Formal languages with semantics based on ordinary differential equations (ODEs) have emerged as a useful tool to reason about large-scale distributed systems. We present differential bisimulation, a behavioral equivalence developed as the ODE counterpart of bisimulations for languages with probabilistic or stochastic semantics. We study it in the context of a Markovian process algebra. Similarly to Markovian bisimulations yielding an aggregated Markov process in the sense of the theory of lumpability, differential bisimulation yields a partition of the ODEs underlying a process algebra term, whereby the sum of the ODE solutions of the same partition block is equal to the solution of a single (lumped) ODE. Differential bisimulation is defined in terms of two symmetries that can be verified only using syntactic checks. This enables the adaptation to a continuous-state semantics of proof techniques and algorithms for finite, discrete-state, labeled transition systems. For instance, we readily obtain a result of compositionality, and provide an efficient partition-refinement algorithm to compute the coarsest ODE aggregation of a model according to differential bisimulation.
Differential bisimulation for a Markovian process algebra
Vandin A
2015-01-01
Abstract
Formal languages with semantics based on ordinary differential equations (ODEs) have emerged as a useful tool to reason about large-scale distributed systems. We present differential bisimulation, a behavioral equivalence developed as the ODE counterpart of bisimulations for languages with probabilistic or stochastic semantics. We study it in the context of a Markovian process algebra. Similarly to Markovian bisimulations yielding an aggregated Markov process in the sense of the theory of lumpability, differential bisimulation yields a partition of the ODEs underlying a process algebra term, whereby the sum of the ODE solutions of the same partition block is equal to the solution of a single (lumped) ODE. Differential bisimulation is defined in terms of two symmetries that can be verified only using syntactic checks. This enables the adaptation to a continuous-state semantics of proof techniques and algorithms for finite, discrete-state, labeled transition systems. For instance, we readily obtain a result of compositionality, and provide an efficient partition-refinement algorithm to compute the coarsest ODE aggregation of a model according to differential bisimulation.File | Dimensione | Formato | |
---|---|---|---|
chp%3A10.1007%2F978-3-662-48057-1_23.pdf
non disponibili
Dimensione
288.71 kB
Formato
Adobe PDF
|
288.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.