In the cloud-native era, developers have at their disposal an unprecedented landscape of services to build scalable distributed systems. The DevOps paradigm emerged as a response to the increasing necessity of better automations, capable of dealing with the complexity of modern cloud systems. For instance, Infrastructure-as-Code tools provide a declarative way to define, track, and automate changes to the infrastructure underlying a cloud application. Assuring the quality of this part of a code base is of utmost importance. However, learning to produce robust deployment specifications is not an easy feat, and for the domain experts it is time-consuming to conduct code-reviews and transfer the appropriate knowledge to novice members of the team. Given the abundance of data generated throughout the DevOps cycle, machine learning (ML) techniques seem a promising way to tackle this problem. In this work, we propose an approach based on Large Language Models to analyze declarative deployment code and automatically provide QA-related recommendations to developers, such that they can benefit of established best practices and design patterns. We developed a prototype of our proposed ML pipeline, and empirically evaluated our approach on a collection of Kubernetes manifests exported from a repository of internal projects at Nokia Bell Labs.

Analyzing Declarative Deployment Code with Large Language Models

Lanciano, Giacomo;Cucinotta, Tommaso
2023-01-01

Abstract

In the cloud-native era, developers have at their disposal an unprecedented landscape of services to build scalable distributed systems. The DevOps paradigm emerged as a response to the increasing necessity of better automations, capable of dealing with the complexity of modern cloud systems. For instance, Infrastructure-as-Code tools provide a declarative way to define, track, and automate changes to the infrastructure underlying a cloud application. Assuring the quality of this part of a code base is of utmost importance. However, learning to produce robust deployment specifications is not an easy feat, and for the domain experts it is time-consuming to conduct code-reviews and transfer the appropriate knowledge to novice members of the team. Given the abundance of data generated throughout the DevOps cycle, machine learning (ML) techniques seem a promising way to tackle this problem. In this work, we propose an approach based on Large Language Models to analyze declarative deployment code and automatically provide QA-related recommendations to developers, such that they can benefit of established best practices and design patterns. We developed a prototype of our proposed ML pipeline, and empirically evaluated our approach on a collection of Kubernetes manifests exported from a repository of internal projects at Nokia Bell Labs.
2023
978-989-758-650-7
File in questo prodotto:
File Dimensione Formato  
CLOSER-2023.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 542.97 kB
Formato Adobe PDF
542.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/554594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact