We present an algorithm to compute exact aggregations of a class of systems of ordinary differential equations (ODEs). Our approach consists in an extension of Paige and Tarjan’s seminal solution to the coarsest refinement problem by encoding an ODE system into a suitable discrete-state representation. In particular, we consider a simple extension of the syntax of elementary chemical reaction networks because (i) it can express ODEs with derivatives given by polynomials of degree at most two, which are relevant in many applications in natural sciences and engineering; and (ii) we can build on two recently introduced bisimulations, which yield two complementary notions of ODE lumping. Our algorithm computes the largest bisimulations in O(r·s·log s) time, where r is the number of monomials and s is the number of variables in the ODEs. Numerical experiments on real-world models from biochemistry, electrical engineering, and structural mechanics show that our prototype is able to handle ODEs with millions of variables and monomials, providing significant model reductions.
Efficient syntax-Driven lumping of differential equations
Vandin A
2016-01-01
Abstract
We present an algorithm to compute exact aggregations of a class of systems of ordinary differential equations (ODEs). Our approach consists in an extension of Paige and Tarjan’s seminal solution to the coarsest refinement problem by encoding an ODE system into a suitable discrete-state representation. In particular, we consider a simple extension of the syntax of elementary chemical reaction networks because (i) it can express ODEs with derivatives given by polynomials of degree at most two, which are relevant in many applications in natural sciences and engineering; and (ii) we can build on two recently introduced bisimulations, which yield two complementary notions of ODE lumping. Our algorithm computes the largest bisimulations in O(r·s·log s) time, where r is the number of monomials and s is the number of variables in the ODEs. Numerical experiments on real-world models from biochemistry, electrical engineering, and structural mechanics show that our prototype is able to handle ODEs with millions of variables and monomials, providing significant model reductions.File | Dimensione | Formato | |
---|---|---|---|
chp3A10.10072F978-3-662-49674-9_6.pdf
non disponibili
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Licenza non conosciuta
Dimensione
392.01 kB
Formato
Adobe PDF
|
392.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.