This paper presents a Machine Learning technique based on Principal Component Analysis (PCA) combined with telemetry data scrambling to detect multiple types of failure in optical networks while preserving data confidentiality. Experiments in an optical testbed show the effectiveness of the proposed solution.
Confidential Detection of Multiple Failures in Optical Networks: An Experimental Evaluation
Silva M. F.
;Sgambelluri A.;Pacini A.;Paolucci F.;Green A.;Valcarenghi L.
2023-01-01
Abstract
This paper presents a Machine Learning technique based on Principal Component Analysis (PCA) combined with telemetry data scrambling to detect multiple types of failure in optical networks while preserving data confidentiality. Experiments in an optical testbed show the effectiveness of the proposed solution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Confidential_Detection_of_Multiple_Failures_in_Optical_Networks_an_Experimental_Evaluation.pdf
non disponibili
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Copyright dell'editore
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.