Multi-core platforms are becoming the dominant computing architecture for next generation embedded systems. Nevertheless, designing, programming, and analyzing such systems is not easy and a solid methodology is still missing. In this paper, we propose two powerful abstractions to model the computing power of a parallel machine, which provide a general interface for developing and analyzing real-time applications in isolation, independently of the physical platform. The proposed abstractions can be applied on top of different types of service mechanisms, such as periodic servers, static partitions, and P-fair time partitions. In addition, we developed the schedulability analysis of a set of real-time tasks on top of a parallel machine that is compliant with the proposed abstractions.
The Multy Supply Function Abstraction for Multiprocessors
BINI, Enrico;BUTTAZZO, Giorgio Carlo;BERTOGNA, Marko
2009-01-01
Abstract
Multi-core platforms are becoming the dominant computing architecture for next generation embedded systems. Nevertheless, designing, programming, and analyzing such systems is not easy and a solid methodology is still missing. In this paper, we propose two powerful abstractions to model the computing power of a parallel machine, which provide a general interface for developing and analyzing real-time applications in isolation, independently of the physical platform. The proposed abstractions can be applied on top of different types of service mechanisms, such as periodic servers, static partitions, and P-fair time partitions. In addition, we developed the schedulability analysis of a set of real-time tasks on top of a parallel machine that is compliant with the proposed abstractions.File | Dimensione | Formato | |
---|---|---|---|
officialPaper.pdf
accesso aperto
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Non pubblico
Dimensione
294.31 kB
Formato
Adobe PDF
|
294.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.