We experimentally demonstrate the performance improvements obtained through End-to-End Deep Learning in noise and chromatic dispersion compensation of optical fiber transmission links when incorporating a physics-inspired activation function compared to state-of-the-art ReLU configurations.
Physics-inspired End-to-End Deep Learning for High-Performance Optical Fiber Transmission Links
De Marinis, L.;Contestabile, G.;
2023-01-01
Abstract
We experimentally demonstrate the performance improvements obtained through End-to-End Deep Learning in noise and chromatic dispersion compensation of optical fiber transmission links when incorporating a physics-inspired activation function compared to state-of-the-art ReLU configurations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Physics-inspired End-to-End Deep Learning for High-Performance Optical Fiber Transmission Links [CLEO 2023] submitted.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Copyright dell'editore
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.