
RCS Modelling of Extended Targets Using 

Supervised Learning 

F. Ahmad1, M.M.H. Amir1, S. Maresca2, A. Malacarne3, A. Bogoni1,3 and M. Scaffardi3 

1Sant’Anna School of Advanced Studies, TeCIP Institute, 56124, Pisa, Italy 
2CNR-IEIIT 56124, Pisa, Italy 

3CNIT - Photonic Networks & Technologies National Laboratory (PNTLab), 56124, Pisa, Italy 

Abstract—Knowing the Radar Cross Section (RCS) of 

specific targets is of primary importance in target detection and 

recognition. The RCS may significantly vary with radar 

operating frequency and target’s size, shape, material, and 

orientation with respect to radar illumination direction. Thus, a 

time-efficient way to model target RCS is of paramount 

importance in simulating close-to-reality scenarios where the 

position and orientation of target frequently vary. In this paper, 

an efficient estimation technique using machine learning 

algorithm is presented that can predict the RCS of targets of any 

shape and size. The proposed method is compared with the RCS 

obtained from the MATLAB tool POfacets. Computational time 

and mean square error (MSE) of estimated RCS with respect to 

the actual one are used as performance metrics.  

Keywords—Machine learning (ML), MIMO Radars, Physical 

Optics (PO), Radar Cross Section (RCS) Modeling. 

I. INTRODUCTION  

In recent decades, radar technology has undergone 
continuous developments both in system architecture and 
processing domain. To overcome the constraints of 
monostatic systems, the research has been focused on 
multiple-input multiple-output (MIMO) systems, capable of 
exploiting spatial diversity for a finer resolution and better 
sensitivity [1], [2].  

MIMO radars can be distinguished in two main types: (i) 
MIMO radar with co-located antennas [3] and (ii) MIMO 
radars with widely separated antennas [4]. The former exploits 
waveform diversity (WD) and demonstrates superiority over 
phased array radar for parameter estimation and flexibility in 
designing beampatterns, while the latter tackles the problem 
of RCS fluctuation and detection of slow-moving targets by 
exploiting the geometric diversity (GD) [5]. 

 Among the numerous challenges encountered while 
implementing distributed MIMO radar systems, radar cross 
section (RCS) estimation remains a highly debated and 
extensively researched functionality [6]. RCS is the 
electromagnetic area of the target as seen by the radar. It 
describes the amount of energy backscattered towards the 
radar receiver, and it is influenced not only by waveform 
characteristics (e.g., carrier frequency), target size, shape and 
material, but also by the target-sensor geometry. Even a small 
variation of the above-mentioned parameters can result in 
large RCS variation which in turn affects the detection 
capability of the radar system. 

There are two methods for estimating RCS, i.e., exact, and 
approximate methods [7]. To overcome computational 
complexity, approximate methods are mostly preferred [8]. 
Geometrical Optics (GO) and Physical Optics (PO) are two of 
the most used approximate models. Although the GO model 
is easy to implement, it comes with limitations, as it fails to 
predict RCS in case of flat and cylindrical surface. PO 

modelling exhibits high computational load but provides good 
results as close to exact models. The POfacets tool developed 
in MATLAB is based on PO approximation providing 
monostatic and bistatic RCS [9]. Different works have been 
conducted using POfacets for calculating RCS. The work 
presented in [6] calculates the bistatic RCS for extended 
targets using POfacets. However, in a close-to-reality scenario 
where the target continuously changes its orientation and 
position with respect to the radar heads (RHs), modelling the 
target RCS using POfacets is computationally expensive. To 
tackle this issue, another method using the empirical formula 
is employed to estimate bistatic RCS in [10], however at the 
cost of reduced accuracy.  

In recent years, researchers have tilted towards machine 
learning (ML) algorithms in various research domains. With 
rapid calculation and robust nonlinear representation 
capabilities, ML algorithms emerge as a potential replacement 
of conventional computational electromagnetics methods. ML 
models have been applied to predict the RCS of a target 
considering monostatic scenario, demonstrating close 
accuracy to actual RCS with low computational complexity 
[11],[12]. However, there exists a very limited body of 
research pertaining to the RCS estimation considering bistatic 
and MIMO radar scenarios. 

