In minimally invasive surgery (MIS) the aspect of miniaturization is getting more and more demanding. On the other hand, it is also important to assure high stability and large actuation forces at the end effector. Here we present the design and the development of a 1 degree of freedom (DOF) rotational joint, which combines a foldable mechanism and a fluidic actuation system for obtaining force magnification within a slender structure (diameter = 5 mm). The foldable mechanism is composed of identical rigid elements connected each other, which sequentially move away from the joint's axis and ensure an output torque of 0.5 Nm.

A novel fluid driven, foldable joint for minimally invasive surgery

MENCATTELLI, Margherita;TONAZZINI, Alice;MARTINELLI, IRENE;MENCHICCHI, MARCO;STEFANINI, CESARE
2016-01-01

Abstract

In minimally invasive surgery (MIS) the aspect of miniaturization is getting more and more demanding. On the other hand, it is also important to assure high stability and large actuation forces at the end effector. Here we present the design and the development of a 1 degree of freedom (DOF) rotational joint, which combines a foldable mechanism and a fluidic actuation system for obtaining force magnification within a slender structure (diameter = 5 mm). The foldable mechanism is composed of identical rigid elements connected each other, which sequentially move away from the joint's axis and ensure an output torque of 0.5 Nm.
2016
9781509032877
9781509032877
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/511407
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact