Olive tree biovolume estimation is a key task in precision agriculture, supporting yield prediction and resource management, especially in Mediterranean regions severely impacted by climate-induced stress. This study presents a comparative analysis of three deep learning models U-Net, YOLOv11m-seg, and Mask RCNN for segmenting olive tree crowns and their shadows in ultra-high resolution UAV imagery. The UAV dataset, acquired over Vicopisano, Italy, includes manually annotated crown and shadow masks. Building on these annotations, the methodology emphasizes spatial feature extraction and robust segmentation; per-tree biovolume is then estimated by combining crown projected area with shadow-derived height using solar geometry. In testing, Mask R-CNN achieved the best overall accuracy (F1 = 0.86; mIoU = 0.72), while YOLOv11m-seg provided the fastest throughput (0.12 second per image). The estimated biovolumes spanned from approximately 4 to 24 cubic meters, reflecting clear structural differences among trees. These results indicate Mask R-CNN is preferable when biovolume accuracy is paramount, whereas YOLOv11m-seg suits large-area deployments where speed is critical; U-Net remains a lightweight, high-sensitivity option. The framework enables accurate, scalable orchard monitoring and can be further strengthened with DEM or DSM integration and field calibration for operational decision support.

Comparative Analysis of Deep Learning Models for Olive Tree Crown and Shadow Segmentation Towards Biovolume Estimation

Wondimagegn Abebe Demissie
Primo
Writing – Original Draft Preparation
;
Stefano Roccella
Penultimo
Data Curation
;
Rudy Rossetto
Secondo
Supervision
;
Antonio Minnocci
Data Curation
;
Andrea Vannini
Data Curation
;
Luca Sebastiani
Ultimo
Supervision
2025-01-01

Abstract

Olive tree biovolume estimation is a key task in precision agriculture, supporting yield prediction and resource management, especially in Mediterranean regions severely impacted by climate-induced stress. This study presents a comparative analysis of three deep learning models U-Net, YOLOv11m-seg, and Mask RCNN for segmenting olive tree crowns and their shadows in ultra-high resolution UAV imagery. The UAV dataset, acquired over Vicopisano, Italy, includes manually annotated crown and shadow masks. Building on these annotations, the methodology emphasizes spatial feature extraction and robust segmentation; per-tree biovolume is then estimated by combining crown projected area with shadow-derived height using solar geometry. In testing, Mask R-CNN achieved the best overall accuracy (F1 = 0.86; mIoU = 0.72), while YOLOv11m-seg provided the fastest throughput (0.12 second per image). The estimated biovolumes spanned from approximately 4 to 24 cubic meters, reflecting clear structural differences among trees. These results indicate Mask R-CNN is preferable when biovolume accuracy is paramount, whereas YOLOv11m-seg suits large-area deployments where speed is critical; U-Net remains a lightweight, high-sensitivity option. The framework enables accurate, scalable orchard monitoring and can be further strengthened with DEM or DSM integration and field calibration for operational decision support.
2025
979-8-3315-5485-9
File in questo prodotto:
File Dimensione Formato  
1571168788_Wondimagegn.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/583012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact