Monitoring teams of mobile nodes is becoming crucial in a growing number of activities. Where it is not possible to use fixed references or external measurements, one of the possible solutions involves deriving relative positions from local communication. Well-known techniques such as trilateration and multilateration exist to locate a single node although such methods are not designed to locate entire teams. The technique of Multidimensional Scaling (MDS), however, allow us to find the relative coordinates of entire teams starting from the knowledge of the inter-node distances. However, like every relative-localization technique, it suffers from geometrical ambiguities including rotation, translation, and flip. In this work, we address such ambiguities by exploiting the node velocities to correlate the relative maps at two consecutive instants. In particular, we introduce a new version of MDS, called enhanced Multidimensional Scaling (eMDS), which is able to handle these types of ambiguities. The effectiveness of our localization technique is then validated by a set of simulation experiments and our results are compared against existing approaches.
Solving ambiguities in MDS relative localization
DI FRANCO, CARMELO;MELANI, Alessandra;MARINONI, Mauro
2015-01-01
Abstract
Monitoring teams of mobile nodes is becoming crucial in a growing number of activities. Where it is not possible to use fixed references or external measurements, one of the possible solutions involves deriving relative positions from local communication. Well-known techniques such as trilateration and multilateration exist to locate a single node although such methods are not designed to locate entire teams. The technique of Multidimensional Scaling (MDS), however, allow us to find the relative coordinates of entire teams starting from the knowledge of the inter-node distances. However, like every relative-localization technique, it suffers from geometrical ambiguities including rotation, translation, and flip. In this work, we address such ambiguities by exploiting the node velocities to correlate the relative maps at two consecutive instants. In particular, we introduce a new version of MDS, called enhanced Multidimensional Scaling (eMDS), which is able to handle these types of ambiguities. The effectiveness of our localization technique is then validated by a set of simulation experiments and our results are compared against existing approaches.File | Dimensione | Formato | |
---|---|---|---|
icar15.pdf
non disponibili
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Licenza non conosciuta
Dimensione
429.62 kB
Formato
Adobe PDF
|
429.62 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.