This paper presents a significant advancement by 
redirecting the focus on bistatic RCS modelling for extended 
targets using ML techniques. To the best of our knowledge, 
this is the first attempt at addressing this problem. Here, the 
underlying assumption is that the target lays in a single radar 
resolution cell (i.e., narrowband signal). In other words, 
although the target is composed by multiple scatterers, its RCS 
is compressed to a single value. The case in which the target 
lays in multiple resolution cells (i.e., wideband signal) is 
currently under analysis and will be the argument of future 
publications. 

II. MIMO RADAR SIGNAL MODEL 

Let us consider a MIMO radar system employing M 
transmitter (TX) antennas denoted as TXm and N receiver 
(RXs) antennas as RXn, where m = 1, …, M and n = 1, …, N. 
Let us assume that TX antennas illuminate K point-like 
scatterers Pk where k = 1, …, K. All TXs are operating in X-
band at frequency of 9.7GHz and let the signal transmitted by 
each TXm be  sm. Signal received by each RXn is given as [4]: 
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where ��,����
 and ��,����

 represents amplitude and delay 

respectively which depends on the bistatic geometry among 
TXm, RXn and Pk positions. The corresponding introduced 
phase shift is denoted by ��,���� . The received signal is 



affected by additive white gaussian noise (AWGN) which is 
denoted by ����� . The generic amplitude term can be 
calculated as: 
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where  !"�  and #!"�  are the transmit power and antenna gain 
at TXm respectively. $�  is the effective area of RXn. The 
bistatic RCS observed by the system consisting of TXm-RXn 

virtual channel is denoted by %�,��  for Pk scatterer. )* is the 

Boltzmann’s constant, +�  and ,�  are the noise temperature 
and loss factors at RXn respectively. Finally, -.�+/�,  �� and -.� � , 0/�� are the transmitter-scatterer and scatterer-receiver Euclidean square distances.  

As it is evident from Eq. (1) and Eq. (2), the received 

signal ��,����  has a direct dependency on RCS %�,�� , and 

therefore requires an accurate RCS modelling.   

III. RCS MODELLING USING MACHINE LEARNING 

POfacets is one of the most common tools used for 
calculating RCS [9]. POfacets resolves the target model with 
a large number of triangular facets which are illuminated by 
the incident field. The scattered field components from each 
facet are superimposed to obtain the scattered field in the 
observation direction. Once the scattered field is known, the 
RCS in that direction is computed. The RCS of a simple point-
like target in a MIMO radar scenario has been computed in 
[6]. However, given a close-to-reality scenario where the 
target orientation is continuously changing, estimating RCS 
using POfacets can be computationally expensive. 

ML models have proven their performance in various 
fields exhibiting accuracy levels closely aligned with real-
world scenarios at the cost of very low computational 
complexity. Since predicting RCS is a regression problem, 
there are several ML models, such as Neural Network (NN) 
[13], K-nearest neighbor (KNN) [14], Support Vector 
Machine (SVM) [15] etc., that can be implemented to predict 
RCS. However, to keep both accuracy and low computational 
complexity a priority, an ensemble ML approach is used. The 
ensemble approach involves training two or more models on 
the same dataset and the prediction of each model is combined 
to achieve better performance as compared to any individual 
model [16]. ML involves dataset generation and training 
which are offline processes, and testing of the model which is 
performed online once the model is trained. A complete block 
diagram is shown in Fig 1.  

A. Dataset Generation 

The proposed ML model is a supervised learning model, it 
is therefore important to identify inputs and outputs of the 

model. Multiple input features involved in estimating RCS of 
a target including target shapes, position, size, material, 
operating frequency, azimuth and elevation of TX etc. Small 
variation of these parameters can lead to large RCS variation. 
It is reported in [1], even slight change in the look angles can 
cause approximately 20dB variation . It is impractical to train 
a ML model for all possible combinations of input features. 
For simplicity, among all only three features including 
scattered field, observe azimuth and elevation angle are 
considered as inputs, and the corresponding RCS as an output. 
Scattered field is an important feature that depends on incident 
angles, operating frequency and target’s characteristic. It 
contains all the information required to estimate target’s RCS. 
To generate the dataset the most reliable tool is POfacets 
which gives accurate RCS values.  

A complex model of a 40-m yacht is considered from 
POfacets library as an extended target. Let us consider a 
narrow band radar illuminating the yacht such that the radar 
resolution cell is so large to contain the whole target. This 
approximates the target as a point-like scatterer and most of 
the RCS modeling tools rely on this assumption. To employ a 
bistatic scenario, the tool is provided with incidence elevation 
angle DE� = 45° , azimuth angle HE� = 0°  and observation 
elevation angle in the range DJK = 0° L  90° with increment 
of 1° and azimuth angle in the range HJK = 0° L  360° with 
increment of 1° operating at 9.7GHz. This creates a bistatic 
scenario in which the incident angle is fixed while the 
observation angles in azimuth and elevation directions are 
varied along with the step of 1°, creating 32851 possible TX-
RX combinations. Upon simulation, 32851 scattered fields are 
generated as input and a corresponding RCS vector of length 
32851 as an output from ML. This is a complete dataset that 
contains X as input and Y as output combination required to 
train a model as shown in Fig.2.  

 

Fig. 2. Dataset for ML model 

B. Training 

Once the dataset is generated, it is split into 70% training 
data and 30% testing data. Testing data is kept unseen to the 
model during training and will be used for testing. To train a 

 

Fig. 1. Flow chart of the proposed ML-based algorithm for predicting bistatic RCS of extended targets. 



model, training data that contain X_train and Y_Train is given 
to Model 1 in Fig.3. As mentioned above, the ensemble model 
involves the combination of multiple weak models known as 
base models. In this case, the base model is a decision tree 
with a maximum number of splits in each node set to 50. The 
algorithm used for ensemble learning is LSBoost [17]. There 
are a total of 50 base learners and the learning rate is kept to 
0.1. The final prediction of the ensemble model is a weighted 
combination of predictions made by each base learner. This 
algorithm is trained iteratively by adding each new base 
learner to the ensemble model for improving the performance 
until it reaches the predefined number of learners, which in 
this case is 50, as shown in Fig. 4.  

The number of learners can be changed according to 
training requirements. The plot in Fig. 4 shows that MSE 
improves by increasing the number of learners at cost of 
increased training time. The generation and training of data 
are conducted offline and do not contribute to computational 
time. Once the model is trained, the prediction of bistatic RCS 
can be accomplished instantly. 

 

Fig. 3. Ensemble ML model with decision tree base learner 

 

Fig. 4. Training accuracy dependance’s on the number of learners 

C. Testing  

After training, the model's performance is assessed using 
unseen testing data, comprising both input X_Test and 
corresponding output Y_Test. The trained model predicts 
RCS values based on X_Test inputs, which are then compared 
with the actual Y_Test RCS values. The MSE is 
approximately 0.0561 dB, showcasing exceptional accuracy 
and performance of trained model. 

It is important to highlight the limitation of ML approach. 
Every ML model is trained to work for specific type of input. 
If there is need to add/remove number of input feature or 
refining the output, then ML model needs to be trained again. 
Owing to have a large number of input parameters, the 
proposed ML approach is not a generalized model that can 
work for every combination of input parameters. 

IV. SIMULATION ANALYSIS 

In this section, two performance parameters are analyzed: 
accuracy and computational time. To evaluate computational 
efficiency, two distinct methodologies are employed: RCS 
prediction time with and without input dataset generation 
time. Time is measured using MATLAB's `tic` and `toc` on 
the same machine. In the first method, only RCS prediction 
time for both algorithms are compared utilizing entire input X 
generated previously for yacht. The input X is given to the ML 
model and the RCS estimation script of the POfacets tool. 
Both approaches compute the RCS within seconds utilizing 
pre-existing dataset however, ML approach outperforms 
POfacets because of the higher complexity of RCS estimation 
within the POfacets script. This method is useful when a 
database of inputs is available, and a quick RCS prediction is 
needed. In the second method, both input data generation time 
and RCS prediction are considered. Time taken to generate the 
32851 input combinations and their RCS prediction using 
POfacets is around 16.67 minutes, as shown in Table 1. This 
time can be further reduced by discretizing azimuth angles 
with step of 3° instead of 1°, making 11011 combinations. 
These gaps are then filled by performing interpolation, 
resulting in 32851 combinations, as those of X. Table 1 shows 
that generation of dataset with step of 3°, performing 
interpolation and computing RCS, takes 5.1 minutes, 3.27 
times less the time needed by POfacets. This proves that with 
or without data generation the ML model still outperforms 
POfacets. The time can be further reduced by increasing step 
size however, on account of reduced accuracy. This method is 
useful when there is change in input features like target 
material, angles and operating frequency, making necessary 
the generation of a new input dataset to predict the RCS. 

Table 1.  Computational complexity comparison 

Prediction Time with Pre-Existing DataSet 

Methods Yacht Tank 

Pofacets 3.2415 Seconds 2.8154 Seconds 

ML Model 0.2512 Seconds 0.2836 Seconds 

DataSet Generation + Prediction Time 

Methods Yacht Tank 

Pofacets 16.67 Minutes 5.93 Minutes 

ML Model 5.1 Minutes 1.8047 Minutes 

 

Fig. 5. Bistatic RCS for a Yacht  

To evaluate the accuracy, the RCS is estimated using both 
approaches: POfacets receives the entire input X, while the 
ML model is provided with the same input with step of 3°. 
Fig. 5 shows the RCS against bistatic angle HJK = 0° L 360° 
at DJK = 30°. It is not feasible to show plots for all angles DJK =  0° L 90°. Although there is 3° step in the dataset of 
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ML approach, its accuracy still approaches close to POfacets 
and follows the same trend with MSE 1.8096 dB. If step size 
is further increased to 5°  to reduce the time, the MSE 
increases to 3.7738 dB. There is a trade-off between time and 
accuracy. Finally, two dips in RCS value appear at 90° and 
270°, due to orientation of viewpoint of target. 

It is important to clarify that there is no need to train the 
model again for any change in input features like frequency, 
target, angles unless when adding or subtracting the number 
of features. The scattered field which is input to ML model 
contains all the information about target and all operating 
requirements. Therefore, if any changes are required in inputs 
like frequency, target type, incident angles, then only the 
generation of the dataset is required to predict the target RCS. 
To verify this, let us consider a tank instead of a yacht and a 
frequency of 3GHz (i.e., S band).  

 

Fig. 6. Bistatic RCS for a Tank  

 Upon prediction with an already trained model, Fig 6 
shows that the proposed algorithm follows the same trend of 
RCS against bistatic angles as POfacets with MSE of 2.1342 
dB. The computational time in Table 1 shows the dominance 
of ML approach over POfacets. Moreover, this ML model, 
originally trained on the yacht dataset, has demonstrated 
outstanding performance also for the tank model.  

V. CONCLUSION AND FUTURE DIRECTION 

This paper has introduced an innovative RCS estimation 
technique for extended targets, leveraging on ensemble ML 
methods. The proposed approach has been thoroughly 
examined in a bistatic radar scenario, aiming to improve 
accuracy and time efficiency in RCS estimation. The 
simulation results prove that the ML approach is 3.27 times 
faster than POfacet for yacht RCS estimation, with MSE of 
1.8096 dB. This problem may particularly exacerbate in 
dynamic close-to-reality scenarios, where it is necessary to 
simulate multiple targets undergoing continuous changes in 
position and orientation with respect to different RHs.  

The model has undergone testing on diverse targets to 
predict bistatic RCS across a range of bistatic angles, 
demonstrating outstanding accuracy and computational 
efficiency. Future enhancement of this ML-based RCS 
estimation is to compute RCS of each facet making it an 
efficient RCS predictor for extended targets laying in more 
than one radar resolution cell. 
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