In this paper we propose two bias correction approaches in order to reduce the prediction bias of the robust M-quantile predictors in small area estimation in the presence of representative outliers. A Monte-Carlo simulation study is conducted. Results confirm that our approaches improve the efficiency and reduce the prediction bias of M-quantile predictors when the population contains units that may be influential if selected in the sample.

Controlling the bias for M-quantile estimators for small areas

Gaia Bertarelli;
2021-01-01

Abstract

In this paper we propose two bias correction approaches in order to reduce the prediction bias of the robust M-quantile predictors in small area estimation in the presence of representative outliers. A Monte-Carlo simulation study is conducted. Results confirm that our approaches improve the efficiency and reduce the prediction bias of M-quantile predictors when the population contains units that may be influential if selected in the sample.
2021
9788899594138
File in questo prodotto:
File Dimensione Formato  
Master2-133-143.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Non pubblico
Dimensione 503.02 kB
Formato Adobe PDF
503.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/544432
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact