Paper mechatronics has been proposed as a concept to fabricate robots with printing methods in our previous studies. Actuators fabricated by printing on a sheet material can be low-cost and lightweight. In this paper, we propose a swinging paper actuator driven by conduction Electrohydrodynamics (EHD). EHD is a phenomenon that generates flow by applying voltage to a dielectric liquid. The EHD flow is generated by the applied voltage in a wiring made by silver ink printed with an inkjet printer. The silver wiring was printed on a sheet of paper, and the paper with the wiring was folded manually to form its structure. We explored the possibility to manufacture EHD actuators by using the printing techniques developed in paper mechatronics. We expected to obtain high performance from the generated actuators due to the light weight of the paper printed structures. Finally, we succeeded in activating the swinging actuator by applying the high voltage to the paper electrode. We applied sine and square inputs, and investigated several characteristics. We found conditions to obtain the largest displacement in our situation. The swinging actuator proves a new concept to incorporate two alluring researches which are printed paper actuator and EHD phenomenon.

Swinging paper actuator driven by conduction electrohydrodynamics

Cacucciolo, Vito;Cianchetti, Matteo;Laschi, Cecilia
2017-01-01

Abstract

Paper mechatronics has been proposed as a concept to fabricate robots with printing methods in our previous studies. Actuators fabricated by printing on a sheet material can be low-cost and lightweight. In this paper, we propose a swinging paper actuator driven by conduction Electrohydrodynamics (EHD). EHD is a phenomenon that generates flow by applying voltage to a dielectric liquid. The EHD flow is generated by the applied voltage in a wiring made by silver ink printed with an inkjet printer. The silver wiring was printed on a sheet of paper, and the paper with the wiring was folded manually to form its structure. We explored the possibility to manufacture EHD actuators by using the printing techniques developed in paper mechatronics. We expected to obtain high performance from the generated actuators due to the light weight of the paper printed structures. Finally, we succeeded in activating the swinging actuator by applying the high voltage to the paper electrode. We applied sine and square inputs, and investigated several characteristics. We found conditions to obtain the largest displacement in our situation. The swinging actuator proves a new concept to incorporate two alluring researches which are printed paper actuator and EHD phenomenon.
2017
978-1-5386-3742-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/523174
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact