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A B S T R A C T

Soft robots are increasingly finding their way into many applications, especially those involving manipulation
of sensitive and delicate objects or interaction with humans. However, their high-compliance characteristics
pose considerable challenges in obtaining low-complexity yet accurate dynamical models that are suitable for
advanced feedback control. This paper proposes a framework for end-effector positioning of a soft robot. First,
physics-informed sparse regression is used for deriving a nonlinear mathematical model of the robot dynamics.
Then, a control scheme comprising a super-twisting sliding mode controller and a nonlinear input estimator
is designed for the positioning of the robot end-effector. Conditions for uniform asymptotic stability of the
closed-loop system are given. Finally, experimental tests carried on a real soft robot show the efficacy of the
proposed design and its tracking accuracy.
1. Introduction

Soft robots made of lightweight and flexible materials are becoming
increasingly popular in a multitude of applications such as medical
operations and patient rehabilitation routines (Cianchetti, Laschi, Men-
ciassi, & Dario, 2018). Their compliant morphology allows them to ma-
nipulate fragile objects and, by extension, facilitates safe human–robot
interaction (Lipson, 2014; Rus & Tolley, 2015).

The development of dynamic controllers for soft robots is important
if the latter are to achieve the level of accuracy and agility in move-
ments of the biological systems that inspired their design. A survey on
the different soft robot control approaches was presented in Thuruthel,
Ansari, Falotico, and Laschi (2018). Although model-free (Thuruthel,
Falotico, Renda, & Laschi, 2017), open-loop (Reinhart, Shareef, & Steil,
2017) and learning-based control strategies (Jiang et al., 2017; Wang,
Li, & Kwok, 2021) are able to achieve good performance for specific
tasks, they are difficult to generalise and do not provide theoretical
guarantees on the stability of the system. On the other hand, leveraging
powerful control schemes from the arsenal of model-based control the-
ory (Della Santina, Duriez, & Rus, 2021; Mazare, Tolu, & Taghizadeh,
2022) requires accurate and explicit mathematical models.

Unlike rigid-link industrial robotic manipulators that are efficiently
described by first-principle models, soft robots and in particular contin-
uum robots are characterised by heavy nonlinearities in their dynamics,
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which are hard to accurately model. Their theoretically infinite dimen-
sionality poses a significant challenge in applying analytical methods
such as Euler–Lagrange formalism (Falkenhahn, Mahl, Hildebrandt,
Neumann, & Sawodny, 2014) and often results in reduced accuracy
or computationally heavy control algorithms. Static and kinematic
models and low-order dynamic approximations (Thuruthel, Renda, &
Iida, 2020) promote simpler and computationally efficient control de-
signs. However, they introduce several steady-state assumptions such
as the constant curvature approximation, which ignores any effects of
gravitational forces and payload weights that affect the shape of the
robot. These assumptions can be very limiting in terms of perfor-
mance since the resulting control schemes are either restricted to a
limited part of the robot task space or have reduced accuracy and
robustness. On the other hand, detailed neural-network models such as
those presented in Melingui, Merzouki, Mbede, Escande, and Benoud-
jit (2014), Thuruthel et al. (2017), Parvaresh and Moosavian (2021)
and Kim et al. (2021) may yield accurate descriptions of the robot
dynamics but – similar to the learning-based control methods – at the
cost of high-dimensionality or lack of generalisability. This severely
hinders the application of powerful model-based control methods that
in general do not scale well with dimensionality. Koopman operator
theory was proposed in Bruder, Remy, and Vasudevan (2019) for
obtaining a dynamical model of a soft robot. The main contribution
vailable online 30 December 2023
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Fig. 1. The soft robot system.

was the explicit description of the robot dynamics as a linear combi-
nation of monomial basis functions. Sparse Identification of Nonlinear
Dynamics (SINDy) (Brunton, Proctor, & Kutz, 2016a) and SINDy with
Control (SINDYc) (Brunton, Proctor, & Kutz, 2016b) have provided
an alternative solution to Koopman operators. The authors proposed
a framework for identifying nonlinear dynamics that are parsimonious
and that embed physics principles into the derived models. This is done
by utilising a large library of basis functions that relate to the physics of
the system to be modelled. After an iterative process, the functions that
are not significant are rejected yielding sparse models of low dimen-
sionality. The embedding of physical laws in SINDy models was further
explored in Machado and Jones (2023), where the authors developed
an extension, namely the SINDy with Side Information (SINDy-SI) based
on Sum-of-Squares programming.

SINDYc was used in Li, Wang, and Zhu (2022) for obtaining scalar
Single-Input Single-Output (SISO) models of viscoelastic dielectric elas-
tomer actuators, which are widely used in soft robotic applications.
The 3rd-order dynamics of the conduit displacements of a robotic
esophagus were discovered in Bhattacharya, Cheng, and Xu (2019) by
using SINDYc. The sparsity and accuracy of SINDYc models allows for
the utilisation of advanced model-based control methods such as Model
Predictive Control (MPC) and nonlinear control, which not only ensure
high accuracy but also provide the framework to theoretically assess
stability of the closed-loop system. An integrated scheme of SINDYc and
MPC was introduced in Kaiser, Kutz, and Brunton (2018). The method
was applied in Bhattacharya, Hashem, Cheng, and Xu (2021) for control
of the robotic esophagus system. A combination of Koopman operators
with SINDy-MPC was proposed in Wang et al. (2022) for controlling
soft actuators.

The parsimony of SINDYc models allows for adaptation to rapid
system changes by means of rediscovering the new dynamics (Quade,
Abel, Nathan Kutz, & Brunton, 2018). This feature is very useful when
the applied controller heavily relies on the accuracy of the model such
as is the case of MPC (Kaiser et al., 2018). Reiterating the identification
of the changed dynamics may, however, be avoided when using robust
control strategies. Indeed, variable structure controllers (Emelyanov,
1967) and specifically Sliding Mode Control (SMC) schemes feature
strong stability and robustness properties (Utkin, 1992). The STSMC
in particular, has been shown (Levant, 1993) to facilitate high ac-
curacy performance with low chattering, which is one of the main
challenges in SMC design (Boiko, Fridman, Pisano, & Usai, 2007).
Moreover, the low complexity of the STSMC law makes it significantly
computationally cheaper than MPC approaches.

