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A B S T R A C T

Modern edge real-time automotive applications are becoming more complex, dynamic, and distributed,
moving away from conventional static operating environments to support advanced driving assistance and
autonomous driving functionalities. This shift necessitates formulating more complex task models to represent
the evolving nature of these applications aptly. Modeling of real-time automotive systems is typically performed
leveraging Architectural Languages (ALs) such as Amalthea, which are commonly used by the industry to
describe the characteristics of processing platforms, operating systems, and tasks. However, these architectural
languages are originally derived for classical automotive applications and need to evolve to meet the needs of
next-generation applications.

This paper proposes an automatic framework for the modeling and automatic code generation of dynamic
automotive applications under the QNX RTOS. To this end, we extend Amalthea to describe chains of
communicating tasks with multiple operating modes and to consider the QNX’s reservation-based scheduler,
called APS, which allows providing temporal isolation between applications co-located on the same hardware
platform. Finally, an evaluation is presented to compare different implementation alternatives under QNX that
are automatically generated by our code generation framework.
1. Introduction

Distributed systems reliability requires continuous self-awareness of
components and systems, as well as the ability to act on failures and
unexpected behaviors, e.g., through mitigation or fallback operating
modes [1]. This is becoming common in automotive systems, which are
now called to support far more complex distributed systems to provide
advanced driving assistance and autonomous driving functionalities [2,
3]. These systems are essentially built of real-time components that are
required to respond within predictable timing bounds; nevertheless,
their intrinsic complexity and computational requirements seek the
need to deploy them as distributed systems.

Clearly, this makes room for many more sources of timing unpre-
dictability both at the software and hardware level, vulnerability to
security attacks, and the presence of software bugs. To mitigate these is-
sues, run-time monitoring and criticality-based decision-making strate-
gies are key pillars to managing such systems and can conveniently
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leverage tasks offering multiple operating modes characterized by so-
lutions of different quality and computational requirements [1]. For
instance, the classic example is a velocity control algorithm that can be
offered by two different techniques, e.g., a PID and an MPC controller,
with a different degree of accuracy and computational requirement.

To tackle the immense intricacy of these systems, architectural
languages (ALs) [4] are often used to design modern systems [5]. In
automotive, Amalthea [6] is an AL used to design the non-functional
features of applications. Amalthea has been originally defined in the
European project Amalthea and later refined in other projects, e.g.,
AMALTHEA4public [7], Panorama [8], and AMPERE [9]. The
Amalthea language allows specifying the characteristics of the hard-
ware platform, operating system, and computational activities (tasks).

However, Amalthea has been designed to model classical automo-
tive applications; instead, we are currently facing a paradigm shift that
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requires profoundly rethinking Amalthea to be conveniently used for
next-generation real-time applications, which will be mostly based on
POSIX-based OSes like QNX and Linux.

Therefore, ALs need to evolve, including new features, such as
the aforementioned concept of multi-moded application, but also the
support for chains of communicating tasks and for offloading strategies
in edge systems.

The operating system can also offer interesting means of supporting
modern applications. For example, the QNX operating system offers
the Adaptive Partitioning Scheduler [10], a reservation-based scheduler
providing timing isolation between different software components.

QNX is indeed the choice of many automotive OEMs, which favor
QNX as their foundational real-time operating system (RTOS), given
its ISO-26262 certification at the highest level of assurance, ASIL-D.
Therefore, supporting the features of QNX is of utmost importance for
modern automotive ALs.

1.1. This paper

This paper presents the Modeling And auTomatic Edge Real-tIme
AppLications (MATERIAL) framework, an automatic toolchain for the
modeling and automatic code generation of modern real-time appli-
cations under the QNX RTOS. It leverages and extends the Amalthea
AL to include the aforementioned features and supports affinity-based
scheduling and the possibility for multiple offloading strategies. We
propose both the mathematical formulation of the model and the
Amalthea modeling. We design our system to provide three modeling
files: one for the application model, one for the platform model, and the
last one for the mapping model. The three models are then condensed
into a final deployment model, which incorporates all the informa-
ion. This allows for guaranteeing logical separation between different
odels, as well as including in the final model additional tasks that
epend on the task-to-core mapping. We leverage the models to build
n automatic code-generation framework to generate the code of the
odeled applications under different alternatives. In the evaluation, we

ssess the performance of different alternatives that can be generated
ith our toolchain by leveraging its monitoring capabilities.

.2. Paper structure

The remainder of the paper is organized as follows. Section 2 pro-
ides the needed background on the QNX real-time operating system.
ection 3 discusses the related work. Section 4 discusses the proposed
ramework for modeling and generation of time-predictable core for
NX platforms. Section 5 presents our mathematical modeling of a
odern automotive application running on QNX. Section 6 shows how

he model is realized in Amalthea and reports on how the elements
f the mathematical models are included in Amalthea. The model
s explained by leveraging a running example based on a realistic
rake-By-Wire application of a Swedish automotive Original Equipment
anufacturer (OEM). Section 7 reports on the details of the gener-

tion and implementation of templates in QNX. Section 8 presents
ur experimental results based on two case studies, the Brake-by-Wire
pplication and an End-to-End Autonomous Driving Application, in
erms of runtime required by the code generation process and footprint
f the generated applications. We also show how our framework can be
onveniently used to empirically evaluate the performance of different
esign alternatives by measuring the response times of automatically
enerated applications under different configurations. Finally, Section 9
oncludes the paper.

. The QNX real-time operating system

We start introducing the basic background information on the QNX
eal-Time Operating System (RTOS).
2

2.1. Reservation-based scheduling in QNX

QNX implements the Adaptive Partitioning Scheduler, a reservation-
based algorithm that organizes threads into virtual containers known
as partitions. Reservation servers provide a portion of the overall
processing bandwidth, while also guaranteeing a maximum service
delay [11]. This system allocates a portion of the processing capacity
to each partition by managing its execution budget. Each partition
operates within a common 100 ms sliding window, with its budget
determining the processing time. Upon the budget reaching 0, partitions
are throttled, and the budget is gradually restored over time.

The QNX scheduler integrates APS with a fixed-priority scheduler
that assigns a static priority to each task. Priorities range from 1 to 255
(which is the highest priority). The highest-priority task with a positive
budget for execution is selected to run. Partitions are created by taking
budget from the system partition, a partition that is initially assigned to
100% of the budget. The scheduler is affinity-based, meaning that for
each task, an affinity mask is specified. The affinity mask determines
the list of cores in which a task can be executed. Further details are
available in [12], presenting the supply-bound function definition for
APS used in this context.

Why using resource reservation for edge applications? Modern
edge applications need to ensure different applications are isolated
from a timing perspective, meaning that an overrun (e.g., due to a bug
or a cyber attack) occurring within certain applications does not influ-
ence other applications. This is often achieved with a static assignment
of applications to computing nodes or to a subset of cores within a node,
which, however, can quickly cause resource underutilization in the case
of lightweight applications and, anyway, cannot guarantee full timing
isolation [13]. Resource-reservation algorithms [14] such as QNX-APS
provide means to overcome the resource underutilization issue while
still allowing to guarantee timing isolation [10], thus becoming an
attractive option for modern edge systems.

2.2. Communication and offloading in QNX

QNX boasts a diverse range of inter-process communication mech-
anisms, encompassing synchronous message passing, signals, FIFOs,
pipes, message queues, and shared memory communication.

While synchronous message passing and signals are embedded in
the microkernel, external services handle the rest. Among those, we
focus on the synchronous message passing, that relies on three key
primitives: MsgSend(), MsgReceive(), and MsgReply(), forming the core of
the client–server paradigm [15].

The client initiates communication through a blocking MsgSend(),
awaiting a MsgReply() from the server. On the server side, MsgReceive()

handles incoming messages, allowing the server to process and respond
using MsgReply(). Unlike MsgSend(), MsgReply() is non-blocking, enabling
the server to seamlessly continue normal processing while the kernel
asynchronously transfers reply data to the client.

The synchronous message passing of QNX is an interesting option
for implementing task offloading functionalities in edge systems.

Indeed, it seamlessly generalizes to distributed networks of QNX
nodes through QNET [16]. QNET, the inherent network manager of
QNX, streamlines resource access for system developers by providing
a consistent interface across local and remote nodes. It seamlessly
presents a unified perspective of interconnected QNX-based devices,
creating the illusion of a singular logical computer.

Further information on the synchronous message passing mecha-
nism can be found in [17], presenting a timing analysis that considers
the effects of communication between different nodes via QNET as well
as APS scheduling partitions.

3. Related work

The papers related to this work mainly target the modeling of

systems and provide code generation frameworks. The literature on the



Journal of Systems Architecture 154 (2024) 103219M. Becker and D. Casini
topic is utterly large: therefore, we focus only on a subset of the related
papers that we deem more related to our work.

The key features that distinguish MATERIAL from previous propos-
als are the support for dynamic resource reservation mechanisms (APS),
the consideration of the QNX real-time operating systems for automo-
tive, and the support for arbitrary affinities. For example, Perrottin
et al. [18] presented the TASTE framework, which allows modeling and
code generation for distributed embedded systems. However, unlike
MATERIAL, it targets RTEMS and Linux and does not provide support
for reservation-based scheduling. Other works consider Time-Division
Multiplexing (TDM) Scheduling, e.g., focusing on the ARINC-653 avion-
ics standard [19] for which tools for modeling and automatic code
generation exists [20,21]. Nevertheless, TDM scheduling is different
than APS partitions: TDM divides the time into static slots, whereas
APS is a dynamic reservation-based mechanism. Furthermore, ARINC-
653 only targets partitioned scheduling: our work instead considers
arbitrary-affinity scheduling, which is more general.

Another related proposal is Gericos [22], which targets space ap-
plications: instead, MATERIAL targets automotive systems. Since the
context is different, it targets different operating systems (ThreadX,
RTEMS, and FreeRTOS). Resource reservation mechanisms are not
supported in Gericos, and it targets partitioned scheduling: MATERIAL,
instead, supports the more general arbitrary affinity paradigm.

Other papers target the code generation for the AADL modeling lan-
guage [23], e.g., using Ocarina [24,25]. AADL also considers a similar
three-phased execution model (read-execute-write) and an event-driven
communication mechanism with task activation (called data port) to
those considered in this paper. Despite these similarities, AADL and
related works do not support the QNX RTOS, resource reservations, and
arbitrary affinity scheduling.

In addition, all the aforementioned works consider different model-
ing languages from Amalthea, which is widely used in the automotive
domain.

Another work that is closely related to us is the work by Rehm
et al. [26], which considers the performance modeling (also considering
real-time constraints) of heterogeneous hardware platforms with hard-
ware accelerators using Amalthea. Extensions to QNX are also briefly
discussed. However, the work in [26] focuses only on the modeling per-
spective and does not provide any code generation framework. Munera
et al. [27] extended the Amalthea language to support parallel comput-
ing and the OpenMP parallel programming language. Bambagini and
Di Natale [28] presented a framework for the modeling and automatic
generation of distributed automotive applications. However, it does
not consider the QNX operating system, resource reservation, and of-
floading mechanisms. Bernardeschi et al. [29] extended the AUTOSAR
automotive specification to add security features and provided code
generation features. Cremona et al. [30] proposed TRES, a framework
for modeling tasks and communications in Simulink, which aims at
verifying the impact of execution times and scheduling delays on con-
trol performance. Wang et al. [31] proposed a method to automatically
generate code for synchronous reactive communication using Simulink.

Overall, no previous work has proposed a framework to model mod-
ern multi-moded edge applications under QNX-APS reservation-based
scheduling in Amalthea and generate ready-to-use code automatically.

4. The MATERIAL framework

Fig. 1 summarizes the framework presented in this paper. We extend
the Amalthea AL to describe the features required by modern multi-
mode applications organized in chains of communicating tasks, as well
as the QNX reservation-based scheduler and the hardware platform.
This information concerning the Application and Platform model is
included in the Amalthea files. An Amalthea file is devoted to the
Mapping model, i.e., to the mapping of tasks to nodes, cores, and
reservations. The three files are combined using the Java API of the
App4MC framework [32] into an overall deployment model, which
3

Fig. 1. The MATERIAL framework.

Table 1
Timing parameter of the case study.

Task Period [ms] Exec. [ticks]

pBrakePedalLDM 20 1 350 000
pBrakeTorqueMap 30 2 025 000

pGlobalBrakeContr. 40 2 700 000 (Mode 1)

1 500 000 (Mode 2)

ABS_FL_Pt 50 3 375 000
ABS_RL_Pt 50 3 375 000
ABS_FR_Pt 50 3 375 000
ABS_RR_Pt 50 3 375 000
pLDM_Brake_FL 60 4 050 000
pLDM_Brake_RL 60 4 050 000
pLDM_Brake_FR 60 4 050 000
pLDM_Brake_RR 60 4 050 000

includes all the information from the previous ones as well as additional
workloads that become known only when merging the task information
with the mapping model. For example, chains of communicating tasks
spanning multiple nodes require listener tasks to receive data from the
network and to restore the communication based on shared memory
buffers, which is used in this paper. The deployment model is then
used by our code-generation infrastructure, which leverages the Xtend
language [33] to generate ready-to-use QNX code. The framework also
provides monitoring capabilities for execution tracing and monitoring
of runtime statistics, represented by the monitoring component in
Fig. 1.

Case Study. We present our contribution by leveraging a running
example of a Brake-By-Wire (BBW) application presented in [5]. The
BBW application model is based on the implementation by an inter-
national Swedish automotive OEM. The case study is comprised of 11
runnables that are mapped to 11 tasks. Therefore, in the description
of the case study, runnables and tasks are identical. The Brake-by-
Wire application starts by reading of the brake pedal position by the
task pBrakePedalLDM. The required braking torque is then determined by
the task pBrakeTorqueMap before the brake signals for each individual
wheel is computed in the task pGlobalBrakeController. For each wheel,
the signal first passes through the Anti-Lock Brake System (ABS) in the
task ABS_XX_Pt before the final brake signal is determined and sent to
the brake actuator by task pLDM_Brake_XX. xx can be either FL (front left),
FR (front right), RL (rear left), or RR (rear right). Fig. 2 illustrates the
tasks of the application as well as data dependencies between tasks.
Table 1 describes the task periods as well as the execution need of the
task in ticks. We extended the case study by adding a second execution
mode to the task pGlobalBrakeController, shown by the two execution
times listed.

5. Mathematical modeling

Before discussing the Amalthea modeling, we present a mathemat-
ical model to formalize the systems considered in this paper.

5.1. System and platform model

This paper considers a distributed QNX-based system consisting of a

set  of interconnected nodes. Each node is a (possibly heterogeneous)
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Fig. 2. Overview of the Brake-By-Wire case study. Tasks are shown as rectangles with their name and worst-case execution time in ticks. Communication labels are shown with
ounded corners with name and size, respectively. An edge to a label denotes writing to the label and an edge from the label denotes reading the label. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
ulticore platform composed of cores running at different speeds. The
et of cores of each node ℎ𝑙 ∈  is denoted with 𝑙, and each core as
𝑐𝑘 ∈ 𝑙.

5.2. Application model

The system runs a workload that is composed of a set  of real-time
tasks.

As in the AUTOSAR automotive standard [34], each task 𝜏𝑖 ∈  is
composed of an ordered sequence of 𝑃𝑖 runnables (i.e., functions). Each
runnable 𝜌𝑖,𝑥 ∈ 𝑃𝑖 is multi-moded, meaning that it can provide the same
unctionality with a different degree of accuracy. Different modes of a
unnable 𝜌𝑖,𝑥 ∈ 𝑃𝑖 are characterized by a different worst-case execution
ime (WCET) 𝑒𝑘𝑖,𝑥 that depends on the core 𝑐𝑘. Runnable indexes are
nversely proportional to the accuracy obtained in the corresponding
perating mode (lower indexes correspond to more accurate modes).

Multi-moded applications are beneficial for flexibly adapting the
orkloads of modern distributed environments, where workloads are
ynamic and it could be helpful to partially degrade the accuracy of an
lready running task to allow admitting and serving a new incoming
ask while satisfying its temporal constraints.

Each runnable 𝜌𝑖,𝑥 is also associated with a criticality index 𝑐𝑖,𝑥
that can be used to perform degradation decisions. For example, an
orchestrator in a distributed system can decide to accommodate a new
task on a node by ‘‘squeezing’’ workloads that are already allocated
there if the criticality of the runnables of the incoming task is high. An
overall criticality 𝑐𝑖 can also be specified at the task level (instead of
the runnable level).

Tasks are periodic: each task can release an infinite number of jobs
(instances), each spaced by its period T𝑖. A task 𝜏𝑖 has a deadline D𝑖.

ence, each instance needs to be completed within at most D𝑖 from the
elease time. We consider discrete time, assuming that time units are
n integer multiple of the clock cycle on a specific hardware platform.

On each core, tasks are scheduled according to an affinity-based
ixed-priority scheduling policy, where each task is characterized by a
nique priority 𝜋𝑖, and an affinity mask 𝑎𝑖,𝑙 ⊆ 𝑙, which states the
ores in which the task can run, from those of the node in which 𝜏𝑖 is
llocated to. Affinity-based scheduling [35] is a very general scheduling
aradigm supported by QNX, and it can be configured to work both as
partitioned scheduler (by configuring each task to have affinity to

ne core only) or as a global scheduler (to configure all tasks to have
ffinities to all cores within a node).

.3. Timing isolation model

To provide the appropriate degree of isolation between potentially
iverse applications that may share the same core, tasks are grouped
nto reservation servers [14] that guarantee a given amount of supply
o the tasks assigned to it. This paper focuses on the QNX Adaptive
artitioning Scheduler (APS) [36] as a relevant example of a hier-
rchical resource reservation algorithm. Under APS, each reservation
4

Fig. 3. Three-phase task model.

(called partition in QNX) 𝑟𝑣 ∈  is characterized by a nominal budget
of 𝐵𝑣 time units, which is replenished according to a sliding window
technique [12]. The window has length 𝑊𝑙 and is common to each
reservation in a QNX-enabled platform ℎ𝑙, and is typically set to 100
ms [36]. The set  denotes all the APS partitions in the system; the
set 𝑥 contains only those allocated to node ℎ𝑥. Analogously to tasks,
APS partitions follow an affinity-based partitioned scheduling scheme.
Tasks are allocated to reservations that, in turn, are assigned to cores.
Therefore, the affinity mask of an APS partition is the union of the
affinity masks of all the tasks assigned to the partition.

5.4. Communication model

Tasks are characterized by communication dependencies modeled
by means of a direct acyclic graph (DAG) where vertexes encode tasks
and edges communication dependencies among them. Each communi-
cation relation is expressed in the form of a read-or-write dependency
with respect to variables, called labels in the AUTOSAR standard.

Each runnable is associated with one or more labels, which it can
either read or write. The size of an arbitrary label is denoted by 𝑠(𝓁𝑞).

When communicating tasks are allocated in the same node, the
data exchange occurs by means of shared-memory buffers. Tasks use
a three-phase implicit communication model [37]. At the beginning of
its execution, each task creates a local copy of the input data (read
phase) and updates the labels used for communication at the end of
the execution (write phase). The three-phase execution model is shown
in Fig. 3.

In the case of tasks running in different nodes, the QNX synchronous
message passing mechanism (discussed in Section 2) is used to offload
the data-copy operation to a special task (called listener tasks) on the
node of the receiver to maintain a coherent communication scheme
based on shared memory buffers among functional tasks, as shown in
Fig. 4. This task makes the data received by inter-node message-passing
primitives available to the consumer in a shared buffer.

Using time-driven communication paradigms (as opposed to data-
driven) allows for improving predictability by reducing jitter propaga-
tion effects [38,39] and it makes the approach easier to be extended to
communication paradigms based on Logical Execution Time (LET) [40]
and System-Level LET [41].

The listener task 𝜏(𝑖,𝑗) implements the communication between a
producer task 𝜏𝑖 and the consumer node ℎ𝑗 . Each listener task 𝜏(𝑖,𝑗) is
composed of one runnable 𝜌(𝑖,𝑗),𝑥 that receives a message containing all
labels that are written by 𝜏 and read by a task on ℎ . The runnable
(𝑖,𝑗) 𝑗
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Fig. 4. Communication between task 𝜏𝑖 on node A and listener task 𝜏(𝑖,𝑗) on node B
using the QNX synchronous message passing mechanism.

Table 2
Table of symbols for the mathematical model.

Symbol Description

 Set of nodes
𝑙 Set of cores in node ℎ𝑙
𝑐𝑘 𝑘th core
 Set of real-time tasks
𝜏𝑖 𝑖th task
𝑃𝑖 Set of runnables for task 𝜏𝑖
𝜌𝑖,𝑥 xth runnable of 𝜏𝑖
𝑒𝑘𝑖,𝑥 Worst-case execution time of 𝜌𝑖,𝑥 on core 𝑐𝑘
𝑐𝑖,𝑥 Criticality index of 𝜌𝑖,𝑥
𝑐𝑖 Criticality index of 𝜏𝑖
T𝑖 Task period of 𝜏𝑖
D𝑖 Task deadline of 𝜏𝑖
𝜋𝑖 Task priority of 𝜏𝑖
𝑎𝑖,𝑙 Cores where task 𝜏𝑖 can run in node ℎ𝑙
𝑟𝑣 vth reservation
𝐵𝑣 Budget of 𝑟𝑣
𝑊𝑙 Window length of QNX APS instance of ℎ𝑙
 Set of all APS partitions in the system
𝑥 Set of reservations in node ℎ𝑥
𝓁𝑞 qth label
𝑠(𝓁𝑞 ) Size of label 𝓁𝑞
𝛾𝑥 xth event chain
𝛤 Set of all event chains

has only one mode and it is characterized by its (data-dependent)
execution time 𝑒𝑘(𝑖,𝑗),𝑥, where 𝑗 is the index of the receiving node and 𝑖
is the index of the sending task. Similar to the other tasks, listener tasks
are characterized by a priority 𝜋(𝑖,𝑗), which is equal to the priority of
the sender task. To facilitate the sending of data, a runnable is added to
each task that communicates across the node boundary. This runnable
is called last and transmits all labels connected to its runnables to 𝜏(𝑖,𝑗).

The mechanism described above to offload data-copy operations to
another node can also be used for general computational offloading
operations, which are common in edge-distributed systems.

When two arbitrary communicating tasks 𝜏𝑖 and 𝜏𝑗 communicate,
they are also characterized by a communication delay 𝜆𝑖,𝑗 , which
depends on the task-to-node (and core) allocation and may also de-
pend on other factors, such as network congestion [42] or memory
contention [43].

5.5. Event chains

Tasks in the DAG without incoming/outgoing edges are called source
and sink tasks, respectively. Each source task gives rise to an event
chain 𝛾𝑥 = (𝜏𝑓 ,… , 𝜏𝑙), i.e., a path in the graph. The set of all event
chains is denoted as 𝛤 = {𝛾1,… , 𝛾𝑎}. Depending on the task-to-node
allocation, the chain can contain listener tasks.

Table 2 summarizes the symbols used in this paper.

6. Amalthea modeling

This section reports on how the running example presented in
Section 4 is modeled with our extensions to the Amalthea AL.
5

Furthermore, it shows how the elements of the Amalthea model
are connected to those of the mathematical model, thus establishing
a link between the two models. In fact, while Amalthea is more used
for software engineering purposes [5], mathematical models are much
used for deriving timing analysis bounds of real-time applications [12].

6.1. Modeling the application software

Fig. 5 depicts the software model elements of the case study model
and illustrates how different parts of the model relate to each other.
In this section, the model elements are presented for the example of
the pGlobalBrakeController task, denoted with 𝜏𝑖. This task is activated
with a period T𝑖 = 40ms and is implemented by a runnable called
GlobalBrakeController.

GlobalBrakeController reads the communication label TorqueSig and
writes the four labels ABS_xx_Sig one for each wheel position. xx can be
either FL (front left), FR (front right), RL (rear left), or RR (rear right).

In the mathematical model, this is represented as a task 𝜏𝑖 associated
with a single runnable 𝜌𝑖,1 ∈ 𝑃𝑖, accessing four labels 𝓁𝑗 , with 𝑗 =
1,… , 4.

6.1.1. Communication labels
Communication is modeled via data labels that are accessed by the

different tasks via read and write operations. In Amalthea, communica-
tion labels are modeled as Label. Each label 𝓁𝑗 has a distinct name and
is assigned a data size 𝑠(𝓁𝑗 ). All labels of the case study are shown in
Fig. 5(f). For the TorqueSig label, the figure also reports its size, which
is 2 bytes.

6.1.2. Task structure
As in AUTOSAR [34], tasks are modeled as sequences of runnable

calls. This is shown in Fig. 5(c). A task can thus be thought of as a
bin to execute runnables at a specified period. For each task, several
properties can be configured. Most importantly, the task stimuli is used
to describe the activation pattern.

6.1.3. Task activation
Task activation is modeled via periodic stimuli (Fig. 5(b) and (d)),

i.e., each task is periodically activated. Each stimulus is associated with
a time value that indicates the period. A task is then connected with the
stimuli via the task properties, as shown in Fig. 5(b).

In the mathematical model, this corresponds to the period T𝑖 of an
arbitrary task 𝜏𝑖.

6.1.4. Timing constraints
Each task can have an assigned deadline that describes the allowed

upper bound on the task’s worst-case response time, as shown in
Fig. 5(a). A task deadline is described by a timing requirement of type
ResponseTime. The constraint is linked to the respective task, and the
deadline value is specified as an upper-bound time value.

In the mathematical model, this corresponds to the deadline D𝑖 of
an arbitrary task 𝜏𝑖.

The element property Severity can be used to specify the criticality
𝑐𝑖 of the task 𝜏𝑖.

6.1.5. Runnables
Runnables denote the basic unit of execution in the system and

describe communication dependencies via access to shared data labels
(Fig. 5(e)). In addition, a runnable can operate in different modes.

Communication via labels is modeled via read-and-write access
to a label. If the reader and the writer are in the same node, the
implementation then uses communications based on shared memory
to access the label data. Otherwise, if the reader and the writer are
in different nodes, the communication operation in shared memory
is offloaded to the node of the receiving task by leveraging the QNX
Synchronous message-passing mechanism (as described in Section 5.4).
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Fig. 5. Elements of the software model. Inset (a): Constraint model to specify deadlines. Insets (b) and (c): Task model and specification of activation period through stimuli
model (d). Inset (e): Runnable model. Inset (f) Label model. Arrows indicate how different model elements connect to each other in the example of the task pGlobalBrakeController

of the case study.
In the MATERIAL Framework, different runnable modes are mod-
eled using the Switch and subsequent Case elements of Amalthea. Each
Case element refers to a different execution mode. The name of the
Case element is used as a condition to execute the mode in the final
application (see discussion in Section 7.4.1).

The execution time of each mode is modeled using the Ticks element
and represents the required CPU cycles to perform the computation. It
is worth noting that this allows modeling a core-dependent execution
time 𝑒𝑘𝑖,𝑥 of a runnable 𝜌𝑖,𝑥 on a core 𝑐𝑘, as required by distributed
systems with heterogeneous processing platforms and in platforms with
heterogeneous processing cores. This can be achieved by accounting
for the frequency domain of the core in which the task is allocated,
as explained later in Section 6.2.1. The execution times on high-
performance hardware platforms additionally depend on the memory
hierarchy, which adds additional latency to the execution [43]. For
simplicity, in this work, we do not model the memory hierarchy and
memory access pattern of tasks explicitly.

The mode is independent of the communication labels that are
accessed by the runnable. Indeed, multi-moded applications typically
use different algorithms to produce the same output (e.g., think of
different implementations of control algorithms for velocity, which
anyway all provide the same output variable). Therefore, label access is
described outside the Switch element. If a runnable has only one mode,
the Switch element can be omitted.

Lastly, the criticality 𝑐𝑖,𝑥 of a runnable 𝜌𝑖,𝑥 can be defined by the
property ASIL Level, which allows to set criticality levels according to
ISO26262 [44]. Note that, in automotive systems, defining a separate
criticality value for runnable rather than having just a single value
for the whole task may be useful in design activities that provide the
functionalities-to-task mapping (and thus the runnable-to-task map-
ping) to be not fixed but an outcome of the design phase, e.g., see [45,
46].

6.2. Modeling the platform and operating system

Besides the application software, the Amalthea model also contains
the hardware and operating system model, which are essential for the
MATERIALS framework:

• The hardware model describes the physical platform and inter-
connections between different nodes.

• The operating system model describes the QNX RTOS as well as
all configured APS partitions.
6

Fig. 6. Hardware model.

6.2.1. Hardware model
The hardware platform is modeled using the Amalthea hardware

model. This is shown in Fig. 6, for the case of a Raspberry Pi 4B
platform. The top-level entity is a System structure that describes the
edge system. In addition, definitions are provided for the used CPU
cores and frequency domain. The edge system then consists of a number
of hardware structures of type ECU (which stands for Electronic Control
Unit, from the automotive systems’ terminology). An ECU is essentially
a processing platform, i.e., a node ℎ𝑙. Each ECU ℎ𝑙 hosts several CPU
cores 𝑐𝑘 ∈ 𝑙 instances assigned to the frequency domain. The Ethernet
port is also modeled to enable connectivity. It includes a custom
property that holds the node’s IP address. The connection between
hardware nodes is described using a Network element that connects the
respective hardware ports. A data rate is assigned to denote the link
latency, which can be leveraged to derive the communication latency
𝜆𝑖,𝑗 between communicating tasks 𝜏𝑖 and 𝜏𝑗 .

6.2.2. Operating system model
The operating system model describes the different operating system

instances. Fig. 7 shows the operating system model of the case study.



Journal of Systems Architecture 154 (2024) 103219M. Becker and D. Casini
Fig. 7. Operating system model.

In the MATERIAL Framework, each operating system represents the
QNX RTOS. Two instances are modeled. The RTOS is modeled as a
hierarchical scheduler to describe the APS scheduling of QNX [26]. The
first level of the scheduler is a Fixed Priority Preemptive Scheduler
(FPPS). A custom property describes the APS window size 𝑊𝑙 that is
used in the OS (in ms), which is common to all APS partitions on node
ℎ𝑙.

The second scheduling level represents the APS partitions. We
model all user partitions. As the budget of the system partition depends
on the budget assigned to user partitions, the system partition is not
modeled explicitly. All partitions have a custom property that describes
the partition budget via the same parameters that are also present in the
QNX API, namely Budget and the budget percent scale via the parameter
BudgetPercentScale. As both values are integers, the budget percent scale
is used by QNX to indicate at which position the fractional part of the
budget starts. For example, a budget value of 15 with a budget percent
scale of 1 would indicate a budget of 1.5%.

In the mathematical model, this part of the Amalthea model corre-
sponds to a 𝑟𝑣 ∈ 𝑥 of a node ℎ𝑥.

6.3. Software to hardware mapping

The final essential model part describes how the different model
elements are connected.

The mapping model is responsible for two main tasks: assign the
scheduler to the hardware platform and the tasks to a scheduler. Fig. 8
shows the mapping model and details the scheduler and hardware
mapping using an example.

6.3.1. Mapping of scheduler to hardware
Scheduler allocation is used to assign the QNX FPPS scheduler

to the platform. The top part of Fig. 8 shows the mapping of the
FPPS scheduler of the first QNX instance to node 1. Since the affinity-
based scheduler can, in principle, work also as a global scheduler, it
is assigned to all four cores of the platform. This is done by setting
the Responsibility property of the mapping with all four cores. The
scheduler is assigned to the first CPU as Executing PU. All APS partitions
are child partitions of the FPPS scheduler and must, therefore, not be
assigned to dedicated hardware nodes.

6.4. Mapping of tasks to scheduler

The task allocation assigns one task to a responsible scheduler.
The bottom part of Fig. 8 shows this at the example of the task
7

pGlobalBrakeController which is assigned to the APS partition N1_P1 by
setting the respective property Scheduler. In addition, the core affinity
of the task can be selected using the property Affinity. One or more ex-
ecuting cores are assigned to the Affinity property of the task mapping
element. Note that each core included in the affinity group must be a
core for which the scheduler (or its parent scheduler) is responsible for.
In the mathematical model, this is related to the task affinity 𝑎𝑖,𝑙 for an
arbitrary task 𝜏𝑖.

If a task is instead managed by an APS partition, it is assigned
to one of the APS partitions created in the Operating System model.
Furthermore, tasks managed by the System Partition are also supported
by assigning them to the FPPS scheduler of the node.

The set of selected cores are then possible candidates to execute the
task. The priority 𝜋𝑖 of a task 𝜏𝑖 is assigned to the mapping as scheduling
parameter of type priority.

7. QNX implementation and template-based code generation

This section describes the code generation process and the imple-
mentation of the application on the QNX platform.

7.1. Overview

All required system functionality to implement an application ac-
cording to the application model is realized in a static QNX application
that provides mechanisms for managing tasks, runnables, APS par-
titions, and inter-node communication. Additional source code and
header files are generated to describe the application-specific config-
uration.

The automatic code generation process can be divided into several
parts:

1. Parsing the Amalthea input files to the internal model.
2. Extending the internal model with communication channels.
3. Generating source code and header files for configuration and

runnables.
4. Compiling of the QNX application for each node.

The complete code generation framework is implemented in App4MC
[32] using the Java interface to operate on Amalthea models. In the
following, each step is described in detail.

7.2. Base application

A QNX base application is used to provide all files that are in-
dependent of the code generation. In fact, many application modules
are static and only require generated configuration files. The software
architecture of the application is shown in Fig. 9. The APS and Timer
modules provide an abstraction to manage the creation and modifica-
tion of APS partitions in the system and to access different time-related
functionalities, such as the implementation of the periodic activation of
tasks. Concerning tasks’ communication, two communication modules
are implemented: the Label and Channel modules. The former provides
functionality to manage communications between tasks in the same
node through data labels and the corresponding read and write oper-
ations. The channel module implements communication across nodes
using the QNX synchronous message-passing API. The framework is
designed in a modular way such that alternative implementations of the
channel module can be provided that utilize different communication
forms (e.g., POSIX sockets). Runtime monitoring and execution tracing
is supported by the Monitoring module. The task module realizes task
functionality and the runnable module implements the main application
logic. All but the timer modules need to be configured for realizing
a specific application. The implementation of these main components
(excluding the generated files) amounts to 2577 lines of code.
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Fig. 8. The mapping model depicts the mapping of the FPPS scheduler to hardware resources (top) and the mapping of tasks to a scheduler (bottom).
Fig. 9. Main modules of the application architecture.

7.2.1. Task implementation
As seen in the application model, all tasks follow the same operation

sequence and implement a periodic or sporadic (in the case of listener
tasks) activation. We leverage this fact by providing a common task
function that is used by all tasks. The task code first sets the task
period and assigns the task to the correct APS partition, before a barrier
function is called to wait for the common release of all tasks on the node
during the startup phase.

The main part of the task consists of a while loop that first waits
for the next release of the task (in the case of listener tasks, waiting
is not performed). The remaining part implements the 3-phase model
we assume. For each iteration of the while loop, which corresponds to
a task instance, copies of all input labels for runnables of the task are
created, followed by the execution of all runnables. Finally, all output
labels are written back to the main memory for each runnable.

Task-specific configurations are stored in a data structure that is
used to manage the task. Among other parameters, this data structure
links to a list of data structures that describe each runnable called by
the task, as well as the task period, core affinity, and APS partition. The
configuration of these task structures is a result of the code generation
process.

7.2.2. Runtime monitoring and execution tracing
The application performs two possible types of runtime observation,

execution tracing and monitoring of runtime statistics. Execution tracing is
based on the QNX event tracing infrastructure. If enabled, scheduling
and user events are stored in a buffer of the kernel. An external appli-
cation, such as the QNX data capture utility, can then retrieve those
events. If event tracing is enabled in the application, an event filter is
configured to only collect relevant events for the application, and the
QNX trace logger application is started during program initialization
and triggered to collect events. Event tracing adds minimal overhead
to the kernel [15].

Our implementation also offers the collection of task-specific run-
time statistics. If enabled, maximum observed response times, as well as
execution times and deadline misses, can be logged, or alternatively, all
values for each job can be saved (suitable for short experiments only).
Response time values are obtained by subtracting the finish time of the
task’s job from the release time of the job.
8

Since response times include the QNX RTOS overheads (e.g., context
switches), the MATERIAL monitoring infrastructure allows for empiri-
cal experimentation of a selected configuration (e.g., QNX APS budgets)
in such a way as to determine if the timing constraints of the application
are satisfied or to allow fast re-deployment with a new configuration
otherwise.

To reduce the measurement overheads, the standard timer functions
of QNX are used to record timestamps, with a measurement granularity
of 1ms.

