The analysis of interventional images is a topic of high interest for the medical-image analysis community. Such an analysis may provide interventional-medicine professionals with both decision support and context awareness, with the final goal of improving patient safety. The aim of this chapter is to give an overview of some of the most recent approaches (up to 2018) in the field, with a focus on Convolutional Neural Networks (CNNs) for both segmentation and classification tasks. For each approach, summary tables are presented reporting the used dataset, involved anatomical region and achieved performance. Benefits and disadvantages of each approach are highlighted and discussed. Available datasets for algorithm training and testing and commonly used performance metrics are summarized to offer a source of information for researchers that are approaching the field of interventional-image analysis. The advancements in deep learning for medical-image analysis are involving more and more the interventional-medicine field. However, these advancements are undeniably slower than in other fields (e.g. preoperative-image analysis) and considerable work still needs to be done in order to provide clinicians with all possible support during interventional-medicine procedures.
Supervised cnn strategies for optical image segmentation and classification in interventional medicine
Moccia S.;
2020-01-01
Abstract
The analysis of interventional images is a topic of high interest for the medical-image analysis community. Such an analysis may provide interventional-medicine professionals with both decision support and context awareness, with the final goal of improving patient safety. The aim of this chapter is to give an overview of some of the most recent approaches (up to 2018) in the field, with a focus on Convolutional Neural Networks (CNNs) for both segmentation and classification tasks. For each approach, summary tables are presented reporting the used dataset, involved anatomical region and achieved performance. Benefits and disadvantages of each approach are highlighted and discussed. Available datasets for algorithm training and testing and commonly used performance metrics are summarized to offer a source of information for researchers that are approaching the field of interventional-image analysis. The advancements in deep learning for medical-image analysis are involving more and more the interventional-medicine field. However, these advancements are undeniably slower than in other fields (e.g. preoperative-image analysis) and considerable work still needs to be done in order to provide clinicians with all possible support during interventional-medicine procedures.File | Dimensione | Formato | |
---|---|---|---|
manuscript.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.