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Abstract—Lower limb prosthetics, essential for restoring 

mobility in individuals with limb loss, have witnessed significant 
advancements in recent years. This systematic review reports the 
recent research advancements in the field of semi-active and active 
lower-limb prostheses. The review focuses on the mechatronic 
features of the devices, the sensing and control strategies, and the 
performance verification with end-users. A total of 53 prosthetic 
prototypes were identified and analyzed, including 16 knee-ankle 
prostheses, 18 knee prostheses, and 19 ankle prostheses. The 
review highlights some of the open challenges in the field of 
prosthetic research. 
 

Index Terms—Prosthetics, mechatronics, control, robotic 
rehabilitation. 

I. INTRODUCTION 
 lower limb amputation (LLA) occurs worldwide every 

30 seconds due to diabetes alone [1]. The leading causes 
of LLAs are dysvascular diseases, such as diabetes, which 

accounts for more than 93% of the total LLA cases, followed 
by trauma (more than 5%) and cancer (around 1%) [2]. 
Transtibial and transfemoral amputations (respectively 28% 
and 26% of all LLAs) pose significant challenges to the affected 
individuals, impacting their mobility, independence, and 
overall quality of life [3]. The World Health Organization has 
identified physical inactivity as the fourth leading global risk 
factor for mortality, affecting countries across all income 
groups [4]. Consequently, the restoration of ambulatory 
capabilities in individuals with LLA is of paramount 
importance for prosthetic technologies. 

Currently, the vast majority of commercially available 
solutions for prosthetic limbs are passive, hence they cannot 
introduce net positive energy into the locomotion [5]. While 
passive prosthetic knees can enable swing during level ground 
walking, they cannot assist with high-energy demanding 
activities, such as stair ascending and sit-to-stand transitions 
[6], [7]. Passive prosthetic ankles can effectively provide 
stability and support, but their intrinsic elasticity only allows 
them to reach up to 45% of the physiological push-off peak 
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power [8]. These limitations result in a less efficient, slower, 
and asymmetric gait [5], and alterations that may lead to 
comorbidities such as chronic back pain and osteoporosis [9]. 
Conversely, robotic prostheses (i.e., active, and semi-active) 
can mimic a wider variety of physiological limb behaviors, 
offering greater control and adaptability [10]. Semi-active 
prostheses (also referred to as microprocessor-controlled 
prostheses) combine passive mechanical elements with 
adjustable damping or stiffness mechanisms to offer improved 
stability, or incorporate low-power actuators to adapt to 
changing walking conditions or power-specific gait phases 
[11], [12], [13], [14]. Active prostheses integrate actuators that 
provide powered assistance throughout the whole gait. These 
prostheses incorporate motors, sensors, and control algorithms, 
that enable the device to mimic the biomechanical behavior of 
the lost limb, facilitating a more natural and efficient gait 
pattern [15], [16], [17], [18], [19], [20], [21]. 

Given the considerable advancements in active and semi-
active lower limb prostheses, a comprehensive understanding 
of the current state of the field is necessary to identify the key 
challenges, technological trends, and potential clinical benefits 
associated with these devices. In fact, in 2021, the World 
Intellectual Property Organization identified prosthetics as one 
of the most rapidly advancing technologies within the category 
of mobility assistive devices [22]. 

Previous reviews have focused on only knee or ankle 
prostheses [23], [24], [25], or on specific aspects of lower limb 
prostheses, such as control methods [26], [27], [28], [29], user 
needs [30], [31], [32], [33], or outcome measures [34], [35]. 
This systematic review focuses on both the mechatronic design 
of semi-active and active knee and ankle prostheses, their 
sensing and control strategy, as well as their assessment through 
experiments involving end-users. A prior systematic review of 
active lower limb prostheses was conducted in 2016 [36]. 
Although this previous review provided valuable insights into 
the design solutions for active devices, it did not include semi-
active prostheses. Furthermore, significant advancements have 
been made in the field of lower limb prosthetics in the last few 
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years, leading to the design and testing of numerous prototypes 
on end-users.  

The primary objectives of this systematic review are to report 
the: (i) mechatronic design, (ii) sensing and control strategies, 
and (iii) methods for the functional verification associated with 
the semi-active and active lower limb prostheses from 2016 to 
the present. The review examines only research prototypes 
because detailed technical information about commercial 
prostheses is limited. Nonetheless, the recent introduction of a 
few active prostheses to the market indicates an increasing 
interest in powered solutions [37], [38], [39], [40]. This review 
will contribute to the existing knowledge by providing an 
updated and comprehensive overview of the technical 
advancements and potential benefits of robotic lower limb 
prostheses. 

II. METHODS 
We performed a systematic review following the Preferred 

Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines [41]. 

A. Eligibility Criteria 
We included studies that involved physical prototypes of 

active and semi-active lower limb prostheses tested on at least 
one person with LLA. Given the last systematic review 
published in 2016 [36], the search was limited to journal papers 
and conference proceedings published from that year onward. 
Articles were excluded if they involved a prototype developed 
before 2016 or a commercial prosthesis. Only studies published 
in English were considered. 

B. Search Strategy and Data Collection Process 
The following search string was used to search the Scopus, 

PubMed, IEEE Xplore, and Web of Science databases:  
Prosth* OR Artificial limb) AND 

(Knee OR Transfemoral OR Foot OR Ankle OR Transtibial OR Leg OR 
lower-limb OR Lower-extremity OR Lower-leg OR lower limb OR Lower 

extremity) AND (Active OR Robotic OR Adaptive OR Artificial OR Intelligent 
OR Powered OR Bionic OR Microprocessor OR Power OR Semiactive OR 

Semi-active) AND NOT (Replacement OR arthroplast*). 
The search was performed on March 14, 2023, by the 

primary researchers. The search string was obtained by 
grouping keywords in a logical structure. As in [36], an 
exclusion criterion was inserted to exclude publications 
regarding arthroplasty and limb replacement. All publications 
regarding devices or medical topics different from active or 
semi-active knee and ankle prostheses were excluded. 

The results exported were screened by title and abstract by 
two reviewers (namely the first and second authors of this 
manuscript) to determine their relevance. Articles that met the 

 
Fig. 1.  PRISMA flowchart illustrating the systematic review process. 
 

 
Fig. 2.  Timeline depicting the publication years of the robotic prosthetic prototypes reviewed in this paper. 
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inclusion criteria during the title and abstract screening were 
selected for full-text review. Any discrepancies between the 
reviewers were resolved by a third reviewer, namely the third 
author. Moreover, relevant studies published after the search 
were analyzed, and 13 additional papers were included. The 
search retrieved a total of 6210 publications across the selected 
databases. Results were imported in Zotero, and 1787 
duplicates were removed. A total of 4421 publications 
underwent screening by title and abstract, and 294 records were 
assessed for full-text analysis. In the end, a total of 109 studies 
were included in the analysis (see Fig. 1). 

III. RESULTS 
The identified studies included tests with 53 different lower 

limb prostheses, comprising 19 ankle prostheses, 18 knee 
prostheses, and 16 knee-ankle prostheses (as summarized in 
Figure 2 and Table I). The following sections report the main 
findings in terms of mechatronic design, employed sensors and 
control systems, and verification reported with the end-users. 

A. Mechatronic Design 
Actuation stands at the core of robotic lower limb prostheses, 

providing the means to emulate the biomechanics of natural 
human gait. The choice of the actuation architecture and 
components is critical to match the requirements of the 
biological missing limb while avoiding oversizing the overall 
assembly [42], [43]. Among the identified prototypes, all knee-
ankle prostheses are fully active. The highest percentage of 
knee prostheses are semi-active while the highest percentage of 
ankle prostheses are fully active (Figure 3). Electric motors 
emerged as the most prevalent type of actuators, being utilized 
in 40 out of the 53 prostheses analyzed, surpassing pneumatic 
and hydraulic solutions. In the case of multi-joint active 
prostheses, the typical approach involves actuating each degree 
of freedom in the sagittal plane with a dedicated electric motor. 

Active multi-joint prostheses have been mostly developed for 
the knee and ankle joints, enabling flexion-extension and 
plantar-dorsiflexion movements, respectively. Some ankle 
prostheses have been designed to feature two degrees of 
freedom [44], [45], [46]. Among these, the MIT prosthesis 
designed for rock climbing stands out as is the only prototype 
with two degrees of freedom for the ankle joint that has been 
tested on at least one subject with a lower limb amputation. This 
design allows for dorsiflexion\plantarflexion and 
inversion\eversion movements by means of two linear actuators 
[46]. Another approach for multi-joint active prostheses is the 
incorporation of underactuated mechanisms [20], [47], which 
allow to actuate multiple joints using a single power actuator. 
Tran et al. proposed an underactuated ankle-toe mechanism 
comprising a five-bar mechanism coupled with a linear series 
elastic actuator, resulting in a lightweight and energy efficient 
assembly [20]. The prosthesis presented in [47] uses a 
differential mechanism to convey the power of one actuator to 
both the knee and the ankle joints. Of the remaining prostheses, 
11 prototypes incorporate hydraulic actuation units [48], [49], 
[50], [51], [52], [53], [54], [55], [56], [57], [58], while only one 
ankle prototype features pneumatic actuation [59]. This 
prosthesis modulates the stiffness of the ankle thanks to a 
pneumatic cylinder and a solenoid valve. By opening and 
closing the valve, the prosthesis has two operating modalities: 
(i) a free-swinging mode to achieve toe clearance during 
walking, and (ii) a high stiffness mode for controlled 
dorsiflexion and energy storage purposes. 
For knee-ankle prostheses, the average power to actuate the 
joints – considered as the sum of the electrical powers of each 
motor – is over 400 W. Active knee prostheses have an average 
motor power of 110 W, while ankle prototypes require around 
140 W. Semi-active knee prostheses maintain an average power 
of over 100 W, while for semi-active ankle prostheses, it 
decreases to just over 25 W. 

 
Fig. 3.  Diagram illustrating the key characteristics of the robotic prosthetic prototypes reviewed in this paper. 
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To transfer power from the actuator to the joint, the most 

Table I Overview of the reviewed prosthetic prototypes 
Joint: (A) Ankle; (K) Knee; (AK) Knee + Ankle. Actuation: (E) Electric; (H) Hydraulic; (P) Pneumatic. Sensors: (P) Position sensors; (F) Force sensors; (I) 
Inertial sensors; (E) EMG sensors; (O) Other. Battery: (I) Internal battery; (E) External battery.Weight is reported in kg, height is reported in cm. 
a: devices with toe joint; b: weight reported without battery. 
 

Device name, research institution Joint Actuation Weight Height Sensors Battery 
Fully active 

AMPRO, Georgia Institute of Technology[64] AK E 8.1 56.3 P,F,I I 
AMP-Foot 3, Vrije Universiteit Brussel[67] A E 3b 26 P,F,I I 
AMPRO II, Texas A&M University[60][121] AK E 5  P,F,I E 
Cleveland State University[75] K E 4.23  O  
CMU prosthesis, Carnegie Mellon University[61][115][123] AK E 6  P,I,O E 
CYBERLEGs beta, Vrije Universiteit Brussel[79][122][128] AK E 5 50 P,F,I E 
CYBERLEGsPlusPlus gamma, Université catholique de Louvain, 
Vrije Universiteit Brussel[86] 

AK E   F,I E 

Georgia Institute of Technology[62][108][109][135] AK E 8 49 P,F,I E 
LDKP, Peking University[69] K E 2.7b 20.8 P,F,O E 
MIT prosthesis for rock climbing, Massachusetts Institute of 
Technology[46] 

A E 1.29 25 F,E I 

Open Source Leg, University of Michigan[19][151] AK E 4 45.3 P,F,I,E,O I 
PANTOE II, Beijing Institute of Technology[81][141] Aa E 1.95 19.5 P,O E 
PKP-SEA, Sony Computer Science Laboratories[18][127] K E 1.2b 8.6 P  
PKU RoboTPro II, Peking University[72][104][105][106][107][118][119] A E 1.75b  P,F,I I 
PKU RoboTPro II ProVersion, Peking University[16][134][140] A E 1.58  P,F I 
Powered polycentric ankle, University of Utah[83] A E 1.32 12 P,F,I I 
PR leg, The University of Texas at Dallas, University of 
Michigan[21][102][112][116][124][125][137] 

AK E 6.61 49.2 P,F,I I 

Retractor type knee, Mie University[85] K E   P,I E 
RTFP, Peking University[53] AK H 3.8 47.3 P,I I 
Shenzhen Institute of Advanced Technology, The Chinese University 
of Hong Kong[63] 

K E 2b  I,O I 

SuKnee, The University of Tokyo[17] K E 2.6 28.7 P,F,I I 
SynPro, Scuola Superiore Sant'Anna[47] AK E 6.2  P,F,I I 
TF8, Massachusetts Institute of Technology[77] AK E 3.7 44.3 P,F,I I 
The Chinese University of Hong Kong [73][88][129] A E 2.3 21 P,F I 
The University of Tokyo[65] AK E 5.62 48.4 P,F,I I 
The University of Tokyo[66] A E 2.7 23 P,F,I I 
University of Science and Technology of China[101] AK E 4.8  F,I,E E 
UT Dallas powered prosthesis, University of Texas at 
Dallas[70][117][132] 

AK E 4.8  P,F,I E 

Utah Bionic Leg, University of Utah[20][91][111][113][143] AKa E 3.2  P,F,I,E I 
Utah knee, University of Utah[71] K E 1.59 29.8 P,F,I I 
Utah lightweight leg, University of Utah[91][100][114] AK E 2.7  P,F,I,E I 
Vanderbilt powered prosthesis, Vanderbilt University[15][103][110][142] A E 3  P,I,E I 
Warrior ankle, Walter Reed National Military Medical Center[136] A E   P,F I 

Semi active 
BP ankle, University of Washington[138] A E   F  
DSR, Vanderbilt University[58][78] A H 1.35 16.3 P,F,I I 
E-Knee, The University of Texas at El Paso[48] K H 1.97  O I 
ECT knee, Vanderbilt University[80][96] K E 1.95 36 P,F,I I 
EHA, University of Bath[56][92] A H 4.5  F,I,O E 
Hybrid knee, University of Utah[68][139] K E 1.68 29 P,F,I I 
HSAK, Jilin University[49] K H 2.68 25.8 P,F,I I 
IPK, University of Shanghai for Science and Technology[50] K H   P,F,I I 
LPK, University of Leeds[82] K E   P,F,I E 
Rehabilitation Institute of Chicago[59] A P 1  P,F I 
Peking University[51] K H  24.8 P,F,I E 
PHKP, Jilin University[52] K H 1.88 25.8 P,F,I I 
SCSA, Vanderbilt University[54][130][131] K H 2.2 28 P,F,I I 
Swing assist knee, Vanderbilt University[55] K H 1.68 28 P,I I 
Ultracapacitor based knee, Cleveland State University[93] K E   P,O E 
Utah ankle, University of Utah[76] A E 1.165 5 P,F,I E 
VSF, University of Wisconsin–Madison[74][133] A E 0.649 8.7 P,F,I I 
VAFP, Tarbiat Modares University[57] A H 2.2    
VSPA foot, Northwestern University[12] A E 1.1  P I 
WRL TTP, Scuola Superiore Sant'Anna[11][144] A E 2.7  F,I I 
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commonly employed transmission stages are harmonic drives 
[11], [18], [47], [60], [61], [62], [63], [64], slider-crank 
mechanisms [54], [55], [65], [66], [67], pulley belts [15], [16], 
[17], [19], [47], [51], [52], [53], [62], [68], [69], [70], [71], [72], 
[73], [74], and screw mechanisms [12], [20], [46], [52], [53], 
[55], [66], [67], [70], [71], [72], [73], [75], [76], [77], [78], [79], 
[80], [81], [82], [83]. High-speed, low-torque electric motors 
are typically coupled with transmission ratios greater than 
100:1, enabling high output torques and precise position 
control. At the same time, this architecture decreases the 
maximum possible speed and increases output impedance and 
reflected inertia [84]. In order to exploit the passive dynamics 
of human locomotion, recent prototypes have been developed 
featuring either low transmission ratios [21] or variable 
transmission ratios [17], [20] at the knee joint. Since lower 
transmission ratios enhance backdrivability, these mechanisms 
provide the possibility of passive walking if the prosthesis runs 
out of battery. 

Elastic elements are often embedded in prosthetic devices to 
provide mechanical compliance and shock-absorption, and to 
modulate the output impedance, enabling different control 
techniques. Several prototypes embed springs in series to the 
motor [20], [68], [85], using the so-called Series Elastic 
Actuator (SEA) architecture [18], [19], [47], [61], [62], [65], 
[67], [77], [79], [81], [86], which enables precise torque 
measurement and compliant interaction with the environment, 
at the cost of a reduced control bandwidth [87]. This 
configuration allows to mimic knee damping during weight 
acceptance or the shock absorption of the ankle at heel strike. 
Springs have also been embedded in parallel [15], [17], [73], 
[79], [81], [86], [88] to reduce the requirements of the motor by 
additionally contributing to the total joint torque. This 
configuration is mainly used in ankle prototypes, in order to 
mimic the Achille's tendon capability to store energy during 
stance and effectively releases it during the push-off phase [89]. 

The choice of the mechatronic components is among the 
main determinants of the size and weight of the prosthesis. In 
fact, robotic prostheses should be significantly lighter than a 
natural limb, as users may perceive them as uncomfortably 
heavy due to a combination of cognitive and sensorimotor 
factors [90]. Furthermore, a lightweight and compact prosthesis 
increases the variety of subjects that can wear it. Figure 4 
represents the distribution of actuation power and minimum 
heights against the weights of the analyzed prototypes. Only 
prototypes with available weight information have been 
included in the figure. However, it should be noted that some 
works provided information regarding the weight of the 
mechatronic system including batteries, such as the EHA 
prosthesis, which includes the weight of the backpack for the 
electronics and the battery pack (approximately 2.3 kg) [56], 
while others did not report the weight of the battery pack. The 
latter case include for example the AMP-Foot 3 [67], the 
CYBERLEGS Beta-Prosthesis [79], the LDKP [69], the PKP-
SEA [18], and the Shenzhen Institute Knee [63]. For knee 
prostheses, the median (IQR) weight is 1.97 (0.94) kg. The 
lightest semi-active device is the Hybrid knee with a weight of 
1.68 kg [68], while the lightest fully active device is the PKP-
SEA with a weight of 1.2 kg (not including the battery) [18]. 
The Utah Knee is the lightest fully active knee including the 
battery pack, weighting 1.595 kg [71]. Ankle prototypes 

showed a median (IQR) weight of 1.75 (1.44) kg. In this case, 
the lightest fully active device including the battery pack is the 
MIT prosthesis with a weight of 1.292 kg [46], while the 
lightest semi-active device is the VSF, weighting only 0.65 kg 
including the battery [74]. The median (IQR) weight of knee-
ankle prostheses is 5 (2.3) kg. The lightest fully active 
transfemoral prosthesis is the Utah Lightweight Leg, weighting 
2.7 kg including the battery [91]. 

Among the ankle prostheses, the median height at its lowest 
setting (IQR) is 20.3 (9.9) cm, with the shortest prototypes 
being the VSF with a minimum height of 8.7 cm [74]. Among 
the knee prostheses, the minimum height has a median value 
(IQR) of 28 (3.9) cm. The shortest prototype is the PKP-SEA, 
with a reported height of 8.6 cm without considering the battery 
[18]. Considering the battery, the shortest prototype is the 
LDKP, with a height of 20.8 cm [69]. The median height (IQR) 
for knee-ankle prostheses is 47.9 (4.8) cm, with the shortest 
prototype being the Georgia Institute prosthesis [62]. 

Lithium-ion or lithium-polymer batteries are typically 
employed to power the actuators and the electronic components 
of a prosthesis. Out of the 53 prototypes identified, 34 are 
powered by batteries integrated within the prosthetic assembly 
or secured to either the socket or pylon, aiming to reduce the 
distal weight of the prosthesis. In some cases, batteries are 
placed in backpacks alongside with other electronic 
components, or external power sources are employed. For 19 
out of the 53 prototypes the indication regarding the batteries' 
duration is available in terms of estimated time or number of 
steps before discharge. A few studies mention the possibility of 
using the device in passive mode after battery discharge: in this 
way the user can continue to walk with the prosthesis not 
injecting active power into the gait [11], [17], [20], [67], [92]. 
Notably, energy regeneration has been demonstrated in three 
prototypes. In the Ultracapacitor based knee, power is 
regenerated and stored in the ultracapacitor during swing, when 
the controller injects negative damping into the system [93]. 
The PR leg employs low-impedance actuators that allow for the 
regeneration of energy during phases of negative joint work, 
thereby reducing power consumption and increasing the 
efficiency of the device [21]. The Utah Bionic Leg features an 
underactuated mechanism that transfers mechanical energy 
from the toe to the ankle joint during ambulation, regenerating 
4.5 J per stride [20]. 

With the aim of optimizing the performance of actuators 
typically used in robotic prostheses, Azocar and Rouse [94] 
presented a characterization procedure to analyze and improve 
energetic efficiency. 

B. Sensing and Control 
The ability of a robotic prosthesis to mimic the biological 

behavior of an nonimpaired human joint is highly dependent on 
the ability of its control and sensing to coordinate the actuation 
with the user's central nervous system [10], [28], [95]. 
1) Sensory system 

To enhance their sensing capabilities, most robotic lower 
limb prostheses incorporate a combination of position (81.1%), 
inertial (75.5%), and force (73.5%) sensors. Position sensors 
are primarily employed for joint angle monitoring. Thanks to 
their high resolution and update rate, these sensors play a 
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fundamental role in tracking the movement and position of the 
prosthetic joints, enabling precise and responsive control 
mechanisms. Inertial Measurement Units (IMUs) are used in 
most prototypes to estimate the pose and orientation of body 
segments in the three-dimensional space, enabling a more 
accurate motion detection and control. Custom force-sensing 
technologies have been developed and embedded in prosthetic 
devices to measure the interaction between the user and the 
robot/environment. Instrumented pyramid adapters and custom 
load cells have been designed to encompass force and torque 
sensing while minimizing weight and height [55], [71], [83], 
[96], [97]. Custom pressure-sensing insoles have been 
developed to estimate the vertical ground reaction force [16], 
[98] and the center of pressure along the antero-posterior 
direction of the foot [11], [47], [86], [99].  

Some prototypes embed other types of sensors (24.5%), such 
as electromyography (EMG) to implement myoelectric control 
[46], [100] or to perform intention detection [101], and strain 
gauges used either to detect gait events [56], [92] or to estimate 
the force transmitted between the foot and the knee through the 

prosthetic shank [75]. The integration of accurate sensory data 
into the control system is essential to achieve precise and 
seamless control of the prosthesis. 
2) Control system 

The control system of a robotic prosthesis is commonly 
described as a hierarchical, three-layered structure [95]. The 
high-level control layer is devoted to intercept the user's 
movement intent through intention decoding algorithms 
capable of recognizing various locomotion modes. The mid-
level control layer is devoted to translating the user's motor 
intention into a reference trajectory for one of the device joint 
and state variable (e.g., joint torque, position, velocity, or 
impedance). These desired trajectories are subsequently sent to 
the low-level control layer, responsible of driving the actuator 
depending on the error between measured and desired device 
state. Most of the retrieved prototypes still lack real-time 
intention detection, relying on manual selection of the 
locomotion mode. Among the tested prototypes implementing 
intention decoding strategies, a common real-time approach is 
based on threshold-based algorithms to discriminate between 

 
Fig. 4.  Distribution of the motor power and minimum height against weight for the prosthetic prototypes reviewed in this paper. For knee-ankle prostheses, 
motor power is calculated as the cumulative power of the embedded motors. Shapes outlined in black represent semi-active devices, whereas those without 
outline denote fully active prototypes. Prostheses marked with an asterisk in the legend were originally reported in the articles without accounting for battery 
weight and height. 
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standing and walking [15], [69], [79], swing or support phases 
[101], or to recognize multiple locomotion modes, such as sit-
to-stand transitions [102] and stair negotiation [103]. Some 
studies present intention detection algorithms for locomotion 
mode recognition based on machine learning techniques, such 
as quadratic discriminant analysis [104], [105], support vector 
machines [106], and neural networks [107], [108], [109]. 

A possible approach is to overcome the intention detection 
layer using a unified controller. This approach consists of 
applying the same control strategy regardless of the task, thus 
not requiring an explicit classification of the locomotion 
activity. For example, unified walking controllers were 
developed by exploiting the idea that the quasi-stiffness of the 
shank is consistent across different tasks [58] and different 
terrains [110]. Recent studies used inertial sensors to indirectly 
detect the volitional movement of the user’s residual limb, 
achieving adaptation to variable speeds, inclines, and uneven 
terrains [111], [112]. In particular, Best et al. [112] recently 
introduced a data-driven hybrid controller for continuously 
walking at different speeds and inclines, combining variable 
impedance control during stance and kinematic control during 
swing. 

Cowan et al. [113] proposed an EMG-based controller for 
powered knee prostheses which allowed for walking and stair 
negotiation tasks without explicit classification of the activity 
and enabling seamless transitions both with sound and 
prosthetic sides. Another example is from Hunt et al. [100], 
where EMG signals are used to control the prosthesis in various 
locomotion tasks through shared neural control: by detecting 
the activation of flexor and extensor muscles in the residual 
limb of subjects, the controller facilitates tasks such as standing 
up and sitting down, lunge, squat and walk. It also allowed 
seamless transitions between these tasks without any explicit 
classification or detection.  

For what concerns the middle-level control, the specific 
phase of each locomotion task can be determined either 
discretely through segmentation algorithms or through 
continuous phase estimation approaches. Most of the identified 
prototypes employ finite state machines (FSMs), dividing each 
task into different subphases where a specific control law is 
applied. Transitions between subphases and/or states are 
typically determined by a set of threshold-based transition 
conditions. This approach is adopted for its intuitiveness and 
ease of development, allowing the easy addition of new 
subphases. However, it can lack in robustness and the number 
of tuning parameters can considerably increase with the 
growing number of locomotion tasks and subphases in each task 
[26]. To simplify the control architecture, a unified FSM can be 
shared across tasks. For example, Culver et al. [80], [96] 
implemented a FSM with six states, and defined a different 
sequence of states for each task. Another example was 
presented by Tran et al. in [71], where different tasks were 
segmented into the same states. Other studies implemented 
security states within the FSM to rapidly extend the knee in case 
of knee buckling or stumbling [17], [65]. Some prototypes 
implemented either adaptive FSM with varying thresholds to 
adapt to gait characteristics [85] or adaptive control laws to 
make the prosthesis compliant to different stair heights, 
cadences and gait patterns [91] or to enable obstacle avoidance 
[114], [115], [116]. 

As an alternative to the discrete detection of gait events, one 
can track the progression of periodic tasks through continuous 
phase estimation. This approach is generally subject-
independent, it may require a lower number of parameters to be 
tuned with respect to FSMs, and it can naturally adapt to 
changes in the walking speed [117]. A common approach 
involves the use of Adaptive Oscillators (AOs) [11], [86], 
[118], [119], dynamical systems that can change their 
parameters to learn a quasi-periodic signal [120]. While this 
approach has been proved to precisely estimate the phase in 
steady-state conditions, it still cannot provide an exact estimate 
during transitory movements or initial and terminal steps. 
Another approach is to use phase variables based on the 
position and velocity of the residual limb's segments [55], [70], 
[102], [117], [121], [122]. This strategy may also work in non-
steady state conditions, given that the defined monotonic phase 
variable can capture the volitional intent of the user during a 
locomotion task. For example, Thatte et al. [123] used the 
information from hip, knee, and ankle joints in an extended 
Kalman filter to estimate the gait phase and phase velocity. 
Alternatively, phase variables based on the thigh angle have 
been used to estimate gait phase during rhythmic and non-
rhythmic tasks [117], walking [112], stair negotiation [124], 
and sit-to-stand [125]. 

The information on the gait phase estimation (either discrete 
or continuous) is then translated into a desired joint position or 
torque. These desired references aim to replicate the 
physiological behavior of the missing joint, and can be 
implemented using handcrafted trajectories, lookup tables, or 
polynomial fitting. The desired position or torque references are 
then translated by the low-level controller (typically using PID 
controllers) into a signal to drive the mechatronic assembly 
[26], [95]. 

C. Verification with End-Users 
The stage of development of a device determines the goals of 

the tests conducted with end-users. Pilot (or feasibility) studies 
typically focus on assessing the functionalities of newly 
developed prototypes, while validation studies involve mature 
prototypes that have undergone extensive verification with 
healthy individuals and early tests with end-users. Pilot studies 
usually involve only one or two participants. Given that the 
present review takes into consideration recently developed 
prototypes, most of the reviewed studies were pilot studies 
aimed at verifying that the prototypes’ functionalities met the 
requirements. To do so, these prosthetic prototypes were 
typically tested with high-mobility individuals with 
amputations (i.e., K3-K4 on the Medicare Functional 
Classification Level [126]), except for one device tested with a 
K1-level participant [79]. Two prototypes were tested on 
bilateral lower limb amputees [91], [127]. For the reviewed 
prototypes, the median (IQR) age of the tested population is 41 
(22) years, with a strong prevalence of male participants 
(94.8%). The most common cause of amputation among those 
reported was trauma (25 out of 50), followed by congenital 
diseases (10 out of 50), tumors (8 out of 50), dysvascular 
disease (5 out of 50), and infections (2 out of 50). Most of the 
studies were conducted in a single session or over a few 
sessions lasting no more than 4 hours. In most cases, 
participants underwent up to 3 hours of familiarization with the 
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device, although there were a few instances where participants 
had the opportunity to become acclimated to the new device for 
an extended duration [20], [46], [60], [61], [69], [91], [103], 
[128], [129]. 

The first objective when assessing the functionality of a new 
prototype typically involves testing it with a single individual 
with amputation performing level-ground walking, as can be 
seen in Figure 5. Across all the selected studies, prosthetic 
devices were tested in level-ground walking and in some cases 
other 1 or 2 tasks. Common tasks include stair and ramp 
negotiation [49], [112], [124], [130], [131], [132], [133], [134], 
[135], and less frequently, sit-to-stand transitions [7], [17], [47], 
[100], [102], [125]. In addition to these tasks, other studies have 
included activities such as backward walking [80], [117], 
simulated hikes [136], navigating uneven terrains [110], 
squatting and lunging [100], performing turning motions [102], 
[105], and rock climbing activities [46]. 

To verify the functionality of newly developed prototypes, 
the most reported metrics include a comparison with healthy-
subject kinematic and kinetic data (49 out of 53 prototypes), 
such as joint angles and torque profiles. Among these, some 
studies defined clinically relevant goals and compared them 
with the prosthesis’ performance [19], [91] or verified 
reductions of compensatory movements at the hip [117], [137]. 
Only 6 prototypes reported the users’ subjective feedback [11], 
[37], [61], [76], [106], [107], utilizing questionnaires such as 
the Visual Analog Scale or the full-body pain diagram.  

Depending on the specific design of the prototype, other 
metrics can be taken into consideration during the preliminary 
verification. For example, some studies evaluated device 
performance in terms of mechanical and electrical energy 
exertion. Some of these studies focused on energy regeneration 
[11], [21], [74], [75], [93], [138], while others investigated 
energy consumption in relation to current consumption [17], 
[65], [76]. Studies dedicated at evaluating the performances of 
control algorithms also consider metrics such as classification 
accuracy [139] or classification errors [74].  

Some of the analyzed studies preliminarily verified outcomes 
of clinical relevance, such as symmetry, metabolic 
consumption, and compensatory movements. Spatiotemporal 
parameters were examined in 5 ankle prototypes [11], [129], 

[140], [141], [142] and 3 knee-ankle prostheses [53], [125], 
[143]. For example, powered prostheses have demonstrated the 
ability to enhance the symmetry of ground reaction forces [53], 
[129], [141], [142], and weight-bearing symmetry in sit-to-
stand tasks [143]. Among the 53 prototypes analyzed in this 
review, 6 assessed metabolic effort using a respirometer to 
measure oxygen consumption and gas exchange or indirectly 
via heart rate monitoring. Of these, 4 ankle prostheses exhibited 
a reduction in energy consumption of over 10% compared to 
passive prosthesis [72], [129], [140], [144]. Notably, [140] 
utilized gait symmetry as a cost function in human-in-the-loop 
optimization control, revealing a correlation between gait 
symmetry and metabolic cost. In one knee prototype, different 
control strategies were evaluated based on metabolic cost, with 
no significant differences observed between them [50]. 
 

IV. OPEN CHALLENGES 
As the field of robotic lower limb prostheses evolves, there are 
several open challenges that must be considered to make the 
user-prothesis interaction seamless and intuitive. 

A. Mechatronic Design 
The following are key design challenges in the mechatronic 

design of lower limb prostheses, which the authors think 
deserve attention for a widespread adoption of powered 
prostheses. 
1) Miniaturization and weight reduction 

To be acceptable from the end-users’ perspective, prostheses 
should be compact and lightweight. While the human leg and 
foot weight approximately 6% of the total body mass [145], a 
general design rule for prosthetic devices is to keep the device 
weight close to the half of the weight of the human limb 
counterpart. When this requirement is not met, prosthetic legs 
are not well tolerated by end-users [11], [48], [75], as the 
human-device interface may become unstable and lead to 
discomfort [146]. Also, people with amputations are 
accustomed to the weight of passive prosthesis, and when 
testing powered prostheses, they may perceive that the 
functional advantage of using a powered device is not sufficient 
to overcome the cost of the additional burden they have to carry 

 
Fig. 5.  (a) Bar plot illustrating the distribution of prostheses tested across various tasks and sample sizes. (b) Summary of outcome measures employed to 
evaluate the prototypes. 
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[144]. Advancements in materials and manufacturing 
techniques are required to achieve miniaturization without 
compromising dependability and performance [147]. 
Simultaneously, a smaller and lighter prosthesis often lends 
itself to a more visually appealing design, contributing to 
enhance the overall satisfaction with the prosthetic device. 
2) Energy efficiency and autonomy 

To compete with passive commercial prostheses, robotic 
devices should be self-standing and capable of providing at 
least a full day of autonomous operation. Only few studies 
investigated the effect of different control strategies on power 
consumption [64], [75]. Moreover, electrical energy 
regeneration is a promising strategy for enhancing energy 
efficiency by converting the otherwise dissipated 
biomechanical energy during human locomotion into electrical 
energy for recharging the onboard batteries. For example, the 
knee joint exhibits net negative power during the gait cycle, 
making it a source of energy regeneration for transfemoral 
prostheses [145]. 
3) Cost reduction 

Making advanced mechatronic prostheses more affordable 
and accessible is an ongoing challenge in the field. Currently, 
the cost of robotic prostheses typically ranges between 20,000 
USD and 100,000 USD, depending on the model and 
functionalities [148]. This would not only benefit individuals 
who require prostheses but also contribute to enhancing the 
overall accessibility of advanced healthcare solutions [30]. 
Additive manufacturing and 3D printing have shown potential 
benefits in terms of reducing fabrication costs, time, and 
material waste [147], [149]. Nonetheless, these techniques may 
introduce new challenges in the mechanical design of the 
prostheses related to the compliance of the materials used, such 
as precise alignment and critical tolerances. 

B. Sensing and Control 
Commercially available microprocessor-controlled 

prostheses employ control strategies based on key-fob 
mechanisms, switches, or predefined sequences of movements. 
Requiring the subject’s input, these controllers are reliable and 
grant safe intention decoding, but cause an increased cognitive 
burden and unnatural transitions between tasks. The following 
are key open challenges to enable a more natural and intuitive 
locomotion of robotic lower limb prostheses, while maintaining 
their safety and reliability. 
1) Volitional control and user adaptability 

EMG-based algorithms have the potential to restore 
volitional control by directly decoding the neural activity of the 
muscles in the residual limb of the users, potentially improving 
prosthetic embodiment. For instance, this control strategy has 
demonstrated effectiveness in restoring normative postural 
control during standing perturbations [150], or enabled users to 
perform activities such as standing on tip-toes, foot tapping, 
side-stepping, and backward walking [151]. Nonetheless, 
EMG-control is highly dependent on the quality and availability 
of residual muscles and is vulnerable to motion artifacts and 
noise. Adaptive Dynamic Movement Primitives (aDMP), 
dynamic systems that can encode the kinematic patterns of 
rhythmic and non-rhythmic movements [152], have recently 
shown potential for accurate locomotion mode recognition and 
continuous gait phase estimation [153], [154]. 