7.3. Parsing and generation of internal data structures

As highlighted in Fig. 1, three Amalthea files are used as input
to describe application, platform, and mapping-related aspects, respec-
tively. The application input file contains the Amalthea models: Software
(containing tasks, runnables, and labels), Stimuli, and Constraints. The
platform input file contains the Amalthea models: Hardware and Operating

System. Finally, the mapping input file contains the Amalthea model
Mapping. With this, all aspects of the software application can be de-
scribed independently from the platform or specific deployment. This
achieves separation of concerns between software modeling and de-
ployment on a specific hardware platform.

All input Amalthea files are parsed using the App4MC Java interface
and the different model elements are combined into a new internal
Amalthea model analogous to the model described in Section 5. This
allows for direct operations on the model in relation to the mathemati-
cal model assumed for this work. It also allows the generation of entities
that are not present in the application model provided as input, such
as, for example, the APS System Partition discussed next.

7.3.1. APS system partition
The APS system partition in a QNX platform is the base partition

that always exists. Initially, it has all the available processing time as
budget. When a new partition is created, the budget assigned to such
a partition is subtracted from the system partition. Since its budget
depends on the budget of all other partitions, to avoid redundancy, the
system partition is not explicitly modeled in the Amalthea model but
is added during the code generation process. The budget of the system
partition is set such that it receives all remaining budget that is not
assigned to any of the user partitions on the specific node. All tasks
that are mapped to the FPPS scheduler of the node are then assigned
to the system partition.

7.3.2. Generating listener tasks
Listener tasks are not explicitly modeled in the Amalthea model but

are a result of the mapping of tasks to nodes and of runnables to tasks.
A dedicated runnable is added to each task for each node that hosts
runnables that consume labels written by the task. This runnable is
then responsible for sending the labels that are read on the other node
using the synchronous message passing API of QNX. Similarly, a listener
task is added on each receiving node. Such a task is not periodic, but
it is triggered by the synchronous message-passing mechanism. Each
listener task consists of a dedicated runnable that receives the data
through the network and stores the label values in shared memory.
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Listing 1: Generated code for the runnable execution
_ _ a t t r i b u t e _ _ ( ( weak) ) v o i d r _G loba lBrakeCont ro l l e r ( runnab le _ spec _ t∗

spec ) {

// S i m u l a t e t h e e x e c u t i o n of e a c h m o d e

s w i t c h ( spec−>mode) {
c a s e 1:

burn _cyc le s (600 , spec−>cid ) ; // E x e c u t e 6 0 0 us

r e t u r n ;
c a s e 2:

burn _cyc le s (333 , spec−>cid ) ; // E x e c u t e 3 3 3 us

r e t u r n ;
d e f a u l t :

r e t u r n ;
}

}

Fig. 10 depicts an example scenario with an application task on node
A and a listener task on node B. The communication is encapsulated in
the sender and receiver runnables which does not require any specific
logic in the task function to support inter-core communication.

7.4. Code generation

During the code generation phase, all required source files are
generated to configure the different modules. The Xtend framework is
used for template-based code generation, which can directly operate on
the internal model created in step 2.

7.4.1. Runnable code
For each runnable in the application, three functions are generated

to handle initialization, execution, and deinitialization, respectively. If
the runnable is a user runnable, those functions are generated with the
attribute weak, which allows users to include their own implementation
of these functions to the code-base without the need to modify gener-
ated code. This is done by adding a function definition to the project
that has the same name but omits the weak attribute. In this case, during
linking, the user-supplied functions are linked instead of the generated
functions. The generated function for the runnable’s execution phase
calls a timer function that simulates the execution time by busy waiting.
That way, runtime characteristics of applications can be evaluated even
without the actual user logic of each runnable.

A dedicated data structure is used to keep track of each runnable’s
information. This includes function pointers to the runnable’s functions
as well as lists of references to all labels that are read and written,
respectively, and memory for their local copies that are created during
the runnable execution. An example function is shown in Listing 1 of
runnable GlobalBrakeController. The runnable has two execution modes
which are selected based on the mode variable in the runnable data
structure, which is given as an argument to the function.
9

Listing 2: System Configuration Excerpt
# d e f i n e REGISTER_APS_PARTITIONS \
a p s _ a d d _ p a r t i t i o n _ d e s c r i p t i o n ( " N 1 _ P 0 " , 250 , 1) ; \
. . .

# d e f i n e REGISTER_THREADS \
thread_addThreadDescr ipt ion ( " p G l o b a l B r a k e C o n t r o l l e r " , 40 , 10 , 248 ,

CORE1, N1_P0 ) ; \
. . . \
/* R e g i s t e r r u n n a b l e s f o r a l l t a s k s */ \
thread_ reg i s te rRunnab le ( " p G l o b a l B r a k e C o n t r o l l e r " , &

GlobalBrakeContro l le r ) ; \
. . .

Listing 3: Example of a Channel Configuration
t y p e d e f s t r u c t {

msg_common_t common; // M e s s a g e h e a d e r a n d t y p e

u i n t 8 _ t payload [8 ] ; // P a y l o a d of t h e M e s s a g e

} pGloba lBrakeCont ro l l e r _ to _Raspber ryP i _2 _ t ;

If a runnable is generated for inter-node communication, the weak at-
tribute is omitted, and the functional code to send/receive the message
is generated instead.

7.4.2. System configuration
The system configuration header file includes the required informa-

tion on all tasks and APS partitions of the node with the assignment of
runnables to tasks.

This is done by defining the two different multi-line macros
REGISTER_APS_PARTITIONS and REGISTER_THREADS, as shown in the excerpt of
the configuration file in Listing 2.

For each APS partition, REGISTER_APS_PARTITIONS includes one function
call to a function that adds a new APS partition to the application. The
listing shows the example of the APS partition named N1_P0, which has
a budget of 25% (Budget of 250 and BudgetPercentageScale of 1). For each
task, REGISTER_THREADS calls a function to add a new task to the system.
Parameters of the function call include the task name, period, deadline,
and priority, followed by the assigned CPU and APS partition. Later,
runnables are linked to the tasks. The generated macros are called
during system initialization.

7.4.3. Label configuration
The label configuration describes the communication labels present

in the application as well as their size. Each label is protected from
concurrent access using a double buffer implementation. This has the
advantage of low overheads compared to lock-based approaches [47].

7.4.4. Channel configuration
The channel configuration consists of the definition of data struc-

tures that are used as messages across the different channels. Each
struct has a distinct payload size which is large enough to send all
labels that are communicated over the channel. Listing 3 shows the
generated data type for the message between pGlobalBrakeController and
RaspberryPi_2 in mapping 2. The struct has two members, common is itself
a struct that holds the QNX message header as well as the message type
information. payload is a simple buffer of a size large enough to hold all
ata elements sent via the channel. In this case, four labels are sent.
ach has a size of 2B.

.5. Compilation and deployment

As a final step of the framework, the applications for each node are
ompiled for the target platform. Dedicated compilation scripts are used
o compile the QNX projects. The compilation is automatically triggered
fter the previous steps of the framework are completed.
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In addition to compilation, scripts are also provided that allow an
utomatic transfer of the final application to each QNX node. This
equires that the QNX nodes are reachable from the development
latform using the same IP address as defined in the Amalthea model.

. Evaluation

The evaluation assesses experimentally the performance of different,
utomatically-generated, implementation choices for the realistic case
tudy described in Section 4 and a second case-study based on an
utomotive end-to-end autonomous driving application described in
his section.

The experiments are performed on a distributed hardware plat-
orm consisting of two Raspberry Pi 4B nodes that are connected by
n Ethernet network. Each Raspberry Pi node has 4 cores and 4GB
AM. The QNX 7.1 Software Development Platform (SDP) is used. The

mplementation of the MATERIAL framework, including all evaluated
pplication models, is publicly available.1

.1. Description of case studies

The BBW case study was originally described considering a mi-
rocontroller platform with a clock speed of 300 MHz and a static
mbedded real-time operating system. To get more representative pe-
iod and execution times for the type of edge applications that are
argeted with the MATERIAL framework, the worst-case execution
imes tick values of the original case study are multiplied with a factor
and the task periods with a factor 𝛽. Different values for 𝛼 and 𝛽 have
een evaluated. For the presented experiments, we considered 𝛽 = 10.
his results in period values of at most 60ms. Such values are repre-
entative of realistic period values of real-time edge applications [48].

is set to 25, which results in execution times between 0.75ms and
.25ms. Note that these execution times refer to runnable execution
imes only. Execution on the target platform additionally includes the
ead and write operation to memory. Values in Table 1 represent the
djusted values used here. Each task is further assigned a distinct
riority. Rate monotonic priority assignment is applied. Tasks ABS_XX_Pt

nd pLDM_Brake_XX exist for each wheel, i.e. XX can be FL (front left), FR

front right), RL (rear left), or RR (rear right). In this case priorities are
ssigned in this order (high to low).

As a second larger case study, an end-to-end autonomous driving
pplication is investigated. The application was originally presented as
art of the 2019 WATERS Industrial Challenge [48] and is represen-
ative of next-generation Advanced Driver Assistance Systems (ADAS).

1 https://github.com/ESRTS/MATERIAL_Framework.
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The case study represents all necessary tasks to realize driving func-
tionality and to react on stimuli from the environment. In total 9 tasks
are described that communicate via 16 labels. In contrast to the BBW
case study, the workload of this case study is more demanding and the
size of communication labels are significantly larger (between 256B
and 2MB). Fig. 11 shows the application model. The task periods are
ndicated with different colors. The size of labels and the execution time
f tasks (in ticks) is shown. An arrow from a task to a label describes
hat this task writes to the label, and an arrow from a label to a task
escribes reading from the label.

The application obtains the estimated pose of the vehicle from a
oint cloud (provided by the Lidar task) that is initially processed

together with the vehicle status information (received from the CAN
bus via the task CAN) by a particle filter (task Localization). Finally, this
information is processed by an Extended Kalman Filter (task EKF). The

ain task of the application is to compute and follow a trajectory.
everal tasks provide necessary input data. The Structure-From-Motion
task SFM) task computes 3D models from 2D images. Lane boundaries
re identified by the task Lane Detection, and objects on the road are
dentified by task Detection. Based on this information, the vehicle
rajectory and required speed and steering signals are computed by
he planner task before the control task computes the final parameters
o control the car and sends them via the CAN bus. A more in-depth
xplanation of the case study can be found in [26].

The original case study reports execution times (in ticks) for the
ifferent compute nodes on a Nvidia Tegra TX2 platform. We scale the
alues reported for the ARM Cortex-A57 cores of the Nvidia Tegra TX2
y a factor 𝛾 = 0.775 to account for the performance difference on the
RM Cortex-A72 cores on our platform [49]. Fig. 11 reports the scaled
alues. The resulting application has a total utilization of 4.78 and can
hus not be scheduled on a single Raspberry PI 4B. Each task is assigned
distinct priority, where rate monotonic priority assignment is applied.

n the case of EKF and Planner, which both have a period of 15ms, Planner
as a higher priority than EKF. Similarly, in the case of Lidar and SFM,
hich both have a period of 33ms, Lidar has the higher priority.

We initially evaluate three scenarios: (i) a mapping of the BBW
pplication to a single Raspberry Pi node, (ii) a mapping of the BBW
pplication to two Raspberry Pi nodes and (iii) a mapping of the
ATERS 2019 application to two Raspberry Pi nodes. In all mappings,

ach task is statically assigned to a core (following the partitioned
cheduling [50] approach) by selecting only one task in the property
ffinity of the task mapping elements in the Amalthea model. Each
f the three mappings is generated such that all tasks can meet their
eadlines.

apping 1 - BBW-Local: Single Raspberry Pi Node
The first three tasks of the application pBrakePedalLDM, pBrakeTorqueMap

nd pGlobalBrakeController are assigned to the APS partition named N1_P0

https://github.com/ESRTS/MATERIAL_Framework
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Fig. 12. Runtime of different steps for mapping of the BBW application on one and
wo nodes, as well as the WATERS 2019 application on two nodes.

ith a budget of 25%. All tasks are executed on core 1. The remaining
asks are assigned to the APS System Partition. Tasks are assigned in
airs ABS_xx_Pt and pLDM_Brake_xx (where xx stands for the respective
heel position). Tasks that handle the front left wheel are assigned to

ore 0. Tasks that handle the front right wheel are assigned to core 1.
asks that handle the rear left wheel are assigned to core 2, and tasks
hat handle the rear right wheel execute on core 3.

apping 2 - BBW-Distr.: Two Raspberry Pi Nodes
The mapping on two nodes maintains the mapping of the initial

hree tasks on core 1 on node 1 and the APS partition N1_P0. The
remaining tasks are assigned to node 2, where one core is reserved for
the tasks pair of each wheel direction. All tasks on node 2 are assigned
to the system partition. The additional listener task for pBrakeTorqueMap

is mapped to core 0 of the system partition.

Mapping 3 - WATERS 2019: Two Raspberry Pi Nodes
For this mapping, partitioned scheduling is used. The following

tasks are allocated to node 1. Tasks CAN Reader and Lidar are located
on core 0. Localization is allocated on core 1, and EKF and Detection

are allocated on core 2. On the second node, the remaining tasks are
allocated to individual cores, as their respective utilization does not
allow co-allocation. With this assignment, seven labels with a total data
size of 1.255MB are communicated between the nodes.

8.2. Runtime of framework steps

In this experiment, the runtime of the framework is compared for
the three mappings. The runtime is separately reported for the different
steps outlined in Section 7.1, namely, the parsing, the extension of the
internal model, copying of the base application, generating code files for
he applications, and finally compiling the projects. Fig. 12 presents
he resulting running times. The results show that the parsing of the
malthea model and the final compilation of the QNX application re-
uire the largest amount of time. All other steps are performed in 168ms
r less. Step 2, where the model is augmented with additional elements
o represent the APS system partition and inter-node communication
s performed in 0.74ms, 1.03ms and 1.97ms for the mapping of BBW-
ocal, BBW-Distr. and WATERS 2019, respectively. The overall runtime
f the three approaches does not differ significantly. Steps that operate
n the parsed model and generate the final code are very fast and do
ot result in visible differences in the final runtime. The largest impact
n the observed runtime is due to the number of nodes in the system.

The results highlight the applicability of the framework to practical
ngineering tasks without adding significant overheads to the design
11

rocess.
Table 3
Footprint of the application, in byte.

Application Text Data bss Total

BBW-Local - RPI 1 44 168 3596 640 48 404
BBW-Distr. - RPI 1 40 180 2428 576 43 184
BBW-Distr. - RPI 2 43 240 3228 592 47 060
WATERS’19 - RPI1 45624 3844 26 586 824 26 636 292
WATERS’19 - RPI2 45380 3668 24 131 328 24 180 376

8.3. Footprint of the QNX application

Besides the runtime of the framework to generate the QNX appli-
cations, the resulting footprint of the application is of importance as
well.

Table 3 shows the code size of each compiled application in the
three mappings: the first line reports the code size of the single Rasp-
berry PI 4B (RPI 1) used in Mapping 1, the second and third lines report
the code size of the two applications deployed in the two Raspberry
platforms (RPI 1 and RPI 2), and the fourth and fifth line report
the code size of the two deployed applications in the WATERS 2019
application on both nodes, respectively. All presented values follow
the Berkley format, i.e., read-only data is counted in the text segment.
It can be seen that the memory segments of the application under
mapping 1 are always larger than the segments of the two applications
under mapping 2. Under mapping 2, the application on Raspberry Pi
2 is larger, as the majority of the tasks are allocated here. For all
mappings of the BBW applications, the total application size is below
50 kB. The memory requirements of the WATERS 2019 application are
comparable for the text and data segment but significantly larger for the
bss segment due to the large label sizes of the application. The memory
overhead of applications is, therefore, small in comparison to the
available memory on platforms in the target area of edge computing.

8.4. Execution of the BBW application

Here, the execution of the final BBW applications on the real plat-
form is evaluated. For all experiments, the application is executed for
30 s on the target platform.

Fig. 13 shows an execution trace of Mapping 1 recorded for the first
85ms of execution. The different cores the tasks are allocated to are
highlighted by a shaded background and labeled on the right side of
the diagram.

The monitoring of runtime statistics is used to observe the response
times of all periodic tasks under both mappings. This is done to evaluate
the effect of the different mapping, as well as the benefits of the
framework to collect runtime statistics of the application. Further-
more, the collection of execution traces can be extremely useful for
troubleshooting activities.

Fig. 14 show the recorded maximum response times of all periodic
tasks of the BBW case study. In addition to mapping 1 and mapping 2,
we evaluate four additional mappings of the same task on one node.
In particular, we utilize the core affinity of a task to allow all tasks
to execute on the same set of cores (varying the number of available
cores from 1 to 4). With this configuration, the tasks are then scheduled
globally on the allowed cores. This further demonstrated the flexibility
of the framework to utilize different allocation strategies. Compar-
ing mapping 1 and mapping 2, task pGlobalBrakeController experiences
different response times, where the execution with mapping 2 yields
a larger response time. This is due to the additional communication
overhead the task has for sending the label values to the second node.
Similarly, it can be seen that the tasks that handle the front right wheel
(suffix FR) share core 1 under mapping 1 with three higher priority
tasks, which is not the case under mapping 2. This can also be observed
on 𝑐1 in Fig. 13, where the two tasks that handle the front right wheel

ust wait for the execution of the higher priority tasks. No deadline
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Fig. 13. Execution trace of the first 85ms under mapping 1. Different cores are highlighted with background shading and annotated on the right side.
Fig. 14. Recorded maximum response time values for the tasks under both mappings.
a
t
e
i
u

misses are observed during the experiment duration. The results of the
four settings under global scheduling demonstrate the advantages of
additional compute cores, gradually reducing the observed response
times. This is especially noticeable for low-priority tasks. The highest
priority task pBrakePedalLDM experiences the same response time under
all evaluated mappings, which is to be expected.

This experiment highlights how the MATERIAL framework can be
conveniently used to empirically evaluate the effect of different design
choices (e.g., task-to-node and task-to-core allocation) on different
metrics (e.g., task response times).

8.5. Execution of the WATERS 2019 application

This section discusses the results of executing different configura-
tions of the WATERS 2019 end-to-end autonomous driving application
on the platform. Also here, each configuration is executed on the target
platform for 30 s.

8.5.1. Response times under different configurations
Two mappings are examined. In addition to the mapping already

described, we investigate the application under global scheduling,
i.e., tasks can be executed on all cores of their assigned node. This is
realized by adding all cores of the respective node to the tasks’ affinity
mask.

Fig. 15 presents the results of the experiment. Recorded values
are normalized by dividing each response time by the corresponding
deadline. From the left side, the first five tasks execute on node 1 and
the remaining tasks execute on node 2. All tasks meet their individual
deadlines in both scenarios. Differences can be seen for the tasks EKF

and Lidar, which have a larger response time in the partitioned case.
This is due to the mapping, which, in the partitioned case, only utilizes
three of the four cores, while the global case can execute tasks on all
12

four cores. u
Fig. 15. Recorded maximum response time/deadline of the WATERS 2019 application
under partitioned and global scheduling.

8.5.2. Isolating the interference of listener tasks
Listener tasks are activated by the arrival of messages. This can

cause interference to the nominal tasks of the application that share
the same core. The execution time of the listener task is proportional
to the size of the communicated payload. To evaluate the impact, we
select the listener task of task EKF on node 2 and modify it in a way that
llows controlling its execution time. We then examine the response
ime of task Lane Detection, which is mapped to the same core, while the
xecution time of the listener task is varied in the range [750, 2000] ms,
n steps of 250ms. Two configurations are examined. The first config-
ration is equivalent to Mapping 3. In the second configuration, we
tilize APS partitions to create scheduling reservations to separate 20%
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Fig. 16. Observed maximum response time of the task Lane Detection under varying
execution time of the EKF listener task with and without APS reservations. The deadline
on task Lane Detection is shown by a dashed red line.

of the budget of core 0 for the listener tasks. All remaining budget is
used by the application tasks.

Fig. 16 shows the results of the experiment. In the case without APS
reservations, the observed response time of the task Lane Detection is
increasing and eventually exceeds the deadline of the task. In contrast,
if the task executes within a APS reservation, guaranteed CPU time is
provided to the task and the timeliness of the task is not affected. This
demonstrated the importance of the system configuration to guarantee
timeliness of the application and the strengths of the MATERIALS
framework in supporting QNX’s APS reservations.

9. Conclusions

This paper presented the MATERIAL framework for the modeling
and automatic code generation of edge real-time applications using
the QNX operating system. First, we presented a mathematical formal-
ization of the considered system, which can be leveraged in future
work to analyze the real-time behavior of emerging distributed soft-
ware systems. Later, we also showed the correspondence between the
mathematical model and the Amalthea model, which is used more for
software engineering and code generation purposes. A code generation
tool has been presented, which allows the automatic generation of code
from Amalthea models.

We reported the results of an experimental evaluation based on two
realistic applications from the automotive domain: a Brake-By-Wire
application from a Swedish automotive company, and an End-to-End
Autonomous Driving Application as an example for a next-generation
embedded system, which was proposed by the industry (Bosch) as
the WATERS 2019 industrial challenge. With these case studies, we
demonstrate the runtime needed for code generation and the footprint
of the resulting applications.

Furthermore, we use both case studies to illustrate the seamless
application of our framework to evaluate the performance of diverse
design alternatives empirically. This is accomplished using the moni-
toring capabilities of the framework, which allow the measurement of
response times in automatically generated applications under various
configurations.

There are many directions for future work. An interesting direc-
tion for future research also considers more complex multi-moded
applications, in which a task under different modes does not only
vary for the execution time requirement but also in terms of inputs,
outputs, and task dependencies. Furthermore, a useful new feature to
include in the future is the fine-grained modeling of network delays
and memory contention to allow modeling these important sources of
delays for a wide class of heterogeneous processing platforms. Other
directions for future research include further extensions of Amalthea to
express the functional parameters affecting the real-time performance
13
of frameworks for artificial intelligence [51,52] and publish/subscribe
communication [39,53], as well as to represent memory hierarchies in
embedded platforms and hardware accelerators [27].
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