Aquaculture applications are increasingly utilizing precision techniques such as computer vision technologies to perform a variety of inspection tasks. This work presents the development of three activities essential for the creation of a biomimetic robotic platform with onboard intelligence and autonomous task execution capabilities. The proposed robot is inspired by carangiform movement and achieves various trajectories through a magnetic actuation system with a single motor for propulsion. Fluid dynamics studies can improve the performance of the proposed propulsion system, thus ensuring greater energy efficiency. Thanks to its modular and scalable structure, the platform can integrate different components such as a vision system. The investigated vision-based model shows promising results for deployment in marine environments and can be adapted to detect various marine species. This fish-inspired robot platform has potential applications in the sustainable inspection and management of aquaculture facilities.
Development of an Autonomous Fish-Inspired Robotic Platform for Aquaculture Inspection and Management
Manduca, Gianluca;Carosio, Edoardo;Stefanini, Cesare;Romano, Donato
2023-01-01
Abstract
Aquaculture applications are increasingly utilizing precision techniques such as computer vision technologies to perform a variety of inspection tasks. This work presents the development of three activities essential for the creation of a biomimetic robotic platform with onboard intelligence and autonomous task execution capabilities. The proposed robot is inspired by carangiform movement and achieves various trajectories through a magnetic actuation system with a single motor for propulsion. Fluid dynamics studies can improve the performance of the proposed propulsion system, thus ensuring greater energy efficiency. Thanks to its modular and scalable structure, the platform can integrate different components such as a vision system. The investigated vision-based model shows promising results for deployment in marine environments and can be adapted to detect various marine species. This fish-inspired robot platform has potential applications in the sustainable inspection and management of aquaculture facilities.File | Dimensione | Formato | |
---|---|---|---|
Conference_Manduca et al_MetroAgriFor_2024.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Copyright dell'editore
Dimensione
20.27 MB
Formato
Adobe PDF
|
20.27 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.