not metabolically detrimental to carotenoid accumulation [78]. Different commercial lines
were thus produced, probably all based on the same mutated alleles of SlMYB-ATV and func-
tional alleles of SlAN2like, such as the Sun Black™ tomato varieties [78,79], Indigo Rose
tomatoesv, V118 [80], Blue Japan Indigo tomatoes [81], and Yoom tomatoesvi.

Alternative sources of alleles that enhance anthocyanin biosynthesis in fruit have been studied,
and Abg/– atv/atv plants have been obtained. The combination of Abg and atv revealed a
stronger synergistic effect than the one of atv with Aft, and fruits increased almost fourfold in
the total content of anthocyanins [43]. However, the use of Abg allele for the breeding process
was not further explored due to issues with the fertility and viability of the homozygous genotypes,
likely conferred by the original background of the line or by other characteristics introgressed from
S. lycopersicoides, which is evolutionarily quite distant from S. lycopersicum [43,58].

It is possible that there will be further improvements of these genetic combinations and relative
phenotypes, since other alleles of Aft and atv, as well as of other positive or negative regulators,
may exist, such as those recently described in S. galapagense [62] (Figure 3B).

Concluding remarks and future perspectives
Enhancing the anthocyanin content in food crops has become a key target in breeding and bio-
technology to increase the dietary intake of health-promoting phytochemicals. The tomato lends
itself particularly well to such enhancements.

Purple tomatoes have been obtained using transgenic and conventional breeding approaches.
The transgenic strategy fully achieved the goal of an anthocyanin-rich tomato by introducing
into its genotype strong TF-encoding loci that had already been isolated in other species.
Breeders have exploited natural biodiversity and have established the synthesis of anthocyanins
in tomato fruit peel through introgression of specific allelic variants from wild relatives.

However, purple tomatoes obtained through conventional breeding have some flaws in their phe-
notype (see Outstanding questions): they need exposure to strong light to become dark purple,
high temperatures repress their anthocyanin content, and often the shaded part of the peel is not
uniformly pigmented. To overcome this, it is essential to increase current knowledge on how
anthocyanin synthesis is regulated in tomato fruits, with a special focus on photo- and thermo-
morphogenesis, which are the next two big regulatory mechanisms of pigment accumulation
that still need to be fully characterized in this species. Most importantly, the flesh of these tomatoes
is not purple and thus is low in anthocyanins. The reasons behind the absence of anthocyanins in
the flesh of purple tomatoes need to be fully understood so that they can reach the extremely high
anthocyanin contents of transgenic tomatoes and match them in their nutraceutical properties.
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