In addition, prosthetic devices should be tailored to the user 
to enhance their comfort and usability. To this end, machine 
learning algorithms and artificial intelligence hold promise in 
enabling prosthetic devices to learn from user behavior and 
preferences [26]. These technologies can empower the 
development of control systems that self-optimize based on 
real-time user feedback and usage patterns (frequency of use, 
most performed tasks, preferred movement patterns), ultimately 
offering a more personalized and comfortable user experience. 
For example, Human-In-the-Loop Optimization is a way to 
customize control parameters in real-time by iteratively 
minimizing a cost function. This approach gave promising 
results in reducing metabolic cost in exoskeletons [155], [156] 
and is recently being explored to tailor the behavior of lower 
limb prostheses on the users [140], [157]. 
2) Sensory feedback integration 

Neural sensory feedback systems have shown the potential to 
revolutionize prosthetic technology, improving symmetry 
[158], [159], mitigating phantom pain and improving walking 
speed and metabolic cost [160]. Moreover, this approach has 
demonstrated to positively affect the embodiment of the device, 
decreasing the subjective perception of the prosthesis’ weight 
[90]. 
3) Safety and real-time environmental awareness 

Prosthetic limbs should have the ability to sense and adapt to 
different environments and terrains. Challenges include 
exploiting sensors and control algorithms that can detect 
obstacles or changes in terrain, adjust joint stiffness, and 
optimize gait patterns accordingly. Recently, sensing 
modalities such as vision and pressure were integrated into the 
prosthesis’ control system to recognize the surrounding 
environmental features [116], [161], [162], [163]. 

C. From Verification to Validation 
This review focused on the development and preliminary 

verification of the analyzed prototypes. Nonetheless, the 
subsequent validation phase plays a pivotal role in bringing 
powered lower limb prostheses to market. The following are 
key open challenges to foster the real-world adoption of this 
technology. 
1) Ecological assessment 

Verification studies, typically conducted in controlled 
laboratory settings, are an essential initial assessment for 
prosthetic prototypes, offering valuable insights into their 
functionality under controlled conditions. However, to simulate 
real-world use and progress towards market readiness, 
validation studies should transition to ecological settings. 
According to the World Health Organization, it is paramount to 
assess the functionality of a prosthesis both in indoor and 
outdoor settings, and considering dynamic activities typical of 
daily life, such as stand-to-sit, stair ascending, and obstacle 
avoidance [164]. This approach ensures that prosthetic devices 
can address the diverse needs of users across various contexts, 
ultimately improving their marketability. 
2) User training and study population  

While the functionality of robotic prostheses is typically 
verified on small sample sizes consisting of high-mobility 
amputees, an adaptation phase involving effective user training 
is essential [165]. After the preliminary verification of a 
prototype, validating the device requires larger sample sizes and 
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a broader spectrum of users, including individuals with limb 
loss due to dysvascular diseases. Such individuals are typically 
low-mobility and represent the majority of people with lower 
limb amputations. This step is crucial for bridging the gap 
between research-driven applications and market-ready devices 
[35]. 
3) Standardization of assessment 

While research prototypes explore different design 
principles, the main outcome for their preliminary assessment 
is comparing them with the natural kinematic and kinetic 
profiles of human locomotion. This comparison enables 
meaningful performance evaluation across different prototypes. 
For the same reason, validation studies should include common 
clinical outcomes to demonstrate advantages over existing 
prostheses in the market [34]. 
4) Healthcare technology assessment 

Integrating robotic lower limb prostheses into clinical 
practice requires convincing decision-makers of their value for 
the society. This necessitates not only demonstrating the 
clinical benefits and improved quality of life they offer but also 
proving their cost-effectiveness. To this aim, healthcare 
technology assessment activities may be a pivotal tool to 
evaluate the clinical, social, and economic impact of these 
devices, paving the way for broader acceptance and integration 
into clinical practice [166]. Particularly noteworthy – and yet to 
be demonstrated – is the potential for significant economic and 
social benefits associated with low-mobility amputees 
achieving functional recovery through robotic prostheses. 

V. CONCLUSION 
This systematic review provides an overview of the current 

state-of-the-art and recent advancements in active and semi-
active lower limb prostheses. Since the previous systematic 
review in 2016 [36], we have identified and analyzed 53 new 
prototypes of semi-active and active lower limb prostheses. 
This review covers key aspects including (i) the actuation 
principles and mechatronic designs, (ii) the sensory apparatus 
and control architecture, and (iii) the methods used to verify the 
prototypes’ functionality with end-users. 

Our findings highlight important challenges that warrant 
attention. The mechanical design should aim at reducing the 
weight and encumbrance of prosthetic devices. Moreover, 
robotic prostheses should be equipped with embedded batteries, 
and both their mechatronic embodiment and control system 
should prioritize energy efficiency. To enhance usability and 
acceptance, the control system should be perceived as seamless, 
capable of adapting to different tasks and environmental 
conditions. Furthermore, the integration of sensory feedback 
holds promise for enhancing user-environment interaction. 
Lastly, extensive user training and clinical trials are needed to 
gain meaningful insights into the widespread adoption of 
robotic solutions in prosthetics. 
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