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Abstract—A routing and spectrum assignment strategy based
on Reinforcement Learning (RL-RSA) is proposed for multi-band
optical networks. RL-RSA accounts for Stimulated Raman Scat-
tering using the Generalized Gaussian Noise model. Simulation
results show that RL-RSA increases the throughput by 20%.

Index Terms—Routing and spectrum Assignment, Reinforce-
ment Learning, Multi-band, Optical networks

I. INTRODUCTION
Multi-band transmission and networking are gaining at-

tention, as exploitation of unused portions of the spectrum
(e.g., S- and E-band) could accommodate traffic growth and
postpone the deployment of new fibers [1]–[3]. Recently,
several advances have been made in enabling technologies
(e.g., amplification [4] and switching [5]). In parallel, machine
learning (ML) techniques have been explored in optical net-
works [6] for network optimization and automation, including
Quality of Transmission (QoT) estimation [7], failure detection
and identification [8]. Reinforcement Learning (RL) [9] is a
promising ML approach based on trial and error interactions,
which presents the advantage of not requiring a training
dataset. In the context of optical networks, RL has been ap-
plied to routing and wavelength assignment [10], routing [11],
and restoration strategies [12]. Moreover, Deep Reinforcement
Learning (DRL) has been investigated in the literature for
resource allocation in optical networks [13]–[15]. However,
contrary to RL, DRL requires a training data set, whose
acquisition may be complex and time consuming. In general,
differently from DRL, the use of RL in optical networks is
either unexplored or much less explored, especially regarding
multi-band optical networks. In this paper, we propose an
RSA strategy based on RL (RL-RSA) specifically designed for
multi-band optical networks. L, C, S, and E bands are con-
sidered with wideband transmission impairments (including
Stimulated Raman Scattering – SRS) through the Generalized
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Gaussian Noise (GGN) model. Simulation results show that
RL-RSA increases the network throughput by up to 20%.

II. RL-RSA

An RL model is composed of the following main compo-
nents: (i) agent, (ii) environment, (iii) state, (iv) action, and
(v) reward. The RL model acts as an agent that learns through
trial and error while interacting with the environment (i.e., the
multi-band network in our case). The agent decides which path
and portion of the spectrum to assign to a connection request
between a source and a destination. The environment consists
of the network, including links, paths, supported bands, and
the Quality of Transmission (QoT) as figure of merit. In
this paper, because of the adoption of the GGN model, the
QoT figure of merit is the generalized signal-to-noise ratio
(GSNR) [3]. The state represents the requested connection
and the active connections, while the action is the path and
spectrum attempted by the agent for the request. The reward
is the feedback score assigned based on the action’s success or
failure (i.e., that spectrum satisfies continuity constraint over
the path or not). Scores are stored in a Q-Table. The proposed
RL-RSA works as follows considering a network supporting
dual polarization 16 quadrature amplitude modulation (DP-
16QAM) and DP- quadrature phase shift keying (DP-QPSK).
It is assumed that the connection rate is fixed and the requested
connection rate is fulfilled with a single channel if DP-16QAM
is supported or with two channels in the case of DP-QPSK.

The GSNR is computed per channel. The algorithm 1 shows
the initialization of the Q-Table, where the initial values for
the scores are calculated as a function of: (i) the length of
the path (π), (ii) the GSNR value of the channel on the path
(γ). For instance, the shorter the path, the highest the score
(given that α is a negative number). The score also depends
on the coefficient β, whose value depends on the GSNR (as
an example for the same route, different bands – or channels –
experience different transmission performance). In particular,
GSNR is compared with the GSNR thresholds of the modu-
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Fig. 1. RL RSA flow chart.

lation formats considered (THDP−16QAM and THDP−QPSK).
The value of β is assigned in order to give preference to the
selection of the more spectral efficient DP-16QAM (β = 5/12)
rather than DP-QPSK (β = 1/16). Then, the final score of the
(path-channel) pair is given by α × π + β × γ. In case DP-
QPSK is selected, two spectrally adjacent channels should be
set up. Then, upon connection request, the agent selects the
action (path,channel) with the highest score in the Q-table.
The score in the Q-Table related to that action is updated
positively or negatively depending on the success or failure
of the chosen (path-channel) pair as shown in Algorithm
2. The agent’s learning is iterative, allowing for continuous
improvement of the Q-Table. The reward system, defined in
Algorithm 2, encourages the use of higher modulation formats
and discourages choosing the same path-channel if a request
cannot be established previously (e.g., because the channel
does not satisfy spectrum continuity constraint). Fig. 1 shows
the flowchart of the proposed RL-RSA. Upon connection
request, the RL agent checks the availability of entries in
the Q-Table for that connection request. After that, a (path-
channel) pair is selected from the Q-Table with the highest
score. In the case where the selected pair is available, its score
will be updated positively – Algorithm 2– and (path-channel)
will be assigned to the request and the connection will be
established. If the selected (path-channel) pair is not available
– for example if the channel does not satisfy the spectrum
continuity constraint over the path –, the selected pair’s score
will be updated negatively, as described in Algorithm 2 and
another available entry will be attempted based on the highest

score. If all entries in the Q-Table have been attempted (there
is no available path-channel pair), the request will be blocked.

III. SIMULATION RESULTS

A custom-built simulator is used to evaluate the perfor-
mance of the proposed RL-RSA for multi-band networks in
comparison with a benchmark strategy based on k-shortest
paths (K-SP) and load balancing for path computation and
First-Fit (FF) for spectrum assignment [16] and with another
strategy named RL-based routing and Lowest GSNR described
in [11]. With the latter, the RL agent selects the path with
the highest score (e.g., scores are initialized preferring shorter
routes); regarding spectrum assignment, the available channel
with the lowest GSNR supporting the highest-order modula-
tion format is considered. A Japanese network topology [17]
with 14 nodes and 44 links in is adopted. Traffic follows a
Poisson distribution with rate λ. Connection holding time is
exponentially distributed with an average of 1/µ = 1 hour.
Traffic load (λ/µ) is varied with λ. 400-Gb/s requests and
64-Gbaud symbol rate are assumed. Thus, 400 Gb/s requests
can be served via a single DP-16QAM channel in 75 GHz or
via 2×200Gb/s DP-QPSK channels over 150 GHz. GSNR is
computed per channel with GNPy [18] accounting for SRS.

Algorithm 1 Q-Table Initialization per (path, channel)
Require: (Path,Channel)← Score
α← −1

1000
π ← Path length in km
γ ← Channel GSNR in dB
if GSNR(Path, Channel) ≥ THDP−16QAM then

β ← 5
12

Q-Table[state][action] = α× π + β × γ
else if GSNR(Path, Channel) ≥ THDP−QPSK then

β ← 1
16

Q-Table[state][action] = α× π + β × γ
else if GSNR(Path, Channel) < THDP−QPSK then

Q-Table[state][action] ← Removed
end if

Algorithm 2 Score Update per (path,channel)
Require: (path, channel)← score update

if the connection can be established then
if one channel with DP-16 QAM modulation format is

assigned then
Reward← Q–Table[state][action]× 0.75

else if Two channels with DP-QPSK modulation format
are assigned then

Reward← Q–Table[state][action]× 0.25
end if

else if a connection cannot be established on that path and
channel then

Penalty ← −(Q–Table[state][action]× 0.25)
end if



Fig. 2. Blocking probability versus traffic load.

Fig. 3. Interfaces usage.

A L-C-S-E multi-band system is assumed with the sup-
ported spectrum as in [1]. The assumed GSNR thresholds
are 24 dB for DP-16QAM and 16 dB for DP-QPSK. Fig.
2 shows the blocking probability at varying traffic loads.
RL-RSA achieves the lowest blocking probability. K-SP FF,
which performs load balancing, achieves better performance
than RL-Routing Lowest GSNR, whose routing algorithm is
mainly based on the distance. RL-RSA significantly decreases
blocking, e.g. by half compared to K-SP for a load of 250
Erlang. This is because RL-RSA dynamically updates its
network view by altering scores after choosing an action, such
as a path-channel pair, with rewards assigned according to
Algorithm 2. With RL-RSA, the blocking reduction reflects
in a throughput increase: e.g., for a blocking of 2 × 10−2,
the load rises by 20% with respect to K-SP FF (from 250 to
300 Erlang). Fig. 3 illustrates the number of used transmit-
ter/receiver interfaces for RL-RSA and K-SP FF algorithms.
For traffic loads between 250 and 500 Erlang, K-SP FF has a
lower usage of interfaces compared to RL-RSA ranging from
26% to 34%. The higher interface usage with the RL-RSA

algorithm is due to two reasons: i) RL-RSA reduces blocking
compared to K-SP FF, as shown in Fig. 2, meaning that RL-
RSA successfully routes more traffic for the same offered load,
thus requiring more interfaces; ii) RL-RSA achieves more
effective load balancing, which necessitates longer connections
and a higher use of the lower-order modulation format (i.e.,
DP-QPSK), increasing the interface count.

IV. CONCLUSIONS

In this work, we proposed a Routing and Spectrum Assign-
ment (RSA) strategy fully assisted by Reinforcement Learning
(RL). The Generalized Signal-to-Noise Ratio (GSNR) is used
as a physical layer metric, accounting for linear and nonlinear
effects, as well as for Stimulated Raman Scattering. Our
findings reveal that RL assistance in RSA can significantly
reduce blocking compared to the k-Shortest Path routing and
First Fit spectrum assignment strategy. This may lead to an
increase in supported network load of up to 20%.
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