We present c-reductions, a simple, flexible and very general state space reduction technique that exploits an equivalence relation on states that is a bisimulation. Reduction is achieved by a canonizer function, which maps each state into a not necessarily unique canonical representative of its equivalence class. The approach contains symmetry reduction and name reuse and name abstraction as special cases, and exploits the expressiveness of rewriting logic and its realization in Maude to automate c-reductions and to seamlessly integrate model checking and the discharging of correctness proof obligations. The performance of the approach has been validated over a set of representative case studies.
State space c-reductions of concurrent systems in rewriting logic
Vandin A
2012-01-01
Abstract
We present c-reductions, a simple, flexible and very general state space reduction technique that exploits an equivalence relation on states that is a bisimulation. Reduction is achieved by a canonizer function, which maps each state into a not necessarily unique canonical representative of its equivalence class. The approach contains symmetry reduction and name reuse and name abstraction as special cases, and exploits the expressiveness of rewriting logic and its realization in Maude to automate c-reductions and to seamlessly integrate model checking and the discharging of correctness proof obligations. The performance of the approach has been validated over a set of representative case studies.File | Dimensione | Formato | |
---|---|---|---|
cRed.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Licenza non conosciuta
Dimensione
279.63 kB
Formato
Adobe PDF
|
279.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.