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Abstract— Learning manipulation skills from open surgery
provides more flexible access to the organ targets in the abdomen
cavity and this could make the surgical robot working in a
highly intelligent and friendly manner. Teaching by demon-
stration (TbD) is capable of transferring the manipulation
skills from human to humanoid robots by employing active
learning of multiple demonstrated tasks. This work aims to
transfer motion skills from multiple human demonstrations in
open surgery to robot manipulators in robot-assisted minimally
invasive surgery (RA-MIS) by using TbD. However, the kinematic
constraint should be respected during the performing of the
learned skills by using a robot for minimally invasive surgery.
In this article, we propose a novel methodology by integrating
the cognitive learning techniques and the developed control
techniques, allowing the robot to be highly intelligent to learn
senior surgeons’ skills and to perform the learned surgical
operations in semiautonomous surgery in the future. Finally,
experiments are performed to verify the efficiency of the proposed
strategy, and the results demonstrate the ability of the system to
transfer human manipulation skills to a robot in RA-MIS and
also shows that the remote center of motion (RCM) constraint
can be guaranteed simultaneously.

Note to Practitioners—This article is inspired by limited
access to the manipulation of laparoscopic surgery under a
kinematic constraint at the point of incision. Current commercial
surgical robots are mostly operated by teleoperation, which is
representing less autonomy on surgery. Assisting and enhanc-
ing the surgeon’s performance by increasing the autonomy of
surgical robots has fundamental importance. The technique
of teaching by demonstration (TbD) is capable of transferring
the manipulation skills from human to humanoid robots by
employing active learning of multiple demonstrated tasks. With
the improved ability to interact with humans, such as flexibility
and compliance, the new generation of serial robots becomes
more and more popular in nonclinical research. Thus, advanced
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control strategies are required by integrating cognitive functions
and learning techniques into the processes of surgical operation
between robots, surgeon, and minimally invasive surgery (MIS).
In this article, we propose a novel methodology to model the
manipulation skill from multiple demonstrations and execute the
learned operations in robot-assisted minimally invasive surgery
(RA-MIS) by using a decoupled controller to respect the remote
center of motion (RCM) constraint exploiting the redundancy of
the robot. The developed control scheme has the following func-
tionalities: 1) it enables the 3-D manipulation skill modeling after
multiple demonstrations of the surgical tasks in open surgery by
integrating dynamic time warping (DTW) and Gaussian mixture
model (GMM)-based dynamic movement primitive (DMP) and
2) it maintains the RCM constraint in a smaller safe area while
performing the learned operation in RA-MIS. The developed
control strategy can also be potentially used in other industrial
applications with a similar scenario.

Index Terms— Dynamic movement primitive (DMP), dynamic
time warping (DTW), remote center of motion (RCM),
robot-assisted minimally invasive surgery (RA-MIS), teaching by
demonstration (TbD).

I. INTRODUCTION

ROBOT-ASSISTED minimally invasive surgery (RA-
MIS) has become more popular over recent years because

of the benefits in advanced surgical precision, increased move-
ment range, improved proficiency, and enhanced vision for
surgeons [1]–[3]. Compared with the traditional open surgery
method, minimally invasive surgery (MIS) can minimize the
scale of the wound on the patients’ body and further avoid
causing damage to the surrounding organs and tissues. Benefit
from this, the patient’s recovery time after surgery can be
significantly shortened, further reducing the patient’s pain.
However, there are several critical issues that need to be
considered. First, the manipulation features the surgical tool
going through small abdominal incisions with lengths less
than an inch on the abdominal wall in MIS [4], known as
the remote center of motion (RCM) limitation, resulting in a
kinematic constraint of surgical robot when conducting surgi-
cal operations [5]. Compared with conventional open surgical
procedures, intensive training is required to train a novice
surgeon to perform MIS operations. Due to the complexity
of the skills in kinematic constraints, it allows an intuitive
access to surgical operations [6], [7]. In fact, the movement of
a surgical instrument is mirrored to the opposite way inside
the patient under the RCM constraint, as well as the applied
force depends on the distance from the entry point, which is
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known as the “fulcrum effect.” Hence, to ensure safety during
surgical operation, the movement of the surgical tool should
be a constraint.

Furthermore, current commercialized surgical robots are
simply controlled by surgeons using teleoperation, and they
involve less autonomy in the surgical operation [8]. It is
of great significance to assist and enhance the performance
of surgeons by increasing the autonomy of surgical robots.
Increasing the autonomy of surgical robots when conducting
such particular complex surgical operations, such as suturing
or knotting, can potentially reduce the length of surgical
procedures and reduce the workloads of surgeons to avoid
fatigue [9]–[12], as well as improving tracking accuracy
with the development of technology in artificial intelligence
and cognition progress. In the past decade, the developed
commercial medical systems that incorporate autonomous and
semiautonomous technologies, as well as experimental work
on the automation of numerous surgical procedures, have
attracted much research interests [8]. In order to meet this
demand, it is necessary to transfer the manipulation skills from
human to surgical robots after showing the correct execution
of the trajectories. This approach is known as teaching by
demonstration (TbD) [13]. Calinon et al. [14] had investi-
gated how human motor skills can be applied to the robot.
Yang et al. [15] developed an interface in the human–robot
communication framework for human-impedance adaptive
skill transfer. Osa et al. [16] developed an automated knot
tying system that can learn to tie knots after just one demon-
stration done by a surgeon. However, a single demonstration is
lack of consistency, and they are not enough to model a good
manipulation skill library. Hence, multiple demonstrations are
essential for the extraction of the manipulation skills and
training of the skill model. For example, Petitjean et al. [17]
adopted the time regular function to describe their time corre-
spondence and to calculate the minimum distance among the
test and reference template to describe their time correspon-
dence. Kormushev et al. [18] studied the comprehension of
the trajectory design for the spherical obstacle by using DMP
modeling combined with the synthetic capacity discipline
method. A learning framework for human-to-robot adaptive
manipulation skills was developed in [19]. Li et al. [20] pre-
sented methodology to learn 2-D drawing skill from multiple
demonstrations.

During the MIS surgical operation process, in addition to
human motion skill learning and transferring to the surgical
robot, the RCM constraint on the abdominal wall of the
patients’ body [21] has to be respected [22] simultaneously.
In general, the RCM constraint can work actively or pas-
sively. The passive constraint is physically enforced, whereas
a software supported controller needs to be considered for
active constraints [23]. Since specialized surgical robots
with passive RCM constraints are expensive, therefore, their
usage in hospitals is limited. Different approaches have been
introduced to solve the RCM as a kinematic constraint [24].
Using serial robots and achieving the RCM constraint with
their redundancy [25]–[27] is cost-effective and offers versatile
workspace, which has a high interest in the medical field,
in particular for MIS. In our previous works [23], [28],

the RCM constraint had been solved in a decoupled way by
exploiting the redundancy of the robot, and the controller had
shown prominent performance to guarantee the RCM con-
straint without any influence on the surgical tooltip. It delivers
the surgical robot operating in a highly intelligent and friendly
manner.

In this article, a novel methodology by integrating cogni-
tive functions and learning techniques is considered to the
processes of surgical operation between robots, surgeon, and
MIS. Due to the proposed approach, manipulation skill can
be learned from multiple demonstrations and the learned
operations can be performed in RA-MIS by using a decoupled
controller to respect the RCM constraint by exploiting the
redundancy of the robot. Moreover, dynamic time warp-
ing (DTW) is adopted to process the data acquired from the
demonstrations in this article. The repeated surgical operation
curves obtained from experienced surgeons will be adjusted.
Then, to model the curves obtained from the demonstra-
tions taught by experienced surgeons, the Gaussian mixture
model (GMM) is utilized to model the dynamic movement
primitive (DMP) during surgical operation tasks.

1) A novel methodology of the 3-D manipulation skill
modeling after multiple demonstrations is presented
to the processes of surgical operation by integrating
DTW- and GMM-based DMP.

2) Performing the learned surgical operation skills in
RA-MIS by utilizing a decoupled controller and respect
to the RCM constraint during surgical operations simul-
taneously.

The developed techniques would enable the robot to learn
from senior surgeons’ skills, which features repetitive patterns
in open surgery, such as suturing or knot tying, by using the
TbD techniques and performing the learned surgical operations
in semiautonomous surgery in the future. The proposed
approach reflects progress in comparison to the simple surgical
task tracking introduced in [23] and incorporates effective
TbD strategies [20] to a single controller in order to enable
the robot to reproduce the demonstrated operations. Finally,
the efficiency and accuracy of the proposed approach are
validated with the KUKA LWR4+ robot on a 3-D printed
patient’s phantom.

The remainder of this article is organized as follows.
Section II contains the problem description addressed by
this article. The corresponding control methodology and con-
trol framework are presented in Section III. In Section IV,
the performance results are demonstrated by using the KUKA
LWR4+ robot on a patient phantom, and the conclusions of
this article are drawn in Section V.

II. PROBLEM DESCRIPTION

Although RA-MIS can introduce many advantages when
compared with conventional methods, several critical issues
need to be considered to enhance safety and improve accuracy
during RA-MIS. Generally, during RA-MIS surgical opera-
tions, the basic problems that should be fulfilled can be sum-
marized as follows: movement constraint of the surgical tool,
skills transferring method, and control system development.
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Fig. 1. Skill transfer from open surgery to MIS. Left: multiple demonstrations
operated by an experienced surgeon in open surgery. Right: performing of the
learned task in MIS. For RA-MIS, r1 is the task’s initial point, and r1 f is
the task’s final point. During the task operation, the tool must respect to the
small incision on the abdominal wall.

First, the most critical problem during the operation process
of RA-MIS is safety. During surgical operations, the surgical
tool should pass through the small incision on the abdominal
wall of the patient’s body. Meanwhile, the surgical tool should
avoid making trauma to surrounding tissues and organs, which
is to ensure the safety of RA-MIS. For the surgical robot, this
can be considered as a kinematics constraint of the surgical
tool and can be achieved by the RCM constraint of the surgical
robot.

Besides, how to teach the surgical robot to learn the surgical
skills from an experienced surgeon is another important issue.
Unlike experienced surgeons, surgical robots are not intelligent
enough to make judgments and decisions autonomously during
the surgical operation process. To improve surgical margins
and decrease operating duration [29], surgical skills performed
by an experienced surgeon in open surgery could be learned
and used for semiautonomous or autonomous operation in
RA-MIS [8], [30]. Hence, efficient and appropriate skill learn-
ing methods need to be introduced to facilitate the learning of
surgical skills by surgical robots [31], [32].

Moreover, surgical robots perform surgical operation tasks
by controlling the surgical tip of the surgical robot to track the
desired trajectories and further complete a series of surgical
operations, such as cutting and flipping. Therefore, precise
control algorithms [33] and a robust robot control system [34]
should also be developed to guarantee that the robot can
complete the surgical tasks accurately.

III. METHODOLOGY

The control method discussed in this article is intended to
develop a new control approach that incorporates the TbD
techniques to learn the manipulation skills involved in a spe-
cific task from multiple demonstration operations performed
by an expert surgeon in open surgery, as shown in Fig. 1. It can
achieve the representation [35] of the learned motion skill in
semiautonomous MIS with a decoupled impedance controller
respecting the RCM constraint.

A. Modeling of the Serial Robot

The serial manipulator’s dynamic model used in this article
can be described as [36]

M(q)q̈ + C(q, q̇)q̇ + g(q)− τ e = τC (1)

Fig. 2. RCM constraint control: a null-space kinematic controller is utilized
to achieve the RCM constraint. As it is shown in the above picture, d is the
RCM constraint error, calculated by the distance between the trocar position
(r0) and the tool shaft. The tooltip is controlled to reach the target from the
actual position (r1) in the patient’s abdomen cavity, and v2 is the desired
velocity to drive the wrist to the desire position (r2d ) until it reaches (r2 f ).

where n is the number of degrees of freedom (DoFs),
C(q, q̇) ∈ Rn×n is the Coriolis force and centrifugal matrix,
q ∈ Rn is the corresponding joints value and the matrix of
the corresponding inertia effects is defined as M(q) ∈ Rn×n ,
and g(q) ∈ Rn is the vector of gravity. τ e ∈ Rn and
τC ∈ Rn denote the corresponding external torque and the
corresponding control torques, respectively.

The formulation can be defined as follows in the task
space [37], [38]:

M X Ẍ + H X Ẋ + J−T
T (q)g(q)− FeT = F (2)

where the task space coordinate is X ∈ Rm and Ẋ ∈ Rm

represents the actual Cartesian velocity

M X = J−T
T M(q)J −1

T (3)

H X = J−T
T [C(q, q̇)−M (q)J−1 J̇T ]J−1

T (4)

FeT = J−T
T τ e. (5)

In this article, the singularity case is ignored and concluded
that there is the pseudoinverse of J T (q) ∈ Rm×n from the base
to the end-effector. The matrix M X ∈ Rm×m is the Cartesian
inertia. H X ∈ Rm×m is the effects of Cartesian–Coriolis force
and m is the degrees of task space. FeT ∈ Rm is the external
force under the constraint condition

∃β ∈ R, �FeT � ≤ β ∀t ≥ 0. (6)

B. Remote Center of Motion

To make the end-effector position (r1 ∈ R3) to match
the target position (r1 f ∈ R3), an interpolation technique
for moving to the desired position (r1d ∈ R3) is introduced
smoothly as [39], [40]

r1d = −k1(r1 − r1 f )+ ṙ1 f (7)

where k1 > 0 is a positive coefficient. Based on r1d , we can
obtain the desired wrist position r1 f from the admittance
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Fig. 3. Decoupled control architecture. r1d ∈ R3 is the desired Cartesian
position in the task space. r2d ∈ R3 denotes the desired kinematic coordinates
in the null space of the task coordinates with respect to the RCM constraint.
τ T ∈ Rn is the joint torque to achieve the main task. τ N ∈ Rn is the joints
torque for the null-space task. τ e ∈ Rn is the external torque in the joint
space.

control model. According to the scenario with a serial robot
in Fig. 2, d is the distance from the RCM point (r0) to the tool
(the RCM constraint is enlarged for an easier understanding).
The tooltip is controlled to track the target r1d from the actual
position r1 in the patient’s abdominal cavity. The value v2 is
the velocity to move the wrist from its actual position r2 to
its desired position r2d , where the tool shaft passes through
the RCM point r0. Hence, the final desired wrist position r2 f

can be obtained from

r2 f = r1d + r0 − r1d

�r0 − r1d��r2 − r1� (8)

and the online desired wrist position r2d can be calculated
using

r2d = −k2(r2 − r2 f )+ ṙ2 f (9)

where k2 > 0 is a positive coefficient.

C. Decoupling Control Framework

Then, a decoupling control method [38], shown in Fig. 3,
is introduced to achieve the desired tracking task on the
surgical tip and to guarantee the RCM limitation with
redundant elements. In this section, the proposed “extended
Jacobian method” in [41] is presented in this section to
expand the operational space by formulating the end-effector
and the last joint. The decoupled control architecture
shown in Fig. 3 consists of two main elements [38] as
follows:

1) a Cartesian compliance control strategy to track the ref-
erence trajectory r1 f , accounting for the representation
of the learned surgical task demonstration;

2) a null-space controller to drive the wrist position to r2 f

respecting the RCM constraint.

Next, the formulation of decoupling control will be intro-
duced. The end velocity of the tooltip in the workspace and
the joint-space angular velocity have the following form:

ṙ = JT (q)q̇ (10)

where ṙ ∈ R3 is the actual end-effector Cartesian velocity.
To make the position of the end-effector (r1 ∈ R3) to follow
the desired trajectory (r1d ∈ R3), the torque τ T , that is,

the Cartesian compliance control strategy, could be designed
as

τT = JT (q)T
�
KX(r1 − r1d)− DX ṙ1d

�
(11)

where KX ∈ R3×3 and DX ∈ R3×3 represent the diagonal
stiffness and the diagonal damping matrices, respectively,
which are needed to be chosen.

In addition, to drive the wrist position r2 with respect
to the RCM constraint, an additional control term, i.e., the
null-space controller, should be introduced to maintain this
control objective. By utilizing the redundant DoFs of the robot,
the null-space controller could be defined as

τN =
�

I − J T (q)T
�

J T (q)M
+�T

�
J T

N FN (12)

where JN ∈ R3×7 is the Jacobian matrix from the robot base
to the wrist and JT (q)+M is the inertial-weighted pseudoinverse
matrix

JT (q)
+
M = M(q)−1 JT (q)T

�
JT (q)M(q)−1 JT (q)T

�−1
. (13)

FN is the force applied on the null-space kinematics, which
could be designed as

FN = −KN(r2 − r2d)− DN ṙ2d (14)

where KN ∈ R3×3 and DN ∈ R3×3 are designed null-space
stiffness and damping matrices, respectively.

The final control term of the decoupling control algorithm
can be expressed as follows:

τ = τT + τN . (15)

D. Teaching by Demonstration

An enhanced TbD control framework is introduced for
modeling the demonstrated tasks in open surgery by utiliz-
ing the DTW and DMP. Recently, transferring experienced
surgeons‘ skills to the surgical robot is attracting more and
more attention in the surgical robotics area [14], [42]. To cope
with such challenges, the need for developing methodology
and technology in human skill transferring will reinforce the
robot-assisted surgical system.

DTW is a similarity measurement tool by extending and
shortening the data length [20], [43], [44]. Except for extract-
ing the similarity from multiple demonstrations, motor primi-
tives of the robot manipulation should be modeled for repre-
sentation. DMP appears to be an effective and useful way of
representing the movement.

1) Preprocessing of Demonstrated Data Using DTW: To
derive the similarity from the multiple demonstration curves
by an experienced surgeon in open surgery, DTW has been
introduced to match the different manipulation templates
with varying data lengths [45]. The DTW captures flexible
similarities under time distortions and features the sum of
the different indices among these similarities, called warp
path distance, D(i, j), to calculate the correlation of the two
time series, for example, given the reference data series
R = �

r1, r2, r3, . . . , ri , . . . , rL1

	
and the other demonstrated

data series T = �
t1, t2, t3, . . . , t j , . . . , tL2

	
, where ri and t j

represent the values of each series and L1 and L2 denote the
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series lengths. A distance matrix can be utilized to realign R
and T

D(i, j) = min

⎧⎨
⎩

D(i, j − 1)
D(i − 1, j)

D(i − 1, j − 1)

⎫⎬
⎭ + d

�
ti , r j

�
(16)

where i = 1, 2, . . . , L1, j = 1, 2, . . . , L2, and d
�
ti , r j

�
denote

the distance between ri and t j . D(L1, L2) is the distance
between R and T after the mapping. The best alignment can
be achieved when the smallest D(L1, L2) is obtained. The
DTW is able to couple the data with different lengths by
their similarity [46], regardless of the time sequences with
a comparison of the general Euclidean mapping. In this
way, in order to realign R and T , DTW can be introduced
to obtain a warped matrix W = �

w1, w2, . . . , wp, . . . , wP
	
,

where wp = �
ri p , t jp

�
, 1 < p < P , and P is the warped data

length. It means that at the pth step, ri and t j are aligned and
they are saved in the warped matrix. After the processing of
DTW, the aligned demonstration curves can be obtained.

2) Modeling the Operation Curves Using Discrete Dynamic
Movement Primitive: Given the continuous stream of opera-
tion curves aligned with DTW, DMP [47], [48] is an effective
approach to identify movement primitives among them in
biology motion studies. Generally, DMP consists of two main
components: 1) a converting system to constitute the states
based on dynamical structures and 2) a canonical system
h(x) to generate trajectories by interpolating the factors. The
detailed formula can be described as

ẋ = h(x)

ÿ = αy
�
βy(g − y)− ẏ

� + f (17)

where y is the converting system states, x is the canonical
system states, g is the endpoint, and

f (x, g) =
�N

i=1 ψiwi

�N
i=1ψi

x(g − y0)

is a nonlinear function of the canonical system.
wi is a weighting for a given basis function

ψi = exp
�−hi (x − ci)

2
�

where ci and hi are the parameters of the Gaussian function.

E. Gaussian Mixture Model

In this article, the GMM is applied to generate multiple
patterns at the same time, which can ensure the accuracy
of the action and model the uncertainty of multiple sets of
demonstrating data. In the generation stage, the Gaussian
mixture regression (GMR) and DMP are combined to model
the trajectory.

Human demonstrating data generally include multiple tra-
jectories for a single task, and these trajectories cannot be
exactly the same [49]. In order to learn from multiple demon-
strations accurately, in our framework, GMM is needed to
encode the temporal and spatial components of continuous
trajectories. For learning tasks, suppose that the training data
set includes N trajectories containing spatial or sensory data ξs

and considering the temporal component ξt as an additional

dimension. The data set ξ ( j) = {ξ ( j)
s , ξ

( j)
t }, j = 1, . . . , N is

modeled by a mixture of K components, which is defined by
probability density function

p
�
ξ ( j)

� =
K�

k=1

αkN
�
ξ ( j) | μk,�k

�
(18)

where N (ξ ( j) | μk,�k) is a Gaussian conditional probability
density function. GMM parameters, which can be learned by
expectation–maximization (EM) algorithm, are described by
{αk, μk, and �k}K

k=1, representing, respectively, prior, mean
vectors, and covariance matrices. After completing the training
of the trajectory probability model, the next step is to generate
a suitable trajectory based on the demonstrating information.
Given the detailed expression of the model, GMR is employed
to generate a synthesized trajectory with smaller position
errors in the workspace. Based on the theorem of Gaussian
conditioning, the formula of the desired trajectory can be
given

p(ξs | ξt ) =
K�

k=1

βkN
�
ξs | ξs,k, �̂s,k

�

ξ̂s,k = μs,k +�st,k
�
�tt,k

�−1�
ξt − μt,k

�

�̂ss,k = �ss,k −�st,k
�
�tt,k

�−1
�ts,k (19)

where βk = p(k | ξt ) is defined by the probability of the
component k to be responsible for ξt . Using the linear
combination properties of Gaussian distribution, an estima-
tion of the conditional expectation of ξs given ξt is thus
defined by p(ξs |ξt ) ∼ N �

ξ̂s, �̂ss
�
, where ξ̂s = �K

k=1 βk ξ̂s,k ,
�̂ss = �K

k=1 β
2
k �̂ss,k . Therefore, a generalized form of the

motions ξ̂ = �
ξ̂s, ξt

	
and the associated covariance matrices

�̂ss describing the constraints are computed by evaluating�
ξ̂s , �̂ss

	
at different time steps ξt . Then, DMP is used to

model the desired trajectory ξ̂s for the purpose of generating
generalized trajectories under different target positions.

F. Control Framework Development

The control framework integrates the procedures of TbD and
decoupled control with the RCM constraint, and it is shown
in Fig. 4, which contains the following steps.

1) The human operator guides the robot to perform the
demonstration task a couple of times through kinesthetic
teaching, and the corresponding operation curves are
recorded [50].

2) Since the performing time is varying, the technique of
DTW is adopted for aligning the curves with the same
data length. Through the alignment processing, not only
can the trajectories’ length in the input training data be
guaranteed to be the same and aligned in time but also
the data at the same time step can be modeled together.

3) At the same time, the GMM is used to model multiple
trajectories, and GMR is used to generate one trajectory
from the multiple curves.

4) Finally, a learning curve is derived from the trained
DMP, and it is performed using a robot under the RCM
constraint through a decoupled controller.
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Fig. 4. Developed control framework. After multiple demonstrations,
the demonstrated motion curves are aligned with DTW, and GMM is intro-
duced to extract the similarity of the DMP for the manipulation task. A learned
manipulation curve is obtained from the trained model. Finally, the learned
operation is performed with the decoupled controller respecting the RCM
constraint.

Fig. 5. Demonstration setup scene in open surgery. A kidney tissue model
with a size of around 135 × 45 × 30 mm3 is presented in the 3-D patient
phantom (170 × 210 × 100 mm3). The patient phantom is opened, and a
metal clip fixes the kidney model in the abdominal cavity. A white task curve
is drawn in advance along a blood vessel on the surface of the kidney to serve
as the specific tracking task. The robot is activated in hands-on control mode
to enable the surgeon to relocate the surgical tip by hand. The “surgeon” is
commanded to do multiple demonstrations of tracking the white task curve
with the surgical tip.

The performance of the proposed approach is tested in a
lab setup environment using a seven-DoF serial robot. The
ability to learn from multiple demonstrations and to perform

Fig. 6. Demonstration task tracking procedure. The numbers (1–9) indicate
the tracking procedure by hands-on demonstration in open surgery. The first
picture shows the starting point of the tracking tasks, and the ninth picture
represents the corresponding final point. The “surgeon” use hands to hold on
the tool shaft and move the tooltip following the white task curve on the
kidney.

Fig. 7. Demonstrated operation curves in 3-D. The hands-on demonstrations
are repeated seven times in open surgery.

the learned manipulation skill in semiautonomous MIS is
demonstrated and discussed in Section IV.

IV. EXPERIMENTAL DEMONSTRATION AND RESULTS

An overview of the developed experimental surgical system
is shown in Fig. 5. A redundant robot (LWR4+, KUKA,
Germany) serves as the serial robot torque controller through
Fast Research Interface (FRI), which provides direct low-level
real-time access to the robot controller (KRC) at the rate
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Fig. 8. Demonstrated operation curves in three axes. The demonstrated data lengths are different due to the difference of the operation time.

of 500 Hz. A human operator (namely the surgeon) would
manually operate the robot to generate the demonstrating data.
The RCM constraint is provided by a 3-D printed surgery
human phantom. The size of the phantom is similar to the real
human abdomen, and the distribution of the incisions is the
same as the real surgery. Each small incision is equipped with
a silicone material to simulate the physical interaction. In this
section, in order to evaluate the performance of the proposed
method, some experiments are carried out. The experimental
procedures mainly include the following.

1) The desired trajectory is generated through operating
the robot arm multiple times in surgery environment by
human operators, and the GMM-based DMP presented
in Section III is used to generate a learned trajectory.

2) The KUKA robot is performed to move along the
learned trajectory to accomplish the surgical operation
with RCM constraint in the autonomous MIS.

A. TbD in Open Surgery

In order to evaluate the proposed approach, an experi-
ment using the KUKA robot is performed to demonstrate its
feasibility. The scenario of hands-on demonstration in open
surgery is shown in Fig. 5. A 3-D printed patient phantom
and a kidney organ in the abdomen cavity are used for
demonstration. A white curve is drawn on the kidney to serve
as a demonstration task.

First of all, the patient phantom is opened, and a subject
is asked to move the robot by hands-on control to track
the demonstration task, as shown in Fig. 6. The surgeon

manipulates the robotic arm to track the desired trajectory with
the sequence steps. In particular, the demonstration task is
repeated seven times. The corresponding 3-D demonstration
curves of the tracking task are shown in Fig. 7. As shown
in Fig. 8, since it is impossible to ask a surgeon to perform
a task precisely multiple times, these trajectories are quite
different from each other, especially the data length. In other
words, in the process of modeling multiple trajectories by
GMM, there remains a problem concerning the robustness of
the model to the temporal variability across the demonstrated
movements. Thus, it could be useful to align the different
demonstrations automatically before further processing. As it
is shown in Fig. 8, the data length of the curves is different.
To model the manipulation skills, it is essential to align the
operation curves and then extract the similarity of the curves
by using DMP. Hence, the DTW is employed to warp the
curves according to the time sequences from 1 to 9. After
the preprocessing, the operation curves are aligned according
to each axis, as shown in Fig. 9. Through the alignment
processing, not only can the trajectories’ length in the input
training data be guaranteed to be the same and aligned in
time but also the data at the same time step can be modeled
together. Then, GMM is introduced to model the DMP of the
operation curve, and a learned 3-D is derived from the trained
DMP. Finally, the learned manipulation motion is derived from
multiple demonstrations. Fig. 10 shows the learned 3-D task
by TbD. Thus, using the proposed algorithm, the approach
could learn the surgical operation skills of DMP with multiple
demonstrations of a specific task.
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Fig. 9. Warped operation curves in three axes. The curves are warped with DTW to align the data.

Fig. 10. Learned operation curves in 3-D.

B. Performing Learned Trajectory in Semiautonomous MIS

After TbD, the learned trajectory is performed in semi-
autonomous surgery, which includes two procedures shown
in Fig. 11. The left of Fig. 11 shows the first procedure
to use hands-on control to locate the position of the RCM
constraint. Then, surgical tool inserted to inside the abdom-
inal cavity to reach the initial point of the task. The right
of Fig. 11 shows the second step to perform the learned
manipulation under surgeon’s supervision from the visual
interface.

It should be noticed that the hands-on control is activated
in the first procedure and the decoupled controller is used to
perform the learned trajectory respecting the RCM constraint

Fig. 11. Experimental validation: 1) hands-on control is implemented to
permit the surgeon for demonstrating the surgical operation of a specific task
and 2) autonomous tracking is used to control the tip of the instrument for
performing the learned surgical operation.

during the second procedure. As it is shown in Fig. 11,
to locate the RCM constraint, the subject uses hands-on
control. Then, the subject inserts the surgical instrument into
the patient abdomen phantom via the small incisions, and the
robot autonomously tracks the desired trajectory to perform
the surgical task by respecting the RCM constraint. During
the autonomous tracking, the surgeon supervises the procedure
from the visual interface and holds the emergency button for
safety issues.

The decoupled impedance parameters of the controller can
be found in our previous works [39]. The performance is mea-
sured according to Fig. 12 throughout the implementation of
the learned path. It depicts the error of Cartesian position, Er ,
and the error of the RCM boundary, d , which are calculated
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Fig. 12. Performance measurement. d is the RCM constraint error and
EX is the Cartesian error on the tooltip. The “Actual” link means the actual
tool shaft placement, whereas the “Desired” link represents its corresponding
desired placement.

(a)

(b)

Fig. 13. Online performance for performing the learned trajectory.
(a) Cartesian position error. (b) RCM constraint error.

as follows:
�Er� = �r1d − r1�

d = �(r0 − r1)× û� (20)

where û is the direction vector of the tool shaft.
Fig. 13 shows the online performance while executing

the learned task with an RCM constraint. It shows that the
robot can perform the learned trajectories with considering the
RCM constraint. The RCM constraint error and the Cartesian
position error are constrained in a small area within 2 and
6 mm, respectively.

V. CONCLUSION

This article proposes an approach to introduce TbD tech-
niques for RA-MIS, where an RCM kinematic constraint is
presented. It aims at using the benefits of ease manipulation
in open surgery and smaller incision in MIS. More specifically,
the approach consists of DTW to measure the similarity among
the multiple demonstrations, GMM-based DMP to model the
motion primitives of human demonstrations, and a hierarchi-
cal control framework to perform the learned surgical task
respecting RCM constraint. The methods of DTW and DMP
are utilized to analyze and generalize the learned operations
curves demonstrated by the surgeon in open surgery. Then,

the learned motion is represented in semiautonomous MIS
using a decoupled control methodology. The experimental
demonstration is performed on 3-D printed patient phantom by
using KUKA LWR4+ to validate the quality of the proposed
method. The findings show that the introduced control algo-
rithm not only is able to learn the human operation skill from
multiple demonstrations on a specific task but also can transfer
the learned motion from open surgery to MIS by guaranteeing
the RCM constraint.

These preliminary results demonstrate that skill transfer
from open surgery to MIS is feasible. The learning ability and
RCM constraints are guaranteed. Future works will exploit the
developed control approach to enable the robot to learn more
complex senior surgeons’ skills, such as actual suturing or
knot tying with organ models. In addition, camera movement,
while a surgical task can also be achieved, is following this
approach. By the way, skill transferring in this article only
considers the motion skills regardless of the stiffness during
the operation. Hence, the interaction force of the demonstrated
task will be integrated, and the autonomous camera will be
considered to achieve accurate tracking in future works.
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