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Abstract—Conventional cloud services and infrastructures are
mainly designed to maximize utilization of resources and provide
best-effort Quality-of-Service levels. However, many emerging
use cases in both public and private cloud computing scenarios
are time-critical in nature. For example, automated vehicles,
smart cities, and automated factories, are all application domains
characterized by the need for highly reliable and consistent
low-latency services. The incorporation of predictable execu-
tion properties in cloud solutions is essential to meet these
requirements. This paper provides an overview of the current
research landscape in cloud computing, summarizing the key
aspects to enable support of time-critical applications. The paper
explores various levels of the typical cloud software stack:
machine virtualization and containers, resource management and
orchestration, fault tolerance, serverless computing, data storage
and management, and communications.

Index Terms—Predictable Cloud Computing, Real-Time Vir-
tualization, Resource Management and Orchestration, Real-Time
Cloud Storage, Fault Tolerance, Deterministic Networking

I. INTRODUCTION

Since the initial long-dreamed vision of computing as util-
ity [125], cloud computing has become a disruptive technology
with a steady ever-increasing impact on many sectors and
businesses. The major characterizing aspects of cloud services
is the illusion of infinite computing resources available on
demand, and the ability to deploy horizontally scalable ap-
plications [20, 19]. These features relieve users of the burden
of managing physical infrastructure. More recently [68], it
became clear that cloud users are now facing a prolifera-
tion of virtual resources to be managed. This led to the
widespread adoption of cloud-native applications developed
using Platform-as-a-Service (PaaS) solutions, in addition to
Infrastructure-as-a-Service (IaaS) ones. The latest evolution is
serverless computing [23, 36, 121], where developers focus
solely on writing code, leaving server provisioning and ad-
ministration to the cloud provider.

The relentless growth of cloud computing has been accom-
panied by a steep evolution of networking technologies in
terms of mobility and reliability. These solutions have driven
the novel trend of integrating cyber-physical-systems (CPSs)
and cloud infrastructures to realize the fourth stage of the
industrial revolution [62], a.k.a., “Industry 4.0”. Interconnected
CPSs, often being mobile, Internet-of-Things (IoT) or even
wearable devices, equipped with wireless and low latency
networking capabilities, unlock unprecedented opportunities to
develop intelligent environments: smart cities, smart healthcare

and smart transportation, often enhanced with virtual and aug-
mented reality delivered through live-streaming services [13,
14]. These use cases are all time-critical in nature.

Unlike conventional general-purpose use cases, the correct-
ness of a time-critical system depends not only on the results
of the computation but also on the time at which the results
are produced. Time-critical systems are therefore relevant for
scenarios where the inability to meet the given latency target
(the so-called deadline) would compromise users or critical
system characteristics. What distinguishes these emerging use
cases is the strictness of non-functional requirements, pri-
marily network bandwidth, latency, and reliability. Table I
summarizes the four major time-critical application domains
and their related emerging use cases, as identified in [13, 14,
140]: industrial control, mobility automation and robotics [22],
remote control, and real-time media. For each domain, the use
cases become more latency and timing critical, from top to
bottom in the table, ranging from tens of milliseconds latency
(i.e., low latency) to 1 millisecond (i.e., ultra-low latency).
Reliability requirements can vary from 99% to 99.9999% for
the most critical cases, where failure to comply with time-
critical requirements may lead to catastrophic consequences
(i.e. fatal accident to human personnel, damage to property,
etc.). For example, in the industrial domain, a 5G/6G-enabled
motion control system, which is responsible for moving and/or
rotating parts of machines, requires stringent non-functional
requirements, e.g., latency smaller than 2 ms and reliability
greater than 99.999% [8, 146]. In the railway industry, time-
critical systems controlling train movement and safety demand
an end-to-end (E2E) latency smaller than 500 ms and reliabil-
ity of 99.9999% [21]. Conversely, a cloud gaming service does
not demand such stringent reliability, but it requires substantial
network bandwidth, reaching up to 30 Mbps [14], and latencies
in the 10-30ms range. Additionally, most of the use cases in
remote control and real-time media can adapt their network
bandwidth demand based on transient conditions.

The adoption of cloud technologies for time-critical ser-
vices is hampered by performance uncertainties: general-
purpose cloud-based services are mainly designed to maximize
throughput and utilization of shared resources, negatively
affecting predictability at run-time and resulting in best-effort
Quality-of-Service (QoS) levels [48]. Predictability is essential
to meet the requirements of the use cases mentioned above,
so the ability for cloud platforms to meet stringent real-
time and availability requirements is becoming increasingly
important. This need has pushed computation and storage from
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TABLE I
TIME-CRITICAL USE CASE REQUIREMENTS [13].

Domain Use cases Bw.Lat.Rel.Adp.

Industrial
control

Process monitoring L L H N
Control to control in production line L L H N
Programmable Logic Controller for robots L L H N
Smart grid control L L H N
Machine vision for robotics H L H N
Closed-loop process control L UL H N
Motion control L UL H N

Mobility
automation

Automated container transport in port L L H N
Machine vision for intersection safety H L H N
Cooperative maneuvering of vehicles L L H N
Collaborative mobile robots L UL H N
Motion control of autonomous vehicles L UL H N

Remote
control

Remote control with video/audio H L O Y
Remote control with AR overlay H UL O Y
Remote control with haptic feedback H UL O Y

Real-time
media

Cloud-assisted basic AR M L O Y
Premium-experience cloud-assisted AR M L O Y
Cloud gaming H L O Y
Interactive VR cloud gaming H L O Y
Cloud-rendered AR H UL O Y
Media production H UL O N

Acronyms: Virtual Reality (VR), Augmented Reality (AR); Network
Bandwidth (Bw.), Latency (Lat.), Reliability (Rel.), Adaptive (Adp.);
Ultra-Low (UL), Low (L), Medium (M), High (H), Optional (O).

centralized data centers towards the “edge” of the network.
Edge computing is a distributed computing paradigm that
brings computation and data storage closer to the source
of the data [122, 120]. Since logical network proximity is
entirely characterized by low latency and low jitter, edge
computing reduces communication delays as well as the size
of payloads transferred between the Internet and public/private
data centers.

Combining cloud computing and time-critical systems is
a complex problem that requires tackling not only network-
related challenges but also those related to efficient (and
predictable) access to the physical platform, as well as resource
management techniques that consider time-criticality [58].
Considering what has been discussed so far, we state that a
truly time-critical cloud platform requires the employment of
highly reliable and latency-predictable networking, computing,
and storage technologies, coupled with time-aware, fault-
tolerant resource management mechanisms. Until all these
requirements are jointly met, no cloud provider will be able
to take responsibility for establishing a proper Service Level
Agreement (SLA) for stable and predictable levels of service.

This article provides a survey of the research literature on
cloud solutions enabling deployment of time-critical use cases
and intends to answer the following questions:
1) What are the current challenges associated with using cloud

technologies for time-critical applications?
2) What cloud solutions include mechanisms for high relia-

bility and time-predictability?
Contrary to most previous surveys [79, 58, 66, 47, 130, 9,

116], we answer these questions by investigating the entire
cloud architecture software stack. We perform a broad review
of papers, utilizing a breadth-first approach to cover several

Fig. 1. Cloud computing architecture with colors representing the taxonomy
used in this survey: Compute (green), Orchestration (orange), Storage (blue),
and Communication (red).

aspects and challenges intrinsic to cloud systems, that are
critical to support time-predictable services. Figure 1 presents
a typical cloud computing architecture in which the physical
components are represented at the bottom of the figure. As we
go from the bottom to the top, we increase the abstraction level
all the way up to the applications. The management activities,
responsible for the coordination among the cloud resources,
are represented by the vertical box on the right. In this paper,
we cover all technical aspects presented in Figure 1, and the
colors used in this figure represent the way we divided the
topics in this survey: Compute (green), Orchestration (orange),
Storage (blue) and Communication (red).

The rest of this paper is organized as follows: Section II
describes the evolution of machine virtualization techniques,
showing how their performance and support for time-critical
applications improved over time. In Section III, we present
orchestration techniques in cloud infrastructures. We cover
topics from resource management to fault tolerance and server-
less computing. Section IV presents an overview of storage
technologies with latency control capabilities and performance
guarantees for time-critical applications. Section V is dedi-
cated to time-critical communication techniques. The end of
each section includes a discussion on the surveyed state-of-
art and challenges in achieving time-predictability. Finally,
Section VI draws conclusions on the current development state
of a holistic cloud-based system for time-critical applications.

II. COMPUTE

This section discusses key challenges and proposed solu-
tions for virtualization of the execution environment when
executing time-critical applications. General-purpose machine
virtualization mainly focuses on spatial protection and isola-
tion (for example, the memory or files used by an application
should not be accessible by others). However, for time-critical
applications, we need also temporal isolation, i.e., the ability



3

of an application to respect its temporal constraints should
not depend on the other applications that do not interact
with it. To do this, a virtualization system has to employ
appropriate scheduling and resource allocation to provide low
and predictable latency [6]. These requirements are discussed
with a focus on hypervisor-based Virtual Machines (VMs),
containers, and unikernels, in the next sections. The main char-
acteristics of the various papers are summarized in Table II.

A. Virtual Machines

Traditional hypervisors can provide a limited form of tem-
poral isolation among hosted execution environments with
their ability to partition the available physical resources, e.g.,
via core pinning and no over-subscription of CPU, memory
and storage. Strong temporal isolation with a finer-grained
allocation of resources is achievable only by using specialized
solutions that combine real-time (RT) kernels and hypervisors,
appropriate resource scheduling, and cache partitioning tech-
niques, like cache coloring [88] or Intel’s Cache Allocation
Technology1. However, these are used mostly in safety-critical
RT embedded systems [58]. For other domains, a few solutions
approximate the concept enriching general-purpose OSes and
hypervisors with various mechanisms.

For example, when using KVM on Linux with more VMs
sharing the same physical core(s), the bandwidth control2

mechanism allows for controlling the maximum fraction of
CPU time consumed by the virtual CPUs (vCPUs) of each
VMs, but there is no guarantee on the minimum fraction
of received CPU time, or on the timing of the allocation.
As a result, this mechanism cannot guarantee the respect
of tight temporal constraints for the virtualized applications.
In [83], the Xen credit (proportional-share) scheduler has been
improved for soft RT workloads, and used for reducing the
response times of a SIP server, albeit it is unable to provide
formal temporal guarantees. In RT-Xen [153], a theoretical-
founded RT scheduler has been added to Xen, allowing to
perform a formal schedulability analysis of the guests’ RT
tasks based on the Compositional Scheduling Framework
(CSF) [123, 124]. This algorithm, based on the Earliest
Deadline First (EDF) and deferrable server algorithms, is now
integrated into the mainline Xen under the name of Real-Time-
Deferrable-Scheduler (RTDS). It has also been integrated in
OpenStack (see Section III-A). This is a step forward to
support RT applications, but a mechanism to dimension the
scheduling parameters is still missing [44].

RT scheduling of a VM vCPUs can be used also with type
II hypervisors such as Kernel Virtual Machine (KVM), using
a RT scheduler in the host kernel. For example, the IRMOS
RT scheduler [46] implements the Constant Bandwidth Server
(CBS) algorithm [3], based on EDF, for groups of threads. A
related old line of works include real-time service-oriented ar-
chitectures, for example as realized in the RI-MACS [42] and
Llama [109] projects, where similar RT CPU schedulers were
used to serve distributed workloads in a factory automation

1https://www.intel.com/content/www/us/en/developer/articles/technical/
introduction-to-cache-allocation-technology.html

2https://docs.kernel.org/scheduler/sched-bwc.html

context. However, most of these older works belong to the
pre-Cloud era, so they were not considering several Cloud-
specific aspects, like virtualization, containers, orchestration,
load-balancing, or even multi-processor architectures.

As of today, the CBS algorithm is available in the mainline
Linux kernel as the new SCHED_DEADLINE RT scheduling
policy3. This allows for using hierarchical RT scheduling for
the KVM vCPU threads without patching the host kernel [2].

Besides RT CPU schedulers for VMs, other mechanisms to
provide low latency have also been investigated. In [4], the
latency introduced by Xen and KVM is evaluated, showing
that KVM can provide RT performance comparable with the
one experienced by Real-Time Operating Systems (RTOSs)
running on bare metal, while Xen needs some fixes [5]. Some
other hypervisors, such as ACRN [85] and Jailhouse [117],
have been developed from scratch focusing on latency re-
duction. In many cases, this goal is achieved by dedicating
one entire physical CPU core to each vCPU, avoiding any
kind of scheduling. This approach is also used by separation
kernels [148] or partitioning hypervisors which are commonly
used in embedded systems (see for example Bao [94], Xtra-
tum [41], or the SEL4 microkernel [74]). However, these
hypervisors are mostly used in embedded hard real-time use
cases or simple edge real-time computing scenarios [108].
They support a limited number of hardware architectures typi-
cally employeed in specific application domains, like automo-
tive, for which the software stack often needs to be developed
according to expensive certification processes. Overall, these
are more focused on hosting simple RT controllers, rather than
supporting a full-featured Linux OS, for example, thus they’re
not usable in general cloud computing infrastructures.

Some works aim at improving the start-up time of VMs
for elastic and serverless workloads. For example, the Fire-
Cracker [10] “micro-VM” is a hypervisor still based on the
KVM kernel module but dropping its dependency on Quick
EMUlator (QEMU). This results in limited features compared
to traditional Virtual Machine Monitors (VMMs), but the
solution is ideal for services such as AWS Lambda that need
to start many containers/VMs in a short time, even with some
loss in disk throughput and I/O latency [10].

B. Containers

Containers can provide better performance than VMs, with
the ability to even reach bare-metal levels, but are traditionally
considered less secure, due to the need for sharing the host
machine kernel. They also suffer of a weaker form of isolation:
for example, in [87], the lack of I/O performance isolation
on disk access for docker containers is highlighted, and an
optimization of the I/O concurrency level is proposed to
control the performance of each container.

Similarly to what stated above on VMs, containers allow for
a very limited form of temporal isolation by employing parti-
tioning of the physical resources, and limited CPU scheduling
abilities. The latter are usually provided through the bandwidth
control mechanism mentioned above, supported by most of
the current container managers [150]. For example, tuning

3https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt.

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://docs.kernel.org/scheduler/sched-bwc.html
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
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TABLE II
SUMMARY OF THE KEY CHARACTERISTICS OF THE REVIEWED PAPERS IN THE “COMPUTE” DOMAIN.

Paper(s) Virtualization Mech. Main Contributions Timing Properties & Guarantees Benchmarks

[109] - RT Scheduling of SOA and Java tasks, no SMP Temporal Isolation w/CBS Synth, Real
[42] - RT Scheduling of web services, no SMP Temporal Isolation w/CBS Synth

[88] L4 µ−kernel Cache Coloring Temporal Isolation Synth
[83] Xen Modified Credit Scheduler Reduced Latency Synth
[153] Xen Multiple fixed-priority schedulers Schedulability Guarantees w/CSF Synth
[67] KVM/HVM, Docker Experimental Comparison - Synth
[46] KVM RT Scheduling of VMs Temporal Isolation w/CBS Synth
[2] KVM SCHED DEADL. on KVM vCPUs Temporal Isolation w/HCBS, Analysis w/CSF Synth
[4, 5] KVM, Xen Experimental comparison Reduced latency Synth
[10] Firecracker KVM w/o QEmu Reduced latency and boot time Synth, Real
[87] Docker Perf. Isolation for containerized storage services Reduced Latency, Increased Throughput Synth
[150] Docker Flexible Deferrable Server CPU Reclaiming for Non-RT Synth
[1, 43] LXC, OpenStack Hierarchical RT Scheduling Temporal Isolation w/CSF Synth
[93] Docker, K8S RANs RT Cloud with PREEMPT RT and DPDK Reduced Latency Real
[37] Docker FP Scheduling w/RTAI Reduced Latency, No temporal Isolation -
[39, 38] Docker FP/EDF Scheduling w/RTAI Temporal Isolation Synth
[136] Xenomai, Docker Xenomai w/PREEMPT RT Linux containers Reduced Latency Synth
[24] Xenomai RT scheduling of containers with RT networking Temporal Isolation w/co-kernel Synth
[78] Unikernels UKs for NFV Better Latency/Throughput Synth
[98] Unikernels UKs for Serverless Comp. Reduced Latency Synth
[34] Unikernels Deferrable Server for UKs Timing Guarantees via CSF Synth

Acronyms: Real-Time (RT), Radio Access Network (RAN), Network Function Virtualization (NFV), Fixed Priority (FP), Earliest Deadline First (EDF),
Constant Bandwidth Server (CBS), Kubernetes (K8S), Symmetric multiprocessing (SMP), Unikernels (UKs), Synthetic/Realistic workload (Synth/Real).

the Linux CPU scheduler for improving the responsiveness of
real-time packet processing in Cloud-RAN scenarios has been
proposed in [106]. However, to provide real-time guarantees
to applications, a formal schedulability analysis is needed,
like the CSF [123, 124] mentioned in Section II-A. Indeed,
implementations of CSF have been realized not only for
hypervisors [153, 2], but also for containers. For example,
the Hierarchical CBS (HCBS) has been proposed in [1], an
extension of the SCHED_DEADLINE CPU scheduler in the
Linux kernel. HCBS allows to attach groups of tasks to a
multi-processor CBS, where individual tasks are scheduled
using the standard priority-based RT scheduler within the
time-slices allocated to the group. These techniques can also
be used to provide guarantees to complex applications, with
interacting tasks and more flexible performance guarantees
based on probabilistic analysis [43].

Other works investigated how to reduce the latency of
containerized applications (see [130] for a survey). This can
be done by using a preemptible host kernel or by using a
co-kernel approach. The authors in [93] evaluate the latency
introduced by Docker containers with various kinds of kernel
(standard, low latency and fully preemptible — Preempt-RT),
showing the advantages of using Preempt-RT and DPDK for
low-latency networking. In RT-CASES [37], the RTAI co-
kernel was used to provide containers with low scheduling
latency. However, the first proposed mechanism supported only
fixed-priority scheduling, so there was no temporal protection
among RT threads. The approach was extended in [39], adding
a monitoring component to cope with RT threads trying
to overrun their known WCET, still using the fixed-priority
scheduler available in RTAI. However, monitoring was based
on a sampling approach, which implies either low precision
or high overheads, with authors suggesting dedicating a CPU
just for the monitoring thread. Finally, EDF scheduling with

hard CBS was added in [38], modifying the RTAI scheduler.
Another work proposing a co-kernel can be found in [136],

where low latency in containers is achieved by combining
Xenomai and Linux with a Preempt-RT kernel. In [67],
Preempt-RT, Xenomai and some instances of the AWS EC2
cloud using the HVM hypervisor are compared in terms of
latency measured with cyclictest. Authors claim that some
HVM-based instances can be suitable for migrating time-
critical industrial control applications from bare metal to IaaS
services, using a Preempt-RT Linux kernel, but they neglect
the implied impact of network delays in their evaluation.
Another interesting work can be found in [24], where Xenomai
is extended with a hierarchical reservation-based CPU sched-
uler, called SCHED DS, to obtain real-time scheduling of
containers. Basically, thread groups from different containers
are scheduled using a deferrable server algorithm, then within
each container threads are scheduled by priority. The solution
relies on the Xenomai RTnet [73] module to add also TDMA-
based real-time networking guarantees on Ethernet networks.

C. Unikernels

VMs are often preferred to containers thanks to their im-
proved isolation. However, they bring higher overheads due
to the higher complexity of the overall software stack on
the node, resulting in higher latency/execution times, boot
times, and memory footprint. Unikernels aim to mitigate these
drawbacks, reducing the complexity of a VM software stack.
Indeed, a unikernel is a library Operating System (OS) directly
linked with the target application, and deployed in a VM;
see [35] for a survey with detailed information on unikernels
and containerization solutions for edge computing.

Various papers investigated on performance improvements
and overhead reductions for unikernels. In [78], unikernels are
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proposed to get the performance of containers with the secu-
rity of VMs, with experiments performed with IncludeOS1.
In [98], a serverless platform is proposed based on unikernels
(SOLO5), comparing the achieved performance with the one
of Apache OpenWhisk2, based on Docker containers.

Some studies [95] show that unikernels can even provide
lower latency than Docker-based containers in some situations.
However, these performance improvements depend on the
unikernel used for the experiments: a performance compar-
ison [28] carried out using the rumprun3 unikernel shows a
decrease in memory and CPU usage compared to KVM, but
also increased latency and lower throughput.

Finally, the work in [96] presents a more systematic bench-
marking of the various technologies that can implement a
container (hypervisors, kernel virtualization, micro-VMs, in-
tercepting system calls, unikernels, ...) showing that the com-
bination of micro-VMs and unikernels allows to greatly reduce
the overhead introduced by hypervisor-based virtualization.

Unfortunately, most of the research on unikernels did not
consider the requirements of time-critical applications. The
only notable exception is the work presented in [34], which
shows how unikernels allow for better timing guarantees for
single-threaded applications, using an optimized version of the
traditional CSF analysis, which is anyway quite pessimistic.

D. Discussion

Summing up, in the compute area, there has been significant
academic research on virtualization techniques to provide real-
time CPU scheduling. Some of these works produced mecha-
nisms that have been integrated into mainline OS kernels and
hypervisors. As a result, two of the most commonly used open-
source hypervisors (KVM and Xen) are suitable for being used
in time-critical use cases, providing isolation, low latency, and
predictable real-time CPU scheduling. On the other hand, these
features are available for containerized time-critical workloads
only applying out-of-tree patches. Various works focused on
the advantages of using unikernels, in terms of boot-time re-
duction for example. However, this technology does not seem
mature enough to be used in production environments and
the impact of unikernels on time-critical applications has not
been fully evaluated. There are also numerous other operating
system and hypervisor solutions in the embedded and real-time
systems domain, addressing real-time CPU scheduling, includ-
ing also commercial products such as VxWorks4, Helix5, Erika
Enterprise6, PikeOS7 or others, mostly providing certified
solutions for specific application domains, but often lacking
portability on general-purpose commodity hardware, as needed
in cloud computing. Even though the basic technologies to
provide predictable real-time CPU scheduling already exist,
there is no mechanism to properly dimension the scheduling
parameters based on the application requirements. In addition,

1More information is available at: https://www.includeos.org/.
2More information is available at: https://openwhisk.apache.org/.
3For more information, see: https://github.com/rumpkernel/rumprun.
4More information at: https://www.windriver.com/products/vxworks.
5More information at: https://www.windriver.com/products/helix.
6More information at: https://www.erika-enterprise.com/.
7More information at: https://www.sysgo.com/pikeos.

CPU scheduling has not been integrated with other resources
such as network and storage in order to support time-critical
applications that are not purely CPU-intensive.

III. ORCHESTRATION

Performance-aware cloud orchestration has been studied
at large, encompassing several challenges related to time-
criticality, like: efficient resource scheduling and allocation
with isolation among virtualized tasks; fault tolerance; opti-
mized serverless architectures; and, RT data streaming. For in-
stance, the Kubernetes scheduler has been enhanced by lever-
aging system-level metrics [145] to reduce interference, or
using spare backups and ping-based latency-awareness [142]
for reliability and low-latency. However, for time-critical
workloads, we need proper mechanisms ensuring the end-to-
end latency is not disrupted by transient problems nor faults.
Moreover, most of the papers in this area consider tasks with
relatively long deadlines, as found in big-data or scientific
workloads, but some papers covering low latency in the
micro/milli-second range exist as well. Table III summarizes
key aspects of the works on orchestration discussed below.

A. Task Resource Scheduling & Admission

To provide stable performance, cloud services use exten-
sively load balancers to spread the load across a pool of in-
stances, and horizontal elasticity to scale the pool so to match
target performance levels. A number of works exist [97, 31]
surveying key approaches to load-balancing and elasticity in
cloud computing. However, most of the elasticity approaches
are merely reactive, i.e., they correct the system behavior once
it deviates from the desired state, meaning that they do not
include effective mechanisms for temporal isolation.

RT workloads may be hosted in existing cloud management
solutions by leveraging on resource partitioning to obtain
similar performance as with a dedicated physical machine
(as supported by AWS or GCP bare-metal instances, or the
Ironic8 service in OpenStack, for example). This gets rid of
temporal interferences among instances, but it also cancels
several advantages in adopting cloud infrastructures. When
switching to regular instances that share physical servers,
many instance types offered by cloud providers offer a 1:1
mapping between virtual cores with physical ones. This is also
supported in OpenStack9, which also allows to configure a
pre-emptable real-time kernel, tune the Dynamic Voltage and
Frequency Scaling (DVFS) and disable deep idle states on
the host to reduce response latencies. However, none of these
solutions support the use of RT scheduling policies (i.e., CBS)
to ensure proper temporal isolation among virtual cores when
sharing physical cores.

To overcome these limitations, the IRMOS project [46] pro-
posed a cloud management solution for interactive real-time
and multimedia distributed applications. It included the Intelli-
gent Service-Oriented Networking Infrastructure (ISONI) [45],
enabling deployment of complex distributed real-time software

8More information at: https://ironicbaremetal.org
9See: https://docs.openstack.org/nova/wallaby/admin/real-time.html

https://www.includeos.org/
https://openwhisk.apache.org/
https://github.com/rumpkernel/rumprun
https://www.windriver.com/products/vxworks
https://www.windriver.com/products/helix
https://www.erika-enterprise.com/
https://www.sysgo.com/pikeos
https://ironicbaremetal.org
https://docs.openstack.org/nova/wallaby/admin/real-time.html
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TABLE III
SUMMARY OF THE KEY CHARACTERISTICS OF THE REVIEWED PAPERS IN THE “ORCHESTRATION” DOMAIN.

Domain Papers Main Contribution Timing Property & Guarantees Benchmark

Resource
Schedul-
ing &
Admission

[43] Control the interferences of co-located real-time services Temporal isolation Synth, Real
[152] Co-hosting of RT and non-RT VMs on OpenStack Schedulability experimental evaluation Synth
[54, 129, 128] RT scheduling on K8S Temporal isolation w/HCBS Synth
[91] RT scheduling on K8S + ROS Temporal isolation w/SCHED DEADLINE Synth, Real
[25] Criticality-aware scheduling in K8S Temporal isolation Synth
[51] Time-slice control scheme for VMs Reduced exec. time Real
[33] Energy-efficient RT scheduling in Cloud High deadline guarantee ratio Synth, Real
[65] Response time analysis for aperiodic time-critical services - Synth, Real

Fault
Tolerance

[75] Low latency extension of Raft Reduced tail latency Synth, Real
[59] High-performance consensus protocol Reduced latency Synth, Real
[11] RDMA-based consensus protocol Reduced repl. latency Synth

Serverless
[103] SLO-aware OpenFaaS extension Function invocation rate guarantees Synth
[135, 134] partitioned-EDF scheduling for RT functions Schedulability experimental evaluation Synth

Real-time
Stream
Processing

[100] Timely dataflow system Reduced latency, increased throughput Synth, Real
[56] Congestion-aware scheduler in Apache Storm Reduced latency, increased throughput Real
[156] Locality-aware resource allocation, co-flow scheduling Reduced latency, increased throughput Real
[102] RT Apache Storm Temporal Isolation Real

Acronyms: Real-Time Virtual Machine (RT VM), Best-Effort Virtual Machine (non-RT VM), Synthetic workload (Synth), Realistic workload (Real), Kubernetes
(K8S), Remote Direct Memory Access (RDMA).

components in the form of Virtual Service Networks (VSNs),
i.e., Directed Acyclic Graphs (DAGs) of VMs, with attached
precise end-to-end temporal constraints, expressed in either
deterministic or probabilistic terms. These constraints could
be respected thanks to the use of the above mentioned IRMOS
real-time CPU scheduler based on the CBS, standard packet
schedulers supporting QoS guarantees, and proper storage
management, as well as optimal VM placement [76].

More recently [43], a modified Nova component in Open-
Stack has been proposed: on the compute side, time-critical
VMs are deployed by setting the required RT scheduling
parameters on the underlying HCBS RT scheduler; on the
controller side, it embeds a placement logic that is aware
of the RT computational bandwidth allocated to each time-
critical instance. The solution is validated through extensive
experimentation, where multiple co-located benchmarks from
the domains of Network Functions Virtualization (NFV) and
IP Multimedia Subsystem (IMS) are deployed in a real test
bed. The results show that the proposed mechanism ensures
temporal isolation of individual containerized activities. Simi-
larly, RT-OpenStack [152] is a modified version of OpenStack
for co-hosting time-critical and regular VMs, by: (1) integra-
tion of the RT-Xen hypervisor within OpenStack through a RT
resource interface; (2) a RT VM scheduler to enable regular
VMs to share hosts with RT VMs without temporal inter-
ference; and (3) a VM-to-host mapping strategy to provision
RT performance to RT VMs while allowing effective resource
sharing with regular VMs. In practice, RT-OpenStack performs
RT admission control in the OpenStack compute scheduler.
Then, RT VMs are scheduled using global EDF.