This study pursues the development of a nonlinear control scheme
for soft robots based on sparse regression modelling. The main contri-
bution of the present work is the synthesis of a SINDYc-STSMC frame-
work for end-effector positioning of a soft robot, which, to the best of
the author’s knowledge, has not been proposed before. More specifi-
cally, SINDYc is employed to derive a low-order dynamical physics-
informed model of the soft robot, which is valid in a large subset of
2

Fig. 2. Perspective (a), top (b) and side (c,d) views of the entire workspace 𝒲 of the
robot. Each blue dot corresponds to a position measurement of the robot while data
was sampled for SINDYc. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

the robot workspace and does not adopt any limiting assumptions.
The obtained Multiple-Input Multiple-Output (MIMO) dynamics are by
definition observable since SINDYc identifies the dynamical behaviour
of the measured signals, i.e. all the states are measured. The second
part of the proposed framework pertains to the design of a modular
cascaded control architecture based on the obtained model that features
a STSMC and an online estimator for dealing with the control input
nonlinearities. One of the advantages of STSMC is the fact that the
inherent robustness of the controller against bounded-rate perturbation
allows for independent control, i.e. each state can be controlled indi-
vidually with cross-couplings being treated as perturbations. The input
estimator facilitates nonlinear control design as if the input mapping
channel were linear. Moreover, there is no limitation in the type of the
individual components of the control scheme provided that they satisfy
the stability and boundedness criteria of the cascade. These properties
are rigorously proven for the selected design of this study. Finally, the
applicability and efficacy of the proposed solution is experimentally
verified on a real continuum robot platform.

The remainder of the paper is organised as follows: Section 2
describes the soft robot system studied in this paper and details the
derivation of its dynamical model. The design of the nonlinear feedback
controller and the stability analysis of the closed-loop system is pre-
sented in Section 3. Experimental verification of the proposed solution
and performance evaluation of the control scheme is given in Section 4.
Finally, conclusions are drawn in Section 5 along with some remarks
on future work.

2. System description and modelling

2.1. System description

The system used in this study is a soft robot arm that has a con-
tinuum structure. Continuum robots differ from rigid-link robots in the
way that they can bend and often expand or contract at any point along
their structure (Walker, 2013). The soft robot arm can be seen in Fig. 1.
It consists of one 205 mm long module that can be bent in different
directions when actuated and also slightly contract and expand. The
robot has cables and McKibben-based actuators operating at 40 Hz. Let
𝑋 ,𝑋 , 𝑌 , 𝑌 ,𝑍 ,𝑍 be the extreme values that the robot
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥
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Fig. 3. Schematic diagram of the proposed method. The coloured basis functions were discarded during the sparsification of the algorithm.
end-effector can assume in each coordinate. Then the workspace of the
robot shown in Fig. 2 is defined as

𝒲 ⊂
[

𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥
]

×
[

𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥
]

×
[

𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥
]

.

Similarly, the set of all allowable control inputs 𝒖 will be denoted by

𝒰 ⊂
[

𝑢𝑚𝑖𝑛1 , 𝑢𝑚𝑎𝑥1
]

×
[

𝑢𝑚𝑖𝑛2 , 𝑢𝑚𝑎𝑥2
]

×
[

𝑢𝑚𝑖𝑛3 , 𝑢𝑚𝑎𝑥3
]

.

2.2. Mathematical model

SINDYc is employed in this study to obtain a physics-informed data-
driven dynamical model of the soft robot. The motivation for using
SINDYc relates to obtaining a low-dimension mathematical model that
captures the essential dynamical behaviour of the system by incor-
porating first-principle terms in the basis function library 𝜣(𝒙𝑇 , 𝒖𝑇 ).
These terms do not compile the exact first-principle equations, which
is very challenging in soft robots, but rather fundamental elements of
the kinematics and dynamics (e.g. rotation terms etc.). The objective is
to find a library 𝜣(𝒙𝑇 , 𝒖𝑇 ) of nonlinear functions of the system states
and inputs and a sparse matrix 𝜩 of coefficients such that the soft robot
dynamics is written as �̇� = 𝜩𝑇𝜣𝑇 (𝒙𝑇 , 𝒖𝑇 ), where 𝒖 =

[

𝑢1 𝑢2 𝑢3
]𝑇 is

the inputs vector and 𝒙 =
[

𝑥 𝑦 𝑧
]𝑇 is the state vector consisting of

the measured end-effector position in base coordinates.
Fig. 3 shows an overview of the entire proposed scheme with the

control strategy integrated as well. Measurement data collected at times
𝑡𝑘, 𝑘 = 1,… , 𝑚 are arranged into matrices as shown in (1), (2) and (3).

𝑿 =
⎡

⎢

⎢

⎣

𝑥(𝑡1) 𝑦(𝑡1) 𝑧(𝑡1)
⋮ ⋮ ⋮

𝑥(𝑡𝑚) 𝑦(𝑡𝑚) 𝑧(𝑡𝑚)

⎤

⎥

⎥

⎦

, (1)

�̇� =
⎡

⎢

⎢

⎣

�̇�(𝑡1) �̇�(𝑡1) �̇�(𝑡1)
⋮ ⋮ ⋮

�̇�(𝑡𝑚) �̇�(𝑡𝑚) �̇�(𝑡𝑚)

⎤

⎥

⎥

⎦

, (2)

𝑼 =
⎡

⎢

⎢

⎣

𝑢1(𝑡1) 𝑢2(𝑡1) 𝑢3(𝑡1)
⋮ ⋮ ⋮

𝑢1(𝑡𝑚) 𝑢2(𝑡𝑚) 𝑢3(𝑡𝑚)

⎤

⎥

⎥

⎦

(3)

A sparse regression problem is set up as �̇� = 𝜣(𝑿,𝑼 )𝜩 where
𝜣(𝑿,𝑼 ) is a data matrix. A separate Lasso optimisation (Tibshirani,
1996) is made for each column of �̇�

argmin
(

‖�̇�𝑗 −𝜣(𝑿,𝑼 )𝝃𝒋‖22 + 𝜆‖𝝃𝒋‖1
)

, 𝑗 = 1,… , 𝑛
3

𝝃𝑗
to obtain the columns 𝝃𝒋 of 𝜩. The usage of l1 norm in Lasso promotes
sparsity and prevents overfitting.

The measurement data gathered from the system consisted of a
time vector 𝒕 =

[

𝑡1 ⋯ 𝑡𝑚
]𝑇 , the inputs to the servos 𝒖 and the

measurements of the robot’s end-effector position 𝒙 at each time. The
derivatives �̇� were obtained using finite difference approximation. An
80% of the total 652 000 collected data samples was organised in a
matrix structure like the one described in Eqs. (1)–(3).

The selection of the nonlinear function library 𝜣(𝒙𝑇 , 𝒖𝑇 ) was based
on the implicit knowledge about the system dynamics after considering
the elasticity of the cable actuators of the robot. The high coupling
between the system inputs and states can be described by polynomial
expressions, while the curved shape of the robot motivated the inclu-
sion of trigonometric terms. Therefore 𝜣(𝒙𝑇 , 𝒖𝑇 ) comprised polynomial
terms of the type 𝑥𝑛𝑥𝑦𝑛𝑦𝑧𝑛𝑧𝑢𝑛11 𝑢𝑛22 𝑢𝑛33 with 𝑛𝑥 + 𝑛𝑦 + 𝑛𝑧 +

∑3
𝑖=1 𝑛𝑖 ≤ 2

(e.g. 1, 𝑥𝑦, 𝑧𝑢1, 𝑢22) as well as trigonometric functions of the states and
inputs, i.e. sin(𝑥), sin(𝑦), sin(𝑧), cos(𝑥), cos(𝑦), cos(𝑧), sin(𝑢𝑖) and cos(𝑢𝑖),
𝑖 ∈ {1, 2, 3}. The identified continuous time model can be written as

�̇� = 𝑨𝒙 + 𝒇𝑨(𝒙)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝒇 (𝒙)

+
[

𝑩𝟏 + 𝑩𝟐(𝒙)
]

𝒖 + 𝒈(𝒖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝒉(𝒙,𝒖)

, (4)

with 𝑨, 𝒇𝑨, 𝑩𝟏, 𝑩𝟐 and 𝒈 given in Table 1. The trigonometric terms
were not influential enough to the model response and were eventually
discarded during the sparsification.

Validation of the identified nonlinear model was done by using the
remaining 20% of the collected data (130 400 samples). The results are
shown in Fig. 4. The goodness of the model relates to the performance
specifications of each application and can be quantified by several
metrics, e.g. the ratio between output RMSE 𝜖𝑗 , 𝑗 ∈ {x,y,z} and
accuracy bounds or the coordinates extremes. Since the paper does not
focus on a specific application of the soft robot, the evaluation of the
model is restricted to the calculation of the relative RMSE 𝛾 and the
associated model fit defined by

𝛾 ≜ max
(

𝜖𝑥
max |𝑥(𝑡)|

,
𝜖𝑦

max |𝑦(𝑡)|
,

𝜖𝑧
max |𝑧(𝑡)|

)

and fit = (1 − 𝛾) ⋅ 100%, respectively. Their values were calculated as
𝛾 = 0.163 and fit= 83.7%.

Remark 1. For the identification of the soft robot dynamics, the system
was subjected to rich excitation with inputs covering the entire range
of the actuator values and at different frequencies as shown in Fig. 5.
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Table 1
Dynamical model of soft robot.

𝑨 =
⎡

⎢

⎢

⎣

0 0 0
0 −1.4044 0.7363
0 0 −6.1535

⎤

⎥

⎥

⎦

, 𝒇𝑨(𝒙) ≜
⎡

⎢

⎢

⎣

0.17𝑥2 − 1.22𝑦2 − 0.145𝑧2 + 4.92𝑥𝑦 + 20.3𝑥𝑧 + 0.748𝑦𝑧
3.39𝑥2 − 1.94𝑦2 + 3.48𝑧2 − 1.68𝑥𝑦 + 5.63𝑥𝑧 + 17.0𝑦𝑧

0.456𝑥2 + 0.672𝑦2 + 19.4𝑧2 − 1.92𝑥𝑦 + 1.3𝑥𝑧 − 0.0985𝑦𝑧

⎤

⎥

⎥

⎦

𝑩𝟏 =
⎡

⎢

⎢

⎣

−1.6909 2.0717 −0.5338
1.4754 1.1778 −2.9646
0.3089 0.5663 0.0359

⎤

⎥

⎥

⎦

, 𝒈(𝒖) ≜
⎡

⎢

⎢

⎣

14.1𝑢12 − 8.48𝑢22 + 5.9𝑢32 − 5.02𝑢1𝑢2 − 6.56𝑢1𝑢3 + 3.04𝑢2𝑢3
−11.3𝑢12 − 4.67𝑢22 + 19.5𝑢32 + 1.54𝑢1𝑢2 + 3.15𝑢1𝑢3 − 1.25𝑢2𝑢3
1.05𝑢12 + 2.26𝑢22 + 2.83𝑢32 − 10.6𝑢1𝑢2 − 3.2𝑢1𝑢3 − 12.7𝑢2𝑢3

⎤

⎥

⎥

⎦

𝑩𝟐(𝒙) ≜
⎡

⎢

⎢

⎣

−2.86𝑥 + 2.34𝑦 + 16.8𝑧 −2.56𝑥 − 1.23𝑦 − 20.2𝑧 1.59𝑥 − 1.16𝑦 + 3.61𝑧
2.76𝑥 + 0.356𝑦 − 9.28𝑧 −2.98𝑥 + 3.22𝑦 − 12.9𝑧 −0.129𝑥 − 4.02𝑦 + 19.9𝑧
−4.72𝑥 + 3.42𝑦 + 2.26𝑧 5.47𝑥 + 3.28𝑦 + 1.58𝑧 −1.06𝑥 − 6.62𝑦 + 4.49𝑧

⎤

⎥

⎥

⎦

r
i

a
c
e
a

3

i

𝒙

T
d

𝒆

w
f

s

Fig. 4. Validation of the identified model: Comparison between measured end-
effector coordinates (mm) in red and the model response in blue under the same input
series. The individual fits were calculated as fit𝑥 = 83.7%, fit𝑦 = 85.1%, fit𝑧 = 94.7%. (For
nterpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)

Fig. 5. Excitation inputs used for SINDYc.

his was done in order to capture as much of the dynamics as pos-
ible, i.e. slow and fast modes. Under these excitation conditions, the
vailable training data could deliver a sufficiently general dynamical
odel of the robot, which nonetheless constitutes an approximation

f an infinite-dimensional system. As such, it can never fully capture
he exact dynamics of the system. Moreover, significant structural
lterations in the robot configuration, such as using a different end-
ffector tool or mounting it on a different position of the link, will likely
equire new identification.

. Robot control design

The control strategy for the positioning of the soft robot end-effector
mploys a cascaded architecture as show in Fig. 6. A STSMC generates
4

Fig. 6. Control architecture with the STSMC in cascade with the adaptive estimator
(in green). The latter is used for inversion of the nonlinear mapping 𝒗 = 𝒉(𝒙, 𝒖∗) with
espect to the desired actuators output 𝒖∗. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

‘‘velocity’’ command 𝒗, which has to be realised by an appropriate
ontrol input 𝒖∗ such that 𝒗 = 𝒉(𝒙, 𝒖∗) according to (4). An online
stimator is then used to dynamically invert this nonlinear mapping
nd provide the necessary voltage input to the robot actuators.

.1. Super twisting sliding-mode position control

Consider the virtual input 𝒗 ≜ 𝒉(𝒙, 𝒖∗) such that the system dynam-
cs in (4) can be re-written as

̇ = 𝒇 (𝒙) + 𝒗 .

hen for a sufficiently smooth reference signal 𝒓 =
[

𝑟𝑥 𝑟𝑦 𝑟𝑧
]𝑇 , the

ynamics of the position error 𝒆 ≜ 𝒙 − 𝒓 =
[

𝑒𝑥 𝑒𝑦 𝑒𝑧
]𝑇 reads

̇ = 𝒇 (𝒙) + �̃� (𝒙, 𝒖∗) + 𝒗 − �̇� ,

here �̃� ≜
[

𝑓𝑥 𝑓𝑦 𝑓𝑧
]𝑇 is an unknown but bounded residual vector

ield due to modelling mismatch.
Define the Sliding manifold 𝑆 ≜

{

𝒙 ∈ R3
|𝒆 = 𝟎

}

. When the system is
in sliding motion, i.e. the trajectories 𝒆(𝑡) lie on 𝑆, the positioning error
is zero. Select the control law

𝒗 = �̇� − 𝒇 (𝒙) −
[

𝑘1,𝑗⌊𝑒𝑗⌉
1
2 + 𝑘2,𝑗 ∫

𝑡

0
sgn(𝑒𝑗 (𝜏))𝑑𝜏

]

𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒗𝑺𝑴𝑪∈R3 is a 3×1 vector with 𝑗∈{x,y,z}

(5)

where ⌊𝑤⌉

1
2 ≜ |𝑤|

1
2 sgn(𝑤) and sgn(⋅) is the signum function defined by

gn(𝑤) ≜
⎧

⎪

⎨

⎪

⎩

𝑤
|𝑤|

, for 𝑤 ≠ 0

𝜔 ∈ [−1, 1] , for 𝑤 = 0
.

Assuming for now that any control demand 𝒗 can be realised by the
actuators signals 𝒖, leads to the following closed-loop error dynamics

�̇� = �̃� (𝒙, 𝒖∗) + 𝒗𝑺𝑴𝑪 . (6)

Assumption 1 (Bounded-Rate Perturbations). There exist finite constants
𝛥𝑥, 𝛥𝑦, 𝛥𝑧 > 0 such that
| ̇̃𝑓 (𝒙, 𝒖)| < 𝛥 , | ̇̃𝑓 (𝒙, 𝒖)| < 𝛥 , | ̇̃𝑓 (𝒙, 𝒖)| < 𝛥
|

|

𝑥 |

|

𝑥 |

|

𝑦 |

|

𝑦 |

|

𝑧 |

|

𝑧
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∀(𝒙, 𝒖) ∈ 𝒲 ×𝒰 .

The foregoing assumption is not overly conservative in physical
systems since it merely states that the perturbations induced by model
uncertainty and input cross-couplings do not grow in amplitude at
infinite rates. Under Assumption 1, selecting the controller gains as

𝑘2,𝑥 > 𝛥𝑥, 𝑘2,𝑦 > 𝛥𝑦, 𝑘2,𝑧 > 𝛥𝑧, 𝑘1,𝑥 ≥ 1.8
√

𝑘2,𝑥 + 𝛥𝑥

𝑘1,𝑦 ≥ 1.8
√

𝑘2,𝑦 + 𝛥𝑦, 𝑘1,𝑧 ≥ 1.8
√

𝑘2,𝑧 + 𝛥𝑧

nsures finite-time stability of the origin (Moreno & Osorio, 2012). As
t can be seen from the tuning of the control gains, it is essential that
he bounds 𝛥𝑥, 𝛥𝑦, 𝛥𝑧 be not overly conservative otherwise this could
ead to excessive control action. A good starting point to this end is to
ompute the difference

𝑓𝑥
𝑓𝑦
𝑓𝑧

⎤

⎥

⎥

⎥

⎦

= �̇�
⏟⏟⏟

Data

− [𝒇 (𝒙, 𝒖) + 𝒉(𝒙, 𝒖)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

SINDYc Model

nd the associated derivatives ̇̃𝑓𝑥(𝒙, 𝒖), ̇̃𝑓𝑦(𝒙, 𝒖), ̇̃𝑓𝑧(𝒙, 𝒖). Note that �̇�
as already numerically computed from measurement data during the

dentification phase. Then one can set 𝛥𝑗 = max𝑡 | ̇̃𝑓𝑗 (𝒙(𝑡), 𝒖(𝑡))|, where
∈ {x,y,z} and 𝑡 ∈ [0, 𝑡𝑓 ] with 𝑡𝑓 corresponding to the last collected

ample. Finally, to alleviate the effect of chattering in the control signal,
he discontinuous signum function is approximated by a continuous one
efined as (Llibre, Novaes, & Teixeira, 2015)

𝛿(𝑞, 𝛿) ≜

{

sgn(𝑞) if |𝑞| ≥ 𝛿
𝑞
𝛿

if |𝑞| < 𝛿
,

where 𝛿 > 0. As a consequence of this approximation, the closed-loop
system vector field is now continuous, at the cost however of a loss in
accuracy. It was shown in Papageorgiou and Edwards (2022) that the
closed-loop system trajectories converge to an ellipsoid containing the
origin that can become arbitrarily small as 𝛿 → 0. This means that the
regularised closed-loop system retains all of its robustness properties,
while the trade-off is introduced only in terms of accuracy.

3.2. Input mapping inversion

As mentioned earlier in Section 3, it can be challenging, if at all
possible, to obtain a closed-form expression for the inverse mapping
𝒖∗ = 𝒉−1(𝒙, 𝒗). An online estimator structure can be used instead to
asymptotically estimate the input values 𝒖∗ given the control command
𝒗. Dynamic nonlinear mapping inversion using observers has been used
in adaptive control and parameter monitoring problems in systems with
nonlinear parametrisation (Grip, Johansen, Imsland, & Kaasa, 2010).
For the soft robot system, the actuators signal 𝒖 is an estimate of the
ideal solution 𝒖∗ given by

�̇� = Proj [𝒖,𝜞𝑴(𝒙, 𝒖) (𝒗 − 𝒉(𝒙, 𝒖))] (7)

where 𝜞 is a constant positive definite matrix and the matrix function
𝑴(𝒙, 𝒖), bounded for bounded 𝒙, is to be designed. The projection
perator defined as (Krstic, Kanellakopoulos, & Kokotovic, 1995)

roj [𝒖, 𝝉] =
⎧

⎪

⎨

⎪

⎩

𝝉 , 𝑃 (𝒖) < 0 or 𝑃 (𝒖) ≥ 0 & ∇𝑃 𝑇 𝝉 ≤ 0

𝝉 − ∇𝑃
‖∇𝑃‖

⟨

∇𝑃
‖∇𝑃‖ , 𝝉

⟩

𝑃 (𝒖), 𝑃 (𝒖) ≥ 0

& ∇𝑃 𝑇 𝝉 > 0

and with the convex scalar function 𝑃 ∶ 𝒲 → R given by

𝑃 (𝒖) = 𝜖(𝒖 − 𝒑)𝑇𝑸−1(𝒖 − 𝒑) − 1, 𝜖 > 1

𝒑𝑇 = 1
2
[

𝑢𝑚𝑖𝑛1 + 𝑢𝑚𝑎𝑥1 𝑢𝑚𝑖𝑛2 + 𝑢𝑚𝑎𝑥2 𝑢𝑚𝑖𝑛3 + 𝑢𝑚𝑎𝑥3
]

,

𝑸 = 1
2

⎡

⎢

⎢

𝑢𝑚𝑎𝑥1 − 𝑢𝑚𝑖𝑛1 0 0
0 𝑢𝑚𝑎𝑥2 − 𝑢𝑚𝑖𝑛2 0

𝑚𝑎𝑥 𝑚𝑖𝑛

⎤

⎥

⎥

.

5

⎣ 0 0 𝑢3 − 𝑢3 ⎦
ensures that the estimated input vector 𝒖 always remains in the compact
set 𝒰 . Choosing 𝜀 > 1 relates to the parameters 𝒖 not being allowed to
assume or exceed their extreme values, i.e. to being strictly inside the
ellipsoid defined by 𝑃 (𝒖) = 0.

It has been shown in Grip et al. (2010) that if there can be found a
symmetric positive definite matrix function 𝜮(𝒙), bounded for bounded
𝒙, such that the conditions

𝑴(𝒙, 𝒖∗) 𝜕𝒉
𝜕𝒖

(𝒙, 𝒖) +
( 𝜕𝒉
𝜕𝒖

(𝒙, 𝒖)
)𝑇

𝑴𝑇 (𝒙, 𝒖∗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2𝑯(𝒙,𝒖∗ ,𝒖)

≥ 2𝜮(𝒙) (8)

‖

‖

𝒉(𝒙, 𝒖∗) − 𝒉(𝒙, 𝒖)‖
‖

≤ 𝐿
√

�̃�𝑇𝜮(𝒙)�̃�, 𝐿 > 0 (9)

∃𝑇 , 𝛼0 > 0, ∶ ∫

𝑡+𝑇

𝑡
𝜮(𝒙(𝜏))𝑑𝜏 ≥ 𝛼0𝑰 (10)

hold for all pairs (𝒖∗, 𝒖), then the estimation error �̃� ≜ 𝒖∗ − 𝒖 converges
to the origin exponentially fast. Selecting

𝑴(𝒙, 𝒖) =
( 𝜕𝒉
𝜕𝒖

(𝒙, 𝒖)
)𝑇

(11)

renders 𝑯 symmetric and therefore diagonalisable. Then

𝑯(𝒙, 𝒖∗, 𝒖) ≥ inf
(𝒖∗ ,𝒖)∈𝒰×𝒰

𝜆𝑚𝑖𝑛
(

𝑯(𝒙, 𝒖∗, 𝒖)
)

𝑰 ,

where 𝜆𝑚𝑖𝑛(⋅) denotes that smallest eigenvalue of a matrix. This implies
that condition (8) is satisfied with

𝜮(𝒙) = inf
(𝒖∗ ,𝒖)∈𝒰×𝒰

𝜆𝑚𝑖𝑛
(

𝑯(𝒙, 𝒖∗, 𝒖)
)

𝑰

whenever 𝑯 is positive definite. Under the same assumption and due
to the Lipschitz continuity of 𝒉 (‖𝜕𝒉∕𝜕𝒖‖ is bounded for bounded inputs
and states), it is easy to show that condition (9) is also satisfied since
∃𝐿0 > 0 such that

‖

‖

𝒉(𝒙, 𝒖∗) − 𝒉(𝒙, 𝒖)‖
‖

≤ 𝐿0‖�̃�‖

≤
𝐿0

√

inf𝒙∈𝒲 𝜆𝑚𝑖𝑛(𝜮(𝒙))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐿

√

𝒖𝑇 inf
𝒙∈𝒲

𝜆𝑚𝑖𝑛(𝜮(𝒙))𝒖

≤ 𝐿
√

�̃�𝑇𝜮(𝒙)�̃�.

Since 𝒲 is compact, the infimum of 𝜆𝑚𝑖𝑛(𝜮(𝒙)) over 𝒲 always exist and
it is positive whenever 𝑯 is positive definite. Finally, condition (10)
expresses the standard requirement for persistence of excitation, which
in this problem can be interpreted as a requirement for sufficient
control demand 𝒗.

Remark 2. Proving the validity of (8) analytically can be very chal-
lenging or even impossible given the complexity of 𝒉. Numerical as-
sessment can be employed instead, where 𝜆𝑚𝑖𝑛(𝑯) is calculated over a
subset of the state-space within 𝒲 and for a number of pairs (𝒖, 𝒖∗) ∈
×𝒰 . These pairs can be generated by setting 𝒖 equal to the estimated

nput and then assigning variations over a range (e.g. ±20%) to 𝒖∗.
igs. 7–9 illustrate such an evaluation for the soft robot in this study
or input variations up to ±50% (along with the reference trajectories
hat were used in teh experimental evaluation of the method). Specif-
cally, for each collected data point (𝑥, 𝑦, 𝑧, 𝑢1, 𝑢2, 𝑢3) in Fig. 2, triplets
�̄�1, �̄�2, �̄�3) generated by varying either of (𝑢1, 𝑢2, 𝑢3) by up to ±50% are
sed for calculating the minimum eigenvalue of 𝑯 . If for any of these
-tuples (𝒙, 𝒖, �̄�) = (𝑥, 𝑦, 𝑧, 𝑢1, 𝑢2, 𝑢3, �̄�1, �̄�2, �̄�3) it holds that 𝜆𝑚𝑖𝑛(𝑯) ≤ 0,
hen condition (8) is not satisfied and the associated point (𝑥, 𝑦, 𝑧) is
oloured red, otherwise is coloured blue. This mostly occurs close to
he boundaries of the workspace and for the largest difference between
and 𝒖∗ (worst case of estimation). In such cases asymptotic estimation
f 𝒖∗ is not guaranteed and additional logic can be implemented to
ause the estimation until 𝑯 is again positive definite. In any case, the
rojection of the estimation law ensures boundedness of the estimation
rror �̃�.
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Fig. 7. Top view of workspace (blue points) with reference trajectory (black circle).
he red points show where condition (8) does not hold. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of
his article.)

Fig. 8. Top view of workspace (blue points) with reference trajectory (black triangle).
he red points show where condition (8) does not hold. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of
his article.)

.3. Stability analysis

The closed-loop dynamics of the robot end-effector position error
ith the input estimator included is written as

̇ = �̃� (𝒙, 𝒖) + 𝒗𝑺𝑴𝑪 + �̃�(𝒙, 𝒖∗ − �̃�) (12)

where the control command error

�̃� ≜ 𝒗 − 𝒉(𝒙, 𝒖∗ − �̃�) = 𝒉(𝒙, 𝒖∗) − 𝒉(𝒙, 𝒖∗ − �̃�) (13)

converges to 𝟎 exponentially, when conditions (8)–(10) hold and is
bounded otherwise.

Proposition 1 (Stability of Closed-Loop Error Dynamics). Consider the
closed-loop positioning error dynamics for the soft robot system under the
control law (5). If conditions (8)–(10) hold and under Assumption 1, the
origin is a Uniformly Globally Asymptotically Stable (UGAS) equilibrium
point of the closed-loop system.

Proof. The proof is detailed in Appendix. □

Remark 3. The Uniformly Globally Bounded (UGB) property of (A.1b)
due to the projector operator satisfies Assumption 6 in Loría (2008) and
further implies that |

|

|

𝜕𝑉
𝜕𝜻 𝒈𝜻 (𝑡, 𝜻 , �̃�)

|

|

|

≤ |𝑷 |𝐿𝑢‖𝜻‖�̃� , where �̃� is an upper
ound for ‖�̃�‖. Then, 𝜕𝑉

𝜕𝜻 𝒈𝜻 (𝑡, 𝜻 , �̃�) = 𝑜(𝑊 (𝜻)), with 𝑊 defined earlier.
By Theorem 1 in Loría (2008), the solutions of (A.1) are UGB even if
conditions (8)–(10) do not hold.

Remark 4. When the conditions in Proposition 1 do not hold, �̃� can
6

be lumped to the existing bounded-rate perturbation in the system. s
Fig. 9. Top view of workspace (blue points) with reference trajectory (black infinity
sign). The red points show where condition (8) does not hold. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

The STSMC gains will then need to be adjusted accordingly. When the
finite-time conditions do not hold, 𝒆(𝑡) will temporarily leave the sliding
manifold until the controller gains exceed the perturbation rate again.

4. Experimental results

4.1. Test scenarios and benchmark controller

The proposed end-effector positioning solution was experimentally
tested on the soft robot system in three different scenarios:

1. Circular trajectory of radius equal to 35 mm with centre at
(5,−10, 30) mm.

2. Triangular trajectory defined by the points 𝐴(−40,−40, 20), 𝐵(0,
40, 20) and 𝐶(40,−40, 20) (in mm).

3. Infinity-sign trajectory centred at (0,−5, 5) mm.

A decoupled PI control scheme was also implemented on the soft
robot system for a benchmark comparison.

The controller had the form

𝒗𝑷𝑰 = �̇� − 𝒇 (𝒙) −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾𝑃 ,𝑥

(

𝑒𝑥 −
1

𝜏𝐼,𝑥 ∫

𝑡

0
𝑒𝑥(𝜏)𝑑𝜏

)

𝐾𝑃 ,𝑦

(

𝑒𝑦 −
1
𝜏𝐼,𝑦 ∫

𝑡

0
𝑒𝑦(𝜏)𝑑𝜏

)

𝐾𝑃 ,𝑧

(

𝑒𝑧 −
1
𝜏𝐼,𝑧 ∫

𝑡

0
𝑒𝑧(𝜏)𝑑𝜏

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Table 2 shows the scheme’s parameters. The tuning of the PI was
done based on the Ziegler–Nichols method. The MAE and RMSE were
used for comparing the closed-loop system performance for the STSMC
and PI.

Remark 5. It should be noted that the PI scheme also employed
the input mapping inversion block as well as the feedback linearising
term −𝒇 (𝒙) to cancel known nonlinearities. This, in essence, rendered
he closed-loop system a perturbed integrator and therefore, the con-
roller was abled to be tuned via Ziegler–Nichols rules to obtain the
heuristically) best gains possible.

.2. Results

Table 3 shows the MAE and RMSE values for the tracking of
he circular, triangular and infinity-sign end-effector position profiles
hown in Figs. 11–13, respectively. As it can be seen, for the triangular
eference signal both controllers have similar performance. This is
xpected, since the desired trajectory comprises segments of linear
otion at constant speeds. However, in the case of circular and infinity-
ign profiles, the STSMC outperforms the PI with the latter having
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Table 2
Controllers and estimator gains and parameters.

Symbol Value

STSMC parameters

(𝑘1,𝑥 , 𝑘1,𝑦 , 𝑘1,𝑧) (10, 10, 10)
(𝑘2,𝑥 , 𝑘2,𝑦 , 𝑘2,𝑧) (10, 10, 10)
𝛿 3 (mm)

Estimator parameters

𝑢𝑚𝑖𝑛𝑖 , 𝑖 = 1, 2, 3 300 (digital signal)
𝑢𝑚𝑎𝑥𝑖 , 𝑖 = 1, 2, 3 500 (digital signal)
𝜀 1.1

𝜞
⎡

⎢

⎢

⎣

30 0 0
0 30 0
0 0 30

⎤

⎥

⎥

⎦

PIs parameters

(𝐾𝑃 ,𝑥 , 𝐾𝑃 ,𝑦 , 𝐾𝑃 ,𝑧) (3.24, 2.21, 1.08)
(𝜏𝐼,𝑥 , 𝜏𝐼,𝑦 , 𝜏𝐼,𝑧) (2.23, 2.15, 1.67)

Table 3
MAE and RMSE in mm for the PI and the STSMC for all three scenarios.

MAE (𝑥, 𝑦, 𝑧) RMSE (𝑥, 𝑦, 𝑧)

Circle PI 13.24, 8.43, 5.22 2.31, 2.29, 1.23
STSMC 3.87, 2.42, 2.37 0.94, 0.88, 0.77

Triangle PI 8.47, 4.51, 3.33 1.43, 1.57, 1.18
STSMC 4.42, 8.55, 4.55 1.01, 1.40, 1.22

Infinity PI 36.74, 19.97, 33.39 5.85, 5.33, 11.97
STSMC 12.84, 13.48, 6.30 2.89, 2.97, 2.46

up to five times larger MAE and four times larger RMSE, especially
in the 𝑧-coordinate. This can be clearly seen in Figs. 14–16, which
illustrate the position error signals for both control schemes for all three
scenarios. Specifically in the case of the circular trajectory, the pro-
posed control solution delivers positioning accuracy of approximately
3 mm corresponding to 8.5% of the radius of the circle. This level of
accuracy is sufficient for demonstrating the feasibility of the proposed
approach. Finally, the performance of the online input estimator is
shown in Figs. 17–19, where the control command 𝒗 = 𝒉(𝒙, 𝒖∗) is
plotted together with the actual control input 𝒉(𝒙, 𝒖) for the three
scenarios. The estimator generates sufficiently accurate values for the
actuator signals 𝒖 except for some isolated cases when the projection
operation is activated. This occurs when the control demand is very
close to the boundary of the set 𝒰 or outside of it.

5. Conclusions and future work

This study proposed a framework for nonlinear model-based control
of soft robots with application to a single-link continuum manipu-
lator. The dynamics of the system was mathematically described by
employing physics-informed sparse nonlinear regression with control.
The obtained model, although heavily nonlinear, had only three states
all of which were observable. This was a direct consequence of the
utilised identification methodology. This low-dimensionality facilitated
the design of a STSMC that was used for the positioning of the robot
end-effector. An online estimator was employed for inverting the non-
linear mapping between control command and actuation signals. The
stability of the closed-loop system was analysed and finally, the appli-
cability of the proposed solution was demonstrated with experiments
on a real soft robotic platform.

The proposed framework features a modular architecture that cov-
ers both the modelling and the control parts. This implies that an
alternative identification method can be used instead of SINDYc. De-
pending on the extent of structural variations (e.g. relative degree,
dimension, observability, etc.) of the different models, several modifi-
cations may be needed in the control design, especially in connection to
the input mapping inversion. Nonetheless, the same steps presented in
this paper can be followed for obtaining the complete control solution.
7

Fig. 10. Closed-loop system as a feedback interconnection of the two error subsystems
(𝛴1) and (𝛴2).

The verification of condition (8) that guarantees inversion of the
nonlinear input mapping was numerically assessed in the current
manuscript. Although boundedness of the solutions are ensured even
if the condition is violated, there is not any performance guarantee in
terms of absolute accuracy in such a case. This could potentially be
amended by constraining the controller output 𝒗 in the set where the
input mapping is always invertible.

The selection of the STSMC was made on the basis of its strong
robustness against non-parametric perturbations. This is very helpful in
the design when dealing with cross-couplings and model uncertainties.
However, the STSMC does not explicitly account for constraints apart
from the control error. This is a limitation of the specific control choice
compared to e.g. SINDy-MPC when hard constraints are imposed in
the problem formulation. An extension to the proposed scheme will
include the addition of adaptive features to the STSMC that can handle
performance constraints. More specifically, future work will pursue the
integration of learning-based feed-forward components to the existing
scheme. Such combination will maintain the stability of the closed-
loop system while facilitating the exploration of the behaviour of the
robot during the execution of complex tasks that impose constraints
(e.g., interactions with the environment or humans). Furthermore, the
learning strategy will be useful such as in the presence of structural
changes in the robot configuration (e.g. different gripper or location
of the tool, extra links etc.) that will severely change the dynamical
properties of the system, thus compromising the accuracy of the base
model.

Comparative analysis of different control schemes and input estima-
tors in the context of the proposed framework will also be pursued in
future work.
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Appendix. Proof of Proposition 1

The closed-loop system in (12) can be viewed as the feedback
interconnection of two subsystems: the finite-time stable dynamics of
the unperturbed closed-loop system in (6) and the exponentially stable
dynamics of the control command error �̃� defined in (13) (Fig. 10). The
finite-time stability of the origin of (6) implies the existence of a local
diffeomorphism 𝜻 = 𝑻 (𝒆) and a positive definite absolutely continuous
quadratic Lyapunov function 𝑉 = 𝜻𝑇𝑷𝜻 such that �̇� ≤ −𝑐‖𝜻‖, 𝑐 >
0 (Moreno & Osorio, 2012). Under this coordinate transformation, the
feedback interconnected systems can be re-written as

(𝛴1) ∶ �̇� = 𝒇 𝜻 (𝑡, 𝜻) + 𝒈𝜻 (𝑡, 𝜻 , �̃�) (A.1a)

(𝛴2) ∶ ̇̃𝒖 = 𝒇 �̃�(𝑡, 𝜻 , �̃�) , where (A.1b)

𝒇 𝜻 (𝑡, 𝜻) ≜
𝜕𝑻
𝜕𝒆

[

�̃� (𝒙, 𝒖) + 𝒗𝑺𝑴𝑪 (𝑻 −1(𝜻))
]

𝒈 (𝑡, 𝜻 , �̃�) ≜ 𝜕𝑻 �̃�
(

𝒓 + 𝑻 −1(𝜻), 𝒖∗ − �̃�
)

