Planar devices that can be categorised as having a nanophotonic dimension constitute an increasingly important area of photonics research. Device structures that come under the headings of photonic crystals, photonic wires and metamaterials are all of interest - and devices based on combinations of these conceptual approaches may also play an important role. Planar micro-/nano-photonic devices seem likely to be exploited across a wide spectrum of applications in optoelectronics and photonics. This spectrum includes the domains of display devices, biomedical sensing and sensing more generally, advanced fibre-optical communications systems - and even communications down to the local area network (LAN) level. This article will review both device concepts and the applications possibilities of the various different devices. © 2012 SPIE.
Planar nanophotonic devices and integration technologies
VELHA, PHILIPPE;
2012-01-01
Abstract
Planar devices that can be categorised as having a nanophotonic dimension constitute an increasingly important area of photonics research. Device structures that come under the headings of photonic crystals, photonic wires and metamaterials are all of interest - and devices based on combinations of these conceptual approaches may also play an important role. Planar micro-/nano-photonic devices seem likely to be exploited across a wide spectrum of applications in optoelectronics and photonics. This spectrum includes the domains of display devices, biomedical sensing and sensing more generally, advanced fibre-optical communications systems - and even communications down to the local area network (LAN) level. This article will review both device concepts and the applications possibilities of the various different devices. © 2012 SPIE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.