Kubernetes has also been modified with real-time schedul-
ing features, to host time-critical containers. RT-Kube [91]
integrates Kubernetes directly with the SCHED DEADLINE
scheduler available in the mainline Linux kernel to sup-
port scheduling of RT ROS tasks and management of the
CPU bandwidth. The authors provide experimental results

based on synthetic benchmarks, and a real robot control
use-case in a pick-and-place scenario. However, the pro-
posal relies merely on the default configuration using Global
EDF and an admission test which is only necessary, not
sufficient to guarantee schedulability of RT tasks on multi-
processors. Moreover, the paper does not discuss real-time
networking, nor how they reconciled SCHED DEADLINE,
which deal with single-threaded processes only, and the typ-
ically multi-threaded architecture of ROS applications. RT-
Kubernetes [54] addresses this issue by using the HCBS
extension to SCHED DEADLINE, which allows setting a
different runtime on each core/CPU to avoid resource waste
on many-core hosts. This contribution is also coupled with an
admission test for finding proper nodes according to the avail-
able real-time CPU bandwidth. A quite similar approach can
be found in [129, 128], which is also based on the same HCBS
real-time scheduler. Compared to RT-Kubernetes, the authors
implemented a feedback loop that continuously monitor the
resource usage and QoS experienced by the containerized
workload through a set of metrics (e.g., deadline misses,
lateness, response time), so to consider this information in
future scheduling decisions. Another paper exploring similar
aspects with real-time task group scheduling can be found
in [25]: the main differences lie in details of the admission
test, placement strategy, and monitoring mechanisms.

Adaptive Time-slice Control (ATC) [51] is a solution to
detect communication and computation phases in applications
based on lock latency and cache misses. This information
is used to shorten time-slices during communication phases
and prolong them during computation phases. The authors
focus on multithreaded and distributed applications including
multiple interacting VMs. The method chooses longer time
slices during compute phases to keep the cache filled. The
evaluation is done for applications with clear communication
and compute phases like distributed compilation.

In [33], Proactive and Reactive Scheduling (PRS) is pro-
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posed for VMs with uncertain execution times and aperiodic
real-time tasks, considering energy efficiency i.e., minimizing
the active hosts while guaranteeing timing requirements. The
scheduler is based on the task laxity, accounting for both
the task durations and deadlines. In [65], cloud services with
probabilistic latency guarantees are presented, with a stochas-
tic response time analysis for aperiodic services following a
Poisson arrival process on computing platforms that schedule
time-critical services as deferrable servers.

B. Fault Tolerance

We can find both proactive and reactive approaches to fault
tolerance in cloud computing [66, 72]. Among the former
ones, there are preemptive migration and rejuvenation, which
reduce the likelihood of a fault occurring by moving the task
away from the potentially faulty system in advance, or by
making sure to repair the system before the fault occurs.
Among the reactive methods, checkpointing and replication
are common, which enable the possibility to replay tasks at
another instance after a fault occurred. For real-time cloud
applications, most of the reactive approaches are based on
replication due to the relatively low latency recovery time.
On the other hand, checkpointing requires at least a couple
of seconds in downtime during state snapshot for common
containerized application state sizes. Moreover, the cloud man-
agement and orchestrator itself may have a variety of failures,
as highlighted in [27], where a Kubernetes fault injection
framework is proposed, based on several reported observations
from real deployments. The same authors provided also an
interesting analysis [26] of the time needed to handle and
repair detected faulty pods in Kubernetes. However, only a few
papers deal with fault tolerance for cloud services with latency
requirements in the millisecond range. This is interesting for
some of the more demanding use cases like tight automation
control systems. These are commonly handled today by dedi-
cated embedded hardware, but they are expected to see much
increased compute requirements, so that offloading to a cloud
system will be beneficial [126, 157].

Both scalability and fault-tolerance can be handled with
the same design principle of replication. However, for elastic
services, too many replicas improve fault-tolerance at the
cost of hurting the performance. This is due to the fact that
consensus overhead grows with the number of nodes. In [75],
it is explored if adding nodes can both increase performance
and fault tolerance for stateful data-center applications that re-
quire fault-tolerance, low latency, and scalability. They present
HovercRaft, a load balanced Remote Procedure Call (RPC)
protocol extended with a Raft derivative that separates the
ordering and replication of requests. The replies are sent from
any of the replicas, reducing the work for the leader replica
and increasing scalability. The load balancing policies reduce
the tail latency but provide no deadline guarantees.

Another interesting work can be found in [114], where a
strategy is presented to reduce latency variations when using
load balancing and request redundancy, i.e., hedging. Mea-
surements of microsecond-level variations in request latency
show that excessive redundancy may lead to congestion and

increased latency variations, whilst redundancy permits using
the earliest response, achieving a more consistent latency.

Nezha [59] is a high-performance and deployable consensus
protocol that exploits accurate software clock synchronization.
It does not require special hardware or physical network
access, making it easily deployable in virtualized environ-
ments. Instead, it uses a new primitive to send requests to
several replicas by multicast which orders client-to-replica
requests by deadlines. The deadlines are specified in the
synchronized wall clock time. Performance is evaluated for
two applications, Redis and a prototype financial exchange
CloudEx, which show fault tolerance is achieved with only a
modest performance degradation.

Another low latency fault tolerant replication scheme using
leader consensus is based on Remote Direct Memory Access
(RDMA) [11], introducing a new state machine replication
(SMR) protocol, called Mu, that carefully leverages RDMA to
lower the fault detection time. Mu uses a conceptually different
method based on a pull-score mechanism over RDMA. The
leader increments a heartbeat counter in its local memory,
while other replicas use RDMA to periodically read such
counter. A badness score is calculated based on the number of
successive reads that have returned the same value. Replicas
declare a failure if the score is above a badness threshold, cor-
responding to causing a timeout. Unlike traditional heartbeat
signals, this method can use an aggressively small timeout
without false positives because network delays slow down the
reads rather than the heartbeats. This way, Mu detects failures
usually within 600 microseconds. When a failure occurs, this
scheme is shown to take less than a millisecond to recover,
whereas HovercRaft takes 10 milliseconds [75].

Fault detection is a related research field dealing with ob-
servability challenges both at the infrastructure and application
levels. In time-critical services, faults manifest not only as
conventional infrastructural problems (i.e., network issues or
hardware failures) but also as deadline misses. However, only
a few works deal with low latency fault detection for real-
time cloud systems. For example, in [7, 17, 16], a low-
latency detection system is proposed, alongside a performance
model that makes use of timely fault detection to evaluate the
feasibility of time-constrained, cloud-native applications.

C. Serverless Computing
The serverless paradigm provides event-driven services that

relieve developers from the burden of server provisioning
and network infrastructure management. In Function-as-a-
Service (FaaS), developers deploy functions i.e., isolated and
stateless components processing inputs to obtain outputs, using
containers in a cloud environment (e.g., a Kubernetes cluster).
These are created, scaled and shut down on-demand, according
to the instantaneous workload. This structure is very useful in
event-driven non-critical IoT but tends to exhibit large latency
and jitter. One of the issues with FaaS is the “cold” start-
up time, incurred when an instance is not available yet, on a
function invocation. Another criticality is due to the fact that
often applications offload several parts of their computations to
a chain of function invocations. To create stateful applications,
cloud storage services are also needed.
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Existing serverless platforms do not support real-time ap-
plications in the deterministic sense. An extension to Open-
FaaS has been proposed [103] for Service Level Objective
(SLO) guarantees in terms of functions’ invocation rate. More
specifically, an admission controller accepts the deployment
of functions based on the system state and requested invoca-
tion rate guarantees, and a predictive manager provisions the
underlying containers accordingly.

RT-FaaS has been proposed [135, 134] for services that can
execute a mix of real-time and non real-time functions, pro-
viding the former with response time guarantees. A heuristic
spatial allocator is used to minimize the processors allocated to
RT tasks. The framework assumes real-time communications
ensuring known timing of data transfers in remote service in-
vocations, and knowledge of the worst-case processing times.
On the hosts that execute the functions, a per-function EDF
scheduler is used to queue and serve the requests.

D. Real-time Stream Processing

Many time-critical applications require low latency interac-
tive access to results of data stream processing pipelines, such
as real-time analytics of data coming from IoT or wearable
devices. In this context, the potential value of the extracted
information rapidly decreases over time, hence the need for
stream processing platforms designed for high responsiveness.
One of the first works in this context is Naiad [100], a general-
purpose low-level programming abstraction for executing dis-
tributed data-parallel, cyclic dataflow programs with mixed
high throughput and low latency requirements. It implements
a novel computational model which enriches dataflow compu-
tations with logical timestamps to track the global progress of
the computation, together with an efficient notification-based
coordination protocol that allows for several communication
policies, such as prioritizing the delivery of notifications with
the earliest timestamp to reduce end-to-end latency.

Most of the existing processing frameworks have been
designed under the assumption of an abundance of memory
and powerful computing resources, resulting in inefficient
resource usage and unpredictable I/O costs. In the context of
time-criticality for stream processing engines, this is tackled by
focusing on resource-constrained edge computing scenarios,
and on the idea of processing data streams “close to the data
source”. EdgeWise [56] modifies Apache Storm1 to improve
both throughput and latency on Edge-based Storm deploy-
ments. It introduces a fixed-size worker pool execution model,
replacing the one-worker per-operation architecture of Storm,
and a congestion-aware user-level scheduler that ensures I/O
queue lengths do not exceed available memory by assigning
a ready thread to the operation with the most pending data.
Both changes reduce the intrinsic non deterministic nature
of general-purpose OS scheduling, making stream processing
more amenable for memory-constrained edge environments.
Amnis [156] is a novel stream query processing engine
that extends Apache Storm to tackle the challenges in edge
computing scenarios. Amnis optimizes the throughput and
end-to-end latency of data streams by: employing a data

1https://storm.apache.org/

locality-aware resource allocator for query operators; adopting
a load-aware scheduler that considers the dynamically varying
load conditions and resource requirements of each operator;
and considering the dependency between data flows to be
transferred through the network so that the volume of data
can be controlled with a rate limiter. Finally, Storm-RTS [102]
replaces the default worker-based execution model of Apache
Storm with a rate-based abstract machine, building a stream
processing workflow as a chain of rate-guaranteed function
invocations. This allows for flexible resource reconfigurations
achieving predictable performance.

E. Discussion

In the orchestration research area, we noticed a great focus
on best-effort cloud services or long duration workloads,
where the goal is to ensure that the majority of users receive
a satisfactory service. For example, it is probabilistically
harmless to have temporal service disruptions due to a noisy
neighbourhood problem, or during a scale-out operation or the
replacement of a faulty instance. However, this is in contrast
with the traditional real-time deterministic view of per-request
latency guarantees, as needed by time-critical applications.
Many researchers dealt with the potential of horizontal elastic-
ity, with a shortage of efforts in enriching cloud management
solutions with key features, such as: integration with strong
temporal isolation features among instances sharing physical
resources, as found at the hypervisor or OS levels in compute
nodes (see Section II), with a fine per-request granularity con-
trol on the end-to-end latency, and low latency fault detection
and recovery. Fault tolerance is a standard concept in cloud and
distributed computing, but it is mainly implemented without
worst-case latency guarantees. Only a few approaches tried
to integrate cloud technologies with worst-case guarantees
despite faults, as needed by time-critical applications. This
confirms the need for further investigations in this direction.

IV. STORAGE

Modern cloud-native data-driven applications with time-
critical requirements, such as multimedia streaming and cloud
gaming platforms, need specialized storage services with la-
tency control capabilities and performance guarantees. To this
end, cloud providers must employ optimized software stacks
for local storage nodes, as well as ad hoc database architec-
tures equipped with specialized task and resource schedulers.
Most of the literature does not employ solid real-time methods,
focusing instead on adaptive latency control mechanisms for
the latency-sensitive use case. In the following, the existing
literature is summarized, with a focus on: i) local storage
optimizations that employ low-level mechanisms to control
latency, such as cutting-edge storage drives and filesystems
optimized for virtualized environments; and, ii) the goals and
challenges of traditional real-time databases, presenting the
current solutions for the control and/or reduction of latency.
A summary of the key characteristics of the papers reviewed
in this section is provided in Table IV.
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TABLE IV
SUMMARY OF THE KEY CHARACTERISTICS OF THE REVIEWED PAPERS IN THE “STORAGE” DOMAIN.

Paper(s) Storage Context Main Contributions Timing Properties & Guarantees Benchmarks

[147] I/O scheduler Reservation-based exclusive disk access High throughput with fairness guarantees Synth, Real
[29, 30] SSD Subsystem Storage interface exposing SSD internals to the host I/O predictability and isolation Synth
[90] SSD Opt Leverage SSD internals to reduce in-device R/W con-

tention
Reduced tail latency Synth

[82] SSD Opt Hybrid polling scheme for Ultra-low latency SSD Reduced CPU utilization and I/O latency Synth
[151] I/O Stack Opt Layer-aware I/O stack for containers to reduce host-level

resource contention
Reduced Latency Synth

[132] Overlay FS Block-level accessibility for containerized storage sys-
tems

Reduced average latency Synth, Real

[52] Container image File sharing between images and on-demand file retrieval Reduced storage space usage Synth
[69] RTDB QoS-aware feedback control for bursty workloads Bounded response times Real
[70] RTDB QoS-aware feedback control for embedded storage Minimize real-time transaction tardiness Synth
[154, 155] NoSQL QoS and QoD aware task scheduling Minimize requirement violations -
[101] In-memory NoSQL Transparent, locality-optimizing data migration for ultra-

low data access
Reduced latency Synth

[15] NoSQL Priority-based performance differentiation Reduced/stable latency for high-priority req. Synth, Real
[149] NoSQL Multitiered data store with adaption to workload changes Cost-vs-performance/latency tradeoff Synth
[112, 49] NoSQL Fully-managed cloud service with differentiated perfor-

mance
Guaranteed throughput and low latency Real

[127] NoSQL Preserving ACID transactions keeping linear scalability Reduced average latency Synth
[63] NoSQL Fog and Context aware replica placement and consistency Reduced latency Synth
[118] NoSQL Autonomic rate limiter for latency-critical edge Reduced latency Synth
[105] NoSQL Mobility and Access pattern aware data placement Reduced tail latency Synth, Real

Acronyms: Real-Time Database (RTDB), NoSQL Database (NoSQL), File system (FS), Optimization (Opt), Synthetic/, Realistic workload (Synth/Real).

A. Local Storage Optimizations

Before the introduction of Solid State Drives (SSDs), a
typical source of unpredictability was the high seek latency
of traditional rotational disks, a problem tackled in two ways:
using in-memory storage only, as proposed in [101], or by
employing special disk access scheduling techniques coupled
with pessimistic analysis, such as the Budget Fair Queuing
(BFQ) scheduler [147], which combines disk idling with
timestamp-based scheduling to preserve both guarantees and
high throughput for synchronous requests. BFQ reserves a
fraction of the disk throughput and ensures exclusive disk
access for a certain amount of budget time every period for
each application. Although SSDs eliminated the high seek
latency problem, a traditional block I/O SSD suffers from
unpredictable performance due to the often non-disclosed
sector allocation, prefetch, and caching logic within the
drive controllers, as well as suboptimal resource utilization.
Hence the introduction of open-channel SSDs for fine-grained,
application-specific management of the data placement strat-
egy as well as of the physical I/O scheduling. LightNVM [29]
is a novel I/O subsystem within the Linux Kernel that exposes
the parallelism capabilities and storage media characteristics
of open-channel SSDs to the host OS. LightNVM provides
an interface where application-specific abstractions can be
implemented. A recent work that makes use of this interface is
RAIL [90], a novel SSD management technique to reduce read
tail latency in the presence of write operations. The authors
state that since write buffer flushes can contend with reads
on flash devices and bring long latency tails, RAIL redirects
user and garbage collection writes towards independent phys-
ical flash chips, thus exploiting the internal parallelism of
NVME SSDs in order to eliminate the possibility of reads
being stalled by any high latency operation (read-after-write).

RAIL effectively enforces predictable performance for Flash
accesses, achieving 7× lower tail read latency than conven-
tional SSD management techniques. Open-channel SSDs have
been replaced by Zoned Namespace (ZNS) SSDs [30], a
standardized, media-agnostic interface among different SSD
vendor implementations.

The recent introduction of ultra-low latency SSDs naturally
shifted the direction of I/O performance improvements towards
the I/O stack, which now accounts for a large fraction of the
application-perceived I/O latency. An adaptive hybrid polling
scheme has been proposed [82] that combines polling and
interrupts. The proposal makes optimal sleep time decisions
to maximize the I/O performance and minimize the CPU
cycles used for polling. An optimized layer-aware I/O stack
has been proposed in [151] to reduce file search overheads
for containers and alleviate resource contention in the native
file system. This is done in two steps: i) by employing a
modified virtual file system that locates files based on layer
information to enable simultaneous Copy-on-Write (CoW)
operations, thus reducing file open and lock contention; and ii)
by replacing the journal service of the native file system with
multiple, isolated micro-journals per container, thus reducing
resource conflicts caused by shared resources. Experimental
results show improved latency and throughput for a set of
containerized data-intensive applications.

Baoverlay [132] is a lightweight overlay filesystem that
enables block-level access for improved write performance
in container-based storage systems. It logically decomposes
an overlay container image file into equally-sized blocks
so that a data update originated by the container does not
involve copying the whole file, thus reducing the write latency
overhead of a traditional CoW mechanism, which could incur
into long “read-and-then-write” I/O operations.
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Gear [52] is a container image format for efficient image
storage and deployment. It introduces an index structure
decoupled from the regular image files, which allows for
on-demand retrieval of necessary files only and file sharing
between different images while keeping full compatibility with
Docker. The proposal effectively saves up to 54% storage
space in the registry but also accelerates container deployment
under scenarios with limited bandwidth.

B. Real-time Databases

Unlike a traditional database management system, a real-
time one [71] employs several optimizations to minimize the
number of missed deadlines by reducing to the minimum the
unpredictability of transaction execution. For instance, conven-
tional resource (i.e. CPU and I/O) scheduling algorithms are
designed to ensure fairness between tasks, whereas a real-time
one schedules the next transaction as a function of its criticality
and the tightness of its deadline. Similarly, the conventional
concurrency control protocols, used to ensure consistency
between concurrent transactions, may lead to priority inversion
or deadlocks. Hence the use of lock-free algorithms [158]
integrating transaction priorities into the conflict resolution
logic, such as the one proposed by Lindström [89]. Another
challenge is to completely eliminate I/O accesses, due to
the unpredictability of disk access delays, by putting data
directly in memory and employing recovery protocols [92]
in case of hardware failure. In the context of classic real-
time database systems, there is a multitude of feedback real-
time scheduling and utilization control algorithms, such as
Chronos [69], which dynamically controls the desired service
delay through admission control of incoming transactions in
proportion to the response time error, effectively managing the
amount of backlog in the database.

Similarly, QeDB [70] employs a feedback control scheme
for data-intensive, real-time applications hosted on embedded
systems with memory constraints. QeDB simultaneously man-
ages both I/O and CPU resources to guarantee the desired
trade-off between timeliness of transactions and data freshness.
By monitoring the I/O and CPU tardiness, QeDB computes
the buffer hit ratio adjustment to allocate the proper amount
of resources in a robust and controlled manner.

The advent of cloud computing raised interest in cloud-
hosted databases for modern large web-based workloads with
time-critical requirements. This shift towards highly scalable
infrastructures led to the shortcoming of relational databases
in favor of NoSQL architectures, which sacrifice ACID trans-
actions in favor of relaxed consistency models, to achieve
higher availability and scalability [32]. Although there is little
recent academic literature on real-time cloud-based data stores,
there are many prototypes for latency-sensitive workloads that
could be coupled with traditional real-time database principles
to ensure predictable performance. AQUAS [154, 155] is a
replacement scheduler for Apache Cassandra1 that efficiently
allocates replica nodes to minimize the penalties incurred in vi-
olating a set of QoS and Quality-of-Data (QoD) requirements.
It estimates the execution time of operations via a simple linear

1https://cassandra.apache.org/

regression model for writes, and by looking at the execution
times of previous queries for reads. AQUAS offers various
query scheduling policies, such as FIFO or EDF.

DAL [101] is an in-memory data backend with low latency
and high reliability. It works both as a data store and a
publish-subscribe message broker. A DAL cluster is made of
a collection of distributed servers queried by clients. When a
server detects that an item is mostly accessed from a specific
remote client, it proposes a data move closer to such client.
When the same physical machine co-hosts a client and a server
instance, data items that are dominantly used by a single client
will be accessed locally after a short transient.

RT-MongoDB [15] is a modification to the popular Mon-
goDB NoSQL data store that makes use of POSIX nice
levels and of a priority-based synchronization logic to offer
reduced per-user or per-request response times: higher priority
requests/clients are able to be served earlier than lower prior-
ity ones by preempting or starving the latter for arbitrarily
long time windows. More specifically, the work exploits the
MongoDB per-client thread model, as well as a concurrency
control mechanism, to implement prioritization of the threads
corresponding to higher-priority clients/requests.

Anna [149] is a cloud-native, distributed key-value store that
dynamically adapts to workload variations based on three high-
level goals specified by the administrator: average latency,
cost–performance tradeoff, and fault-tolerance. Anna employs
a policy engine that monitors the workloads and responds to
variations that may violate the objectives through horizontal
scaling, vertical data tiering (i.e. moving “hot” data to faster
memory, demoting rarely used data to cold storage), and
selective replication of “hot” keys onto multiple nodes.

DynamoDB [112] is a fully-managed NoSQL data store
from AWS that guarantees consistent performance “at any
scale”. Based on the popular Dynamo [49] data store, Dy-
namoDB allows customers to declare their desired read/write
throughput for a given table, then the underlying infrastructure
is configured so to meet these requirements with high prob-
ability. DynamoDB is the de-facto industry standard solution
for real-time and predictable performance, high reliability and
availability, and weak data consistency models.

CitrusLeaf [127] is a NoSQL data store that combines the
consistency and reliability capabilities of traditional databases
with the extreme scalability of self-sufficient clustered dis-
tributed architectures, such as Apache Cassandra and Dynamo.
It dynamically redistributes data between replica nodes using
real-time prioritization techniques to balance long-running
tasks (e.g., batch queries or bookkeeping activities) and short
client transactions with sub-millisecond requirements.

The trend of moving the computational resources closer
to the “edge” of the network arose to address the concerns
of response time requirement, battery life constraint, and
bandwidth cost saving. In this context, FogStore [63] is a
geo-distributed key-value store based on Apache Cassandra
suitable for strongly consistent systems with low latency and
fault-tolerance requirements. The work proposes a location-
aware replica placement mechanism that tackles the conflicting
problem of placing data replicas close to the relevant clients
(for low latency), or in distant locations (for fault-tolerance).



11

An application-specific edge data store has been pro-
posed [118] for distributed machine vision applications. A
compute-intensive vision algorithm extracts image feature
vectors and key-frames: the former have latency-critical re-
quirements, whereas the latter are kept primarily for archival
purposes. The work incorporates an autonomic rate limiter
for transmitting key-frames that sacrifices their latency and
accuracy to maintain latency-criticality for feature vectors.
Early experimentation with a synthetic workload shows a
median latency improvement of 84%.

Portkey [105] is a distributed key-value store considering the
time-varying mobility and latency patterns of emerging IoT
and mobile applications. It continuously monitors the client
locations and data access patterns, and it dynamically devises a
near-optimal data placement strategy to control the average/tail
latency. With respect to existing NoSQL data stores, Portkey
employs self-correcting greedy heuristics that prioritize fast
(and frequent) approximate placement decisions over slow
optimal placements, reducing tail request latency by 21-82%.

C. Discussion

In the storage research area, there is a lack of works inves-
tigating the use of low latency, predictable storage solutions
for cloud applications. Investigations on “proper” real-time
databases have been of interest only in the restricted domain of
hard real-time systems. However, modern cloud-hosted time-
critical applications may create an emerging need for novel
solutions tied to the cloud computing context. Here, there are
several research opportunities thanks to promising new storage
technologies, such as ZNS SSDs, integration with predictable
computing mechanisms as reviewed in Section II, and cloud
orchestration solutions as seen in Section III. This leaves room
for unexplored research opportunities in the development of
cloud-based, data stores for time-critical applications.

V. NETWORKING

Network infrastructures are becoming increasingly suitable
for time-critical communications [110, 55, 146] thanks to
5G/6G technologies such as Ultra-Reliable and Low Latency
Communication (URLLC), and Time-Sensitive Networking
(TSN). URLLC can facilitate highly critical applications
with very demanding requirements in terms of E2E latency
(millisecond level), reliability, and availability. TSN aims to
provide deterministic services over the IEEE standard 802.3
for Ethernet wired networks. This means guaranteed packet
transport with low and bounded latency, low packet delay
variation, and low packet loss. Moreover, the recent advent
of NFV [50], where physical appliances sized for peak hour
operations are being replaced by Virtual Network Functions
(VNFs), has led network providers to increasingly adopt
principles and solutions typical of cloud computing, albeit
within a private cloud context. VNFs are software components
designed with elasticity and scaling abilities typical of cloud
services [133], and deployed on general-purpose data centers
of a network operator, typically recurring to cloud platforms.

Time-critical use cases need bounded, low latency, and often
deterministic E2E communications with high reliability and

TABLE V
CHARACTERISTICS OF DIFFERENT COMMUNICATION SOLUTIONS.

Ref. Solutions Latency1 High
through. Isol.2 High

avail.3

[141] TSN IEEE 802.1 Predictable ✓ ✓ ✓
[57, 119] TSN + DPDK + K8S Predictable ✓ ✓
[137] 5G TSN/TSC Predictable ✓ ✓ ✓
[131] 5G URLLC Bounded ✓ ✓ ✓
[139] Linux - TBS Qdisc Predictable
[138] Linux - PREEMPT-RT Bounded
[53] Virtual Switching Bounded ✓
[99] Virtual Switching Bounded ✓
[159] Virtual Switching Bounded ✓

1 Solutions that provide predictable latency can guarantee a stable, exact latency
value. This means also low jitter, hence, solutions with predictable latency can
be used for deterministic communication.

2 In order to exclude spatial interference between applications of different safety-
criticalities, the typical solution is to provide applications with dedicated
resources to rule out unintended resource interference.

3 High availability and reliability (≥ 99.999%).

availability. They require a networking infrastructure meet-
ing requirements that are different from normal best-effort,
broadband services, namely each packet must meet the timing
requirement, otherwise the service will not work properly. In
the following, an overview of research works dealing with
predictable and reliable networking is made, focusing on:
solutions ensuring deterministic traffic scheduling in wired
communication networks, along with the challenges for sup-
porting it in wireless networks as well; real-time capabilities
of the communication stack, encompassing both OS-level
and hypervisor-level predictable packet processing, as needed
in virtualized/containerized workloads to meet their timing
constraints; and, real-time packet processing capabilities of
the virtual switching components, so crucial for the E2E
performance of distributed cloud workloads. The main aspects
of the works reviewed below are summarized in Table V.

A. Deterministic Networking

Over recent years, a large set of real-time fieldbus protocols
were introduced in industrial networks [47], resulting in frag-
mented segments with proprietary communication solutions.
One step towards the convergence in the industrial ecosystem
was the usage of the real-time Ethernet variants, such as
the old RTnet [73], or more recently EtherCAT [60] and
PROFINET [40], that can provide deterministic performance,
e.g. guaranteed, bounded latency. TSN, specified by IEEE
802.1 [141], seems now to be a converged, standardized
Ethernet extension, introducing time-sensitive support. Hence,
TSN is expected to replace the different, legacy real-time
Ethernet and fieldbus variants. TSN includes a set of in-
dependent standards, which can be applied as a toolset to
ensure a deterministic, reliable communication solution for
time-critical applications. The IEEE 802.1AS defines the Gen-
eralized Precision Time Protocol (gPTP), which ensures that
the clocks of each end-device can be synchronized with a µs-
order precision.

The IEEE 802.1Qbv time-aware scheduling was designed
to provide cyclical, pre-defined communication time slices
for the different Ethernet QoS classes. A transmission gate
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is associated with each queue belonging to a QoS class,
and the queued frames can be selected for transmission
only when the state of the gate is open. The configuration
plan for the gates (gate control list) is calculated centrally,
by the Central Network Configuration (CNC), based on the
service requirements and the network characteristics (such as
topology, TSN bridge delay, etc.), then the scheduling plan is
pushed to each TSN bridge. The proper operation of 802.1Qbv
requires time synchronization, which ensures that each device
can handle the frames belonging to a certain QoS class in
a network-wide, harmonized way. To reduce the end-to-end
latency, it is important to move the control/server application
instances closer to the client and the edge. The fog computing
paradigm/architecture is a good candidate to support this goal.

In [113], TSN is proposed as the ideal choice for the
networking layer of a fog computing-enabled industry au-
tomation deployment. The IEEE 802.1Qbv is recommended
for handling the time-critical traffic and the related scheduling
configuration challenges are overviewed in detail. It is assumed
that Industry 4.0 applications require the frequent, dynamic
reconfiguration of production processes, and consequently, the
re-design of the traffic schedule is often needed. Therefore, a
scheduling heuristic is proposed and evaluated, which can be
used to reconfigure the transmission schedule at application
runtime. A crucial goal in the heuristic is to avoid the
interference between the concurrent time-critical streams using
the minimum number of queues.

More recently, in [57], an architecture is proposed to inte-
grate deterministic TSN networking within a Kubernetes-based
container management infrastructure, called KuberneTSN. The
concept is implemented in a seamless way within a TSN
plug-in compliant with the Container Networking Interface
(CNI), which uses also DPDK-based communications as avail-
able in OpenvSwitch (OVS) to achieve the lowest possible
networking latency on the node. Experimental results with
synthetic benchmarks show good potential for achieving lower
and more stable networking latency, albeit the gain is in
the range of tens of microseconds, in the considered set-
up. The KuberneTSN framework is also used in [119] as a
basis to build a “vPLC”, i.e., a containerized equivalent of a
programmable logic controller (PLC) handed over to a local
private cloud, designed with in mind compatibility with open
standards for Industry 4.0.

Many Industry 4.0 use cases require wireless connectivity
to server mobile devices. In this case, 5G networks promise
to be the best option for this purpose. However, the basic
5G URLLC feature [131] in itself is not enough to ensure
the required determinism in communications for serving some
time-critical Industrial 4.0 use cases, especially where time-
awareness is crucial. Therefore, the 3rd Generation Partner-
ship Project (3GPP) started to specify the Time Sensitive
Communication (TSC) service for deterministic/synchronous
communications in Release 16, and further enhancements are
introduced in Release 17. The 3GPP Technical Specification
(TS) 23.501 [137] describes the architecture for providing the
seamless integration of 5G networks into the TSN ecosystem,
describing how the 5G System is modeled as a virtual TSN
bridge, the details of the control plane interworking, as well as

how the characteristics of time-sensitive communications can
be used to optimize the radio scheduling in the 5G domain.

A feasibility study on how a containerized, standard-
compliant implementation of the 5G network can support the
Generic Object Oriented Substation Event (GOOSE) protocol
defined by the IEC 61850 standard for time-critical commu-
nications in Smart Grid is performed in [104]. Authors show
that the average one-way delay between two endpoints is less
than 0.6 ms, the average delay of the virtualized core network
segment is 0.3 ms, while the maximum is below 0.4 ms (during
the measurement period). The conclusion is that 5G network
is able to support the time-critical GOOSE traffic. However,
the radio transmission - which may have a significant effect
on the end-to-end delay - is only emulated in the experiment,
so this is a limitation of the work.

In [81], a detailed investigation is presented on how the
current framework specified by the 3GPP for 5G and TSN in-
tegration can support deterministic communications; the paper
also presents a quantitative analysis using a closed-loop control
application. The paper shows a network scenario where the 5G
domain is integrated into a wired TSN domain as a virtual TSN
bridge (according to the 3GPP specification), and the packet
delay budget and required bitrate for different deterministic,
periodic traffic flows are calculated. The work identifies some
design principles, such as: only on-premises 5G deployment
can fulfill the strict latency requirements; and the adequate
Radio Access Network (RAN) resource allocation is crucial,
which can be achieved by using (semi-)persistent scheduling
on the radio. It is noted that the estimation of the 5G virtual
bridge delay is a difficult task, albeit this is one cornerstone
of the 5G-TSN integration.

In [61], a scenario of cooperative work of mobile robots is
presented, where tight synchronization is an essential require-
ment. Therefore, a concept is introduced on how the TSN
time synchronization (IEEE 802.1AS) can be integrated with
5G networks in a seamless way. The essence is to use the
synchronization between the gNodeB and the corresponding
User Equipments (UEs), since this ensures the required time
accuracy, and then calculate the offset between the TSN and
5G system clocks and adjust the local clocks in the UEs
accordingly. It should be mentioned that, even if the proposed
concept is validated on a 4G testbed, the measurement results
confirm that the achieved accuracy is almost the same as the
802.1AS in a wired network deployment.

B. Real-time Communication Stack

The current trend in cloud application development is mov-
ing towards a cloud-native and microservices-based design:
instead of deploying a monolithic application, its functionality
is split into a multitude of micro-services deployed indepen-
dently, so that they can exploit to the maximum extent the
benefits of being deployed in a cloud environment. Therefore,
it becomes paramount to use the appropriate networking
abstraction among instances. For example, when using Kuber-
netes, several implementations of the CNI are available, with
a wide variety of performance characteristics [115]. Moreover,
in order to ensure the real-time communications for cloudified
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applications, the real-time support features of the network
stack in the virtualized domain (Linux communication stack,
container networking) has to be leveraged. Considering the
support of time-critical traffic (e.g. TSN 802.1Qbv scheduled
traffic support) in an end-to-end manner, a software solution
is required in the end hosts that are compatible with the
802.1Qbv traffic scheduling.

In [12], the implementation of a time-aware shaper using the
Time-based Scheduling (TBS) Linux Qdisc [139] is presented,
showing how to guarantee the schedule of packets to be
transmitted. A detailed analysis is performed using a small
demo network with 3 TSN bridges. The results show that,
if TBS Qdisc is applied, the minimum transmission time
is slightly increased, but the jitter could be two orders of
magnitude lower than without TBS. The adjustment of the so-
called minimum transmit offset, which is the time interval into
the future the host application sets the packet transmit time in
order to ensure that the packet is sent out in its scheduled time
window, is also investigated. The measurements show that, if
two hosts are directly interconnected, the transmission time
increase is 55% due to the required transmit offset. However,
in the case of a 3-bridge network, the increase is only 17.6%.
To sum up, the support of time-critical applications requires
using TBS Qdisc, together with a transmission offset, to handle
the uncertainties of e.g., the CPU load due to the software
stack. Although this causes some E2E delay increase, TSN-
grade traffic scheduling is not possible otherwise.

Despite the fact that the Linux communication network
subsystem is not optimized for bounded latency, a reasonably
deterministic behavior is expected by using the PREEMPT-RT
patch [138]. In [107], a comprehensive theoretical and exper-
imental analysis of the Real-time Linux scheduling latency
can be found, where the goal is to determine the sources of
the latency. In [64], the real-time performance of Linux is
reviewed with the usage of PREEMPT-RT in different system
configurations. The results show that, although the non-real-
time kernel exhibits the best average performance, a huge
number of frames exceeds their latency bound, even if there is
no background traffic. With PREEMPT-RT, a bounded latency
can be achieved even in presence of concurrent traffic, but
some missed deadlines can still be detected. Pinning the real-
time tasks and the Interrupt Request (IRQ) of the real-time
traffic queue to the same CPU, ensures a bounded latency
in a stressed system, with no missed deadlines. If the real-
time tasks are performed in an exclusively dedicated CPU, a
similar behavior was detected, but with no further performance
improvements. The main conclusion is that PREEMPT-RT
is required for real-time applications, but in itself, it is not
enough to guarantee bounded latency for each packet, so other
system configurations, such as CPU isolation for real-time
processes, are also required.

The authors in [77] emphasize that to execute collaborative
tasks using a distributed control system, a large number of
individual clocks in the system must be synchronized, and
it should also be investigated how the time-based distributed
scheduling of the control instances can be performed. The pa-
per discusses in detail the support of the time synchronization
in Linux, then measurements are performed using a set of

TI Sitara am335x embedded System-on-Chip (SOC) devices.
Authors describe several implementation options for real-time
scheduling on Linux for SOC hardware. The main conclusions
are that the most precise solution can be achieved if the system
contains Programmable Real-time Unit (PRU), since in this
case sub 1 µs scheduling accuracy and precision can be guar-
anteed. However, it should be noted that this solution requires
special programming skills about the PRUs, and the code is
not portable. Other options, such as HRTIMER service and
SCHED-FIFO can provide only 100 µs scheduling accuracy
which certainly limits the number of possible applications;
the authors favor the simpler SCHED-FIFO based solution
for applications with less stringent requirements.

The goal of [84] is to give a solution for the main per-
formance challenge of virtualized environments, i.e., isolating
a VM running a time-sensitive (e.g., soft real-time) applica-
tion and a VMs running a bandwidth-intensive application,
deployed on the same physical host. The paper shows the
details of the transmission/reception as well as the essence of
Qdisc capabilities in standard Linux and discusses the details
of how the network stack is modified in Xen, considering two
representative versions of Linux, e.g., Linux 3.10 and 3.18.
From the perspective of prioritizing the time-sensitive traffic,
two main limitations of the traffic control in Xen are identified,
namely priority inversion between packets originating from
the latency-sensitive and bandwidth-intensive domain, and
priority inversion between the transmission and reception code
paths. The main contribution of the paper is to introduce a
Virtualization-aware Traffic Control (VATC) scheme, which
ensures that time-sensitive flows coming from a VM are
treated as high-priority traffic and assigned to high-priority
kernel threads, so the real-time traffic can be protected; the
number of priority levels can be configured according to the
traffic characteristics. The paper also contains a detailed evalu-
ation of VATC using various numbers of bandwidth-intensive
background processes, showing that VATC can successfully
mitigate the traffic control limitations of Xen.

The authors in [80] investigate a practical approach to
ensure low latency communications within a distributed, virtu-
alized 5G RAN deployment by introducing UDPDK, a novel
open-source middleware on top of the Data Plane Devel-
opment Kit (DPDK), for easing integration of DPDK-based
communications. The authors also integrated UDPDK within
the OpenAirInterface (OAI) software stack for RAN packet
processing. The experimental results show that UDPDK can
outperform a standard socket-based Application Programming
Interface (API), achieving on average one-tenth of the Round-
trip Time (RTT).

Another important aspect for supporting soft real-time ser-
vices in a virtualized environment is the proper provisioning
and management of the virtualized cloud resources consider-
ing the real-time constraints. On one hand, authors in [86]
formulate the resource provisioning problem using a generic
cloud model, a multi-tenant ecosystem, and a service chain de-
ployment. On the other hand, an Integer Linear Programming
(ILP)-based solution is proposed, called Network Functions
Virtualization - Real-time (NFV-RT) whose main goal is
to maximize the number of service requests by the tenants
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meeting their bounded latency requirements, while VM-level
isolation among tenants is ensured. The proposed algorithm
performs the initial resource provisioning by determining the
required number of service instances for a set of requests, as
well as handling the new requests dynamically. The proposed
method is evaluated by using simulations (comparing to a
greedy heuristic) and using a real testbed. The results show a
good performance ofNFV-RT. However, authors observe that
the design of NFV-RT in reality guarantees that just about
94% of the packets belonging to an accepted service request
meet the target deadline. Therefore, it can be used to provision
virtualized network resources only for applications with soft
real-time requirements.

C. Virtual Switching

Virtual switches are a cornerstone of today’s virtualized data
centers to enable communications among VMs, containers and
also for communications across virtual and physical network
segments. As mentioned above, time-sensitive communica-
tions can be supported by IEEE TSN-aware physical switches
(considering especially IEEE 802.1Qbv and 802.1Qci). How-
ever, realizing a virtual switch that is TSN-enabled is still an
open research challenge.

In [53], a deterministic message-switching solution is pro-
posed by leveraging the Software Defined Networking (SDN)
and TSN paradigms. After the discussion of the requirements
of a time-aware virtual switch, the authors propose a detailed
system model, where the synchronized operation, bounded
relay overhead, and dedicated queues for each message at a
specific point in time at the egress ports are emphasized, then
the dispatching algorithm is described. A proof-of-concept
implementation is also performed, where two virtual switches
are deployed and a dedicated (isolated) CPU core is assigned
to each of them; the virtual switch is implemented as a
kernel module by leveraging the Linux Real-Time Application
Interface (RTAI) patch. The overall latency caused by the
virtual switches is observed in the range of 0.5 µs to 2 µs, but
several outlier values can also be detected - the major reason
behind this was the jitter caused by the RTAI scheduler.

Due to the strict latency requirements, the NFV industry is
considering container-based deployments instead of traditional
VMs. A detailed comparative study of the different software-
based networking solutions for interconnecting VNF compo-
nents in a private cloud infrastructure is presented in [18].
Starting with the overview of the different approaches of inter-
container networking (e.g., Kernel-based networking, Kernel
bypass, software switches) a detailed experimental analysis is
performed using different test setups (intra-host and inter-host
container networking). In the analysis, different virtual switch
options (OVS, VPP, VALE, DPDK Basic Forwarding Sam-
ple Application, SR-IOV) are compared considering latency,
throughput, and scalability performance factors. The conclu-
sion is that SR-IOV and VALE outperform the other solutions
on a single host not only in the performance parameters but
also in terms of the processing power needed to perform high-
speed packet forwarding. Considering communication between
multiple hosts, the major bottleneck is caused by the CPU

limitation and the throughput limitation of the underlying
physical layer.

ESwitch [99] is a novel virtual switch architecture that
breaks with general-purpose datapath and embraces a fully
customized data plane. ESwitch exploits the fact that most
real-world OpenFlow applications compose the same small
set of simple, but generic forwarding patterns. So, OpenFlow
pipelines can be rewritten in terms of a small set of static
templates and then ESwitch uses a template-based code gen-
eration to derive the customized datapath. A detailed analysis
shows that the ESwitch concept has significant performance
gain over OVS, ensuring several times higher raw packet rates,
much smaller latency, and predictable throughput even in case
of varying workloads.

In [143] and [144], an extensible evolved Berkeley Packet
Filter (eBPF)-based datapath architecture for OVS is proposed.
The authors present the OVS and the eBPF forwarding models,
then discuss the design and implementation of the OVS
datapath considering the restrictions of eBPF followed by a
brief performance analysis. More recently, an experimental
comparison [111] in building network functions for packet pro-
cessing in user-space versus kernel-space has been performed,
using the recent AF_XDP socket type and eBPF, as well as
recurring to poll-based processing.

One challenge in data-center networks is to provide a
proper load-balancing scheme, which ensures that there is no
congestion on some links, while others are underutilized. This
problem is addressed in [159], which proposes Virtual Multi-
channel Scatter (VMS), a packet load balancing solution that
works in the virtual switch layer. The paper discusses in detail
the possible load balancing schemes from the viewpoint of
deployment location (e.g., centralized, end-host-based), and
granularity (e.g., flow-level, packet-level) and concludes that
the packet-level granularity should be leveraged to achieve
load balancing in the virtual switch layer. The essence of
VMS is to not distribute traffic evenly between available paths
(channels) but applies a virtual window size estimation for
each channel and to select channels accordingly. VMS can also
handle the two main challenges of packet-level load-balancing;
packet re-ordering and topology asymmetry-aware traffic dis-
tribution. Two implementation alternatives are presented, one
based on OVS, and one based on SmartNIC. The evaluation
shows that a near-optimal traffic distribution can be achieved
even with an asymmetric topology, with tolerable latency and
CPU utilization overheads in both implementations.

D. Discussion

In the communication area, the TSN technology and the
3GPP specified 5G-TSN integration ensure support for time-
critical services in both the wired and wireless network
domains. Numerous papers overview the real-time features
of the Linux communication stack, which appears as a con-
tinuously evolving toolset capable of guaranteeing a certain
level of timeliness in the cloud networking domain. How-
ever, by itself, it is not enough to provide a deterministic
E2E communication: the integrated/harmonized operation of
the different networking functions must be ensured through
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multiple domains, but this area has not been thoroughly
explored yet. For instance, harmonization and integration of
traffic scheduling and control is needed at the hypervisor/host
and guest/container levels. Moreover, handling of compute
resources must also be harmonized with traffic scheduling, in
order to guarantee that the application deployed in a container
is able to generate a certain frame at the proper time, to ensure
that it does not miss the target time window.

VI. CONCLUSIONS

The industrial and research communities are making steps
forward in the various technological areas related to cloud
and distributed computing. The acceleration of industrial
digitalization and the corresponding emerging use cases are
driving the demand for time-critical applications hosted in
cloud environments. This paper surveyed the current state
of the art concerning time-criticality in the cloud and the
features to support time-critical applications. We provided a
summary of key challenges in designing cloud infrastructures
for time-critical services, covering aspects related to compute,
orchestration, storage, and communications. Concerning the
two questions posed at the beginning of the paper about the
state of time-criticality in cloud computing, we can conclude
that:
1) The main challenge for time-criticality in cloud technolo-
gies is ensuring temporal protection in presence of multi-
tenancy. Most cloud services and infrastructures are still
designed only to provide best-effort QoS. The focus is on max-
imizing overall throughput, neglecting the issue of providing
predictable response times to the individual requests. However,
incorporating time predictability properties into the cloud stack
is essential to meet the requirements of many emerging time-
critical applications (see Table I).
2) There are several solutions for high reliability and time-
predictability within each domain. For example, recent devel-
opments in networking technologies, are becoming increas-
ingly deterministic, with solutions like URLLC and TSN.
However, there is a general lack of cross-domain efforts:
for instance, despite the existence of hypervisors providing
predictable CPU scheduling, no orchestration tools utilize such
parameters to properly orchestrate the placement and resource
provisioning of time-critical workloads, as briefly discussed
in Section II-D. Another example is the one of real-time
processing platforms: most of them focus on efficient process
placement and resource allocation without taking into account
storage-related matters, such as controlling the I/O backlog.

Regarding possible future directions, we highlighted that
most of the academic papers found in the literature focus on
low-latency, and only a few provide methods to guarantee a
certain latency with high probability in distributed systems.
Moreover, very few papers (mostly in the compute area) are
backed up by real-time theory. In a real-world, time-critical
scenario, a theoretical foundation is essential to assess the
practicality of a time-critical solution. Hence the need for fur-
ther investigations towards more formal evaluations of timing
properties and guarantees. A promising research direction lies
in the storage domain, which remains the most neglected area

in modern literature, despite the existence of DynamoDB, the
only cloud service with reasonably predictable performance
guarantees.

In conclusion, no work in the literature proposes a compre-
hensive cloud system that incorporates time-critical guarantees
within the entire cloud stack. Similarly, no commercial clouds
integrate real-time configurations and, therefore, there are no
ready-to-use time-critical cloud solutions yet.
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