𝜻 𝜕𝒆
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Fig. 11. Perspective and top view of tracking of the circular motion profile (black). The
performance of the STSMC (blue) is superior to that of the PI-based (red) solution. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12. Perspective and top view of tracking of the triangular motion profile (black).
he performance of the STSMC (blue) is superior to that of the PI-based (red) solution.
For interpretation of the references to colour in this figure legend, the reader is referred
o the web version of this article.)
8

Fig. 13. Perspective and top view of tracking of the infinity sign motion profile (black).
The performance of the STSMC (blue) is superior to that of the PI-based (red) solution.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 14. Circle: End-effector position errors 𝑒𝑥 = 𝑥 − 𝑟𝑥, 𝑒𝑦 = 𝑦 − 𝑟𝑦, 𝑒𝑧 = 𝑧 − 𝑟𝑧 in mm
for the STSMC (blue) and PI (red) case. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

𝒇 �̃�(𝑡, 𝜻 , �̃�) ≜ −Proj
[

𝒖,𝜞𝑴(𝒓 + 𝑻 −1(𝜻), 𝒖∗ − �̃�)

⋅
(

𝒗 − 𝒉(𝒓 + 𝑻 −1(𝜻), 𝒖∗ − �̃�)
)]

The feedback system (A.1a)–(A.1b) can be viewed as a cascaded in-
terconnection, where the solutions �̃�(𝑡) of 𝛴2 depend on the param-
eter 𝜻 = 𝜻(𝑡) (Loría, 2008). Showing that the origin of (𝛴1)-(𝛴2) is
UGAS amounts to satisfying Assumptions 1,4,5,7 and the conditions of
Theorem 2 in Loría (2008).

Assumptions 1 and 5 (UGAS of (𝛴1) with 𝒈𝜻 ≡ 𝟎) are implied by
the finite-time stability of (6). Assumption 4 requires the existence
of a 𝒞1 positive-definite, radially unbounded function 𝑉1(𝑡, 𝜻), a class

𝒦∞ function 𝛼1 and two continuous, positive non-decreasing functions
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Fig. 15. Triangle: End-effector position errors 𝑒𝑥 = 𝑥 − 𝑟𝑥, 𝑒𝑦 = 𝑦 − 𝑟𝑦, 𝑒𝑧 = 𝑧 − 𝑟𝑧 in
mm for the STSMC (blue) and PI (red) case. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Infinity sign: End-effector position errors 𝑒𝑥 = 𝑥 − 𝑟𝑥, 𝑒𝑦 = 𝑦 − 𝑟𝑦,. 𝑒𝑧 = 𝑧 − 𝑟𝑧
in mm for the STSMC (blue) and PI (red) case. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Circle: Commanded (red) and actual (blue) control input for the STSMC. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

𝛼4, 𝛼′4 such that

𝑉1(𝑡, 𝜻) ≥ 𝛼1(‖𝜻‖)

̇1(𝑡, 𝜻) ≤ 𝛼4(‖𝜻‖)𝛼′4(‖�̃�‖) and

∫

∞

𝑉1,0

𝑑𝜐
𝛼4(𝛼−11 (𝜐))

= ∞,
9

Fig. 18. Triangle: Commanded (red) and actual (blue) control input for the STSMC.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 19. Infinity sign: Commanded (red) and actual (blue) control input for the
STSMC. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

where 𝑉1,0 > 0 is a lower bound for 𝑉1. Selecting 𝑉1 ≜ 𝑉 , 𝛼1 ≜
𝜆𝑚𝑖𝑛(𝑷 )‖𝜻‖2 and considering the Lipschitz continuity of 𝒉, Assumption
4 is satisfied with 𝛼4(‖𝜻‖) ≜ ‖𝜻‖ and 𝛼′4(‖�̃�)‖ ≜ 2𝜆𝑚𝑎𝑥(𝑷 )𝐿𝑢‖�̃�‖, where
𝑢 > 0 is larger or equal to the Lipschitz constant of 𝒉. Indeed, taking

he time derivative of 𝑉1 along the trajectories of (𝛴1) gives:

̇1(𝑡, 𝜻) = 2𝜻𝑇𝑷 �̇� = 2𝜻𝑇𝑷𝒇 𝜻 (𝑡, 𝜻) + 2𝜻𝑇𝑷𝒈𝜻 (𝑡, 𝜻 , �̃�)

≤ −𝑐‖𝜻‖ + 2‖𝜻‖ ⋅ 𝜆𝑚𝑎𝑥(𝑷 ) ⋅ ‖𝒈𝜻 (𝑡, 𝜻 , �̃�)‖

≤ 2‖𝜻‖ ⋅ 𝜆𝑚𝑎𝑥(𝑷 )𝐿𝑢 ⋅ ‖�̃�‖ = 𝛼4(‖𝜻‖)𝛼′4(‖�̃�‖)

Assumption 7 requires asymptotic convergence of the solutions of (𝛴2)
to the origin. This follows from the exponential stability of (A.1b) under
the conditions (8)–(10).

Assumptions 1, 4, 5 and 7 constitute the first condition of Theorem
2 in Loría (2008), which states that the solutions of (A.1) are UGB.
Satisfying the second condition of Theorem 2 requires that for the
quadratic Lyapunov function 𝑉 associated to (6) there exist class 𝒦
unctions 𝛼5 and 𝛼′5 with

𝜕𝑉
𝜕𝜻

𝒈𝜻 (𝑡, 𝜻 , �̃�)
|

|

|

|

≤ 𝛼5(‖𝜻‖)𝛼′5(‖�̃�)‖

and also, for each positive upper bound 𝜌 for the solutions of (A.1b)
∃𝜆𝜌, 𝜂𝜌 > 0 such that

𝑡 ≥ 0, ‖𝜻‖ ≥ 𝜂𝜌 ⇒ 𝛼5(‖𝜻‖) ≤ 𝜆𝜌𝑊 (𝜻),

where 𝑊 is a positive semi-definite function. Selecting 𝑊 (𝜻) ≜ ‖𝜻‖2
and using the same Lipschitz arguments as in the validation of As-
sumption 4, one can show that Theorem 2 is satisfied with 𝛼 (‖𝜻‖) ≜
5
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2|𝑷 |𝐿𝑢‖𝜻‖, 𝛼′5(‖�̃�‖) ≜ ‖�̃�‖ and 𝜂𝑟 ≜ 2|𝑷 |𝐿𝑢
𝜆𝜌

, 𝜆𝜌 > 0 and ∀𝜌 > 0. Then
y Proposition 2 in Loría (2008), the origin of (A.1) is UGAS. This
ompletes the proof.
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