Pesticides are still abused in modern agriculture. The effects of their exposure to even sub-lethal doses can be detrimental to ecosystem stability and human health. This work aims to validate the use of machine learning techniques for recognizing motor abnormalities and to assess any effect post-exposure to a minimal dosage of these substances on a model organism, gaining insights into potential risks for human health. The test subject was the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), exposed to food contaminated with the LC 30 of Carlina acaulis essential oil. A deep learning approach enabled the pose estimation within an arena. Statistical analysis highlighted the most significant features between treated and untreated groups. Based on this analysis, two learning-based algorithms, Random Forest (RF) and XGBoost were employed. The results were compared through different metrics. RF algorithm generated a model capable of distinguishing treated subjects with an area under the receiver operating characteristic curve of 0.75 and an accuracy of 0.71. Through an image-based analysis, this study revealed acute effects due to minimal pesticide doses. So, even small amounts of these biocides drifted far from distribution areas may negatively affect the environment and humans.

Automated image-based analysis unveils acute effects due to sub-lethal pesticide doses exposure

Manduca, Gianluca;Moccia, Sara;Stefanini, Cesare;Romano, Donato
2023-01-01

Abstract

Pesticides are still abused in modern agriculture. The effects of their exposure to even sub-lethal doses can be detrimental to ecosystem stability and human health. This work aims to validate the use of machine learning techniques for recognizing motor abnormalities and to assess any effect post-exposure to a minimal dosage of these substances on a model organism, gaining insights into potential risks for human health. The test subject was the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), exposed to food contaminated with the LC 30 of Carlina acaulis essential oil. A deep learning approach enabled the pose estimation within an arena. Statistical analysis highlighted the most significant features between treated and untreated groups. Based on this analysis, two learning-based algorithms, Random Forest (RF) and XGBoost were employed. The results were compared through different metrics. RF algorithm generated a model capable of distinguishing treated subjects with an area under the receiver operating characteristic curve of 0.75 and an accuracy of 0.71. Through an image-based analysis, this study revealed acute effects due to minimal pesticide doses. So, even small amounts of these biocides drifted far from distribution areas may negatively affect the environment and humans.
2023
979-8-3503-2447-1
File in questo prodotto:
File Dimensione Formato  
Manduca et al_EMBC_2023.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 4.36 MB
Formato Adobe PDF
4.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/561